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Abstrakt: Prvńı část dizertačńı práce se zabývá numerickou simulaćı interakce proud́ıćı
tekuitny a elastického tělesa (FSI) v 2D modelováńı vibrace lidských hlasivek vybuzených
prouděńım vzduchu. Deformace lidských hlasivek je popsána pomoćı lineárńıho elastického
modelu a prouděńı tekutiny je modelováno nestlačitelnými Navierovými-Stokesovými
rovnicemi v ALE formulaci, která umožňuje zahrnout efekty časově proměnné oblasti
prouděńı. Prostorová diskretizace obou podúloh je realizována metodou konečných prvk̊u
(FEM) a pro časovou diskretizaci elastického tělesa je použita Newmarkova metoda,
zat́ımco problém prouděńı je aproximován v čase pomoćı metody BDF2. Specialńı po-
zornost je věnována stabilizaci FEM pro aproximaci prouděńı, výpočtu aerodynamických
sil a okrajovým podmı́nkám předepsaným na vstupu do glotálńıho kanálu. Je porovnána
penalizačńı okrajová podmı́nka s Dirichletovou a do-nothing okrajovou podmı́nkou a jsou
ukázány jej́ı výhody pro řešeńı konfiguraćı vnitřńı aerodynamiky, kdy docháźı k uzav́ıráńı
kanálu. Zejména je určena závislost kritické flutterové rychlosti prouděńı na penalizačńım
parametru a dále je analyzován přenos energie mezi proud́ıćı tekutinou a kmitaj́ıćım ela-
stickým tělesem.

V druhé části dizertace je FSI problém rozš́ı̌ren na problém na interakce proud́ıćı
tekutiny, elastické struktury a akustiky. Tento problém zahrnuje popis aeroakustických
a vibroakustických úloh motivovaných modelováńım lidské fonace. Představený hybridńı
aeroakustický př́ıstup dovoluje určit zvukovou hladinu na základě simulace nestlačitelného
prouděńı, tj. akustický výpočet má formu postprocesingu výsledk̊u FSI úlohy. Jsou
popsány alternativńı formulace zvukových zdroj̊u a jejich numerická implementace v
několika vyšetřovaných př́ıpadech. Numerické výsledky obsahuj́ı analýzu frekvenčńıch
charakteristik několika model̊u vokálńıho traktu (VT), které byly určeny pomoćı řešeńı
Helmholtzovy rovnice s využit́ım PML metody na konci VT pro modelováńı problému
s volnou hranićı. Dále vypočtený zvuk vibroakustického p̊uvodu, tj. vybuzený čistě
kmitáńım hlasivek, dosahuje výrazně nižš́ı zvukové hladiny než zvuk aeroakustického
p̊uvodu. Aeroakustické simulace se skládaj́ı z výpočtu zvukových zdroj̊u na základě
výsledk̊u prouděńı, z interpolace zvukových zdroj̊u na akustickou śıt’ a ze záverečného
modelováńı postupného š́ı̌reńı těchto zdroj̊u v čase skrz vokálńı trakt. Jsou srovnány
tři r̊uzné př́ıstupy – Lighthillova akustické analogie (LH), (zjednodušená) perturbovaná
konvektivńı vlnová rovnice (sPCWE) a aeroakustická vlnová rovnice (AWE). Hladina
zvuku vykazuje nadhodnoceńı v př́ıpadě Lighthillovy analogie a téměř totožné výsledky
při použit́ı př́ıstup̊u sPCWE a AWE. Ve všech př́ıpadech jsou v źıskaných akustických
spektrech dominantńı akustické resonance (formanty) použitého modelu vokálńıho traktu.

Kĺıčová slova: Interakce prouděńı s elastickým tělesem, interakce prouděńı a elastického
tělesa i akustiky, lineárńı elasticita, nestlačitelné prouděńı tekutiny,
Navierovy-Stokesovy rovnice, Lighthillova akustická analogie, perturbo-
vaná konvektivńı vlnová rovnice, aeroakustická vlnová rovnice, metoda
konečných prvk̊u, ALE metoda, PML vrstva, modelováńı lidské fonace.
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Abstract: The first part of dissertation thesis deals with the numerical simulation
of the fluid-structure interaction (FSI) in 2D modelling the vocal folds vibration ex-
cited by airflow. The vocal fold (VF) deformation is described by the linear elasticity
model and the flow is modelled by the incompressible Navier-Stokes equations in the
arbitrary Lagrangian-Eulerian (ALE) formulation in order to take into account the
time-dependence of the flow domain. The space discretization of both subproblems is
realized by the finite element method (FEM) and the Newmark method for time dis-
cretization of the structure is applied while the fluid flow problem is approximated
in time by the BDF2 method. A special attention is paid to the fluid flow stabi-
lization, to the calculation of aerodynamic forces and to the airflow inlet boundary
conditions at the entrance to the glottal channel. The penalization boundary condi-
tion is compared with the Dirichlet and the do-nothing boundary condition and its
advantages are shown for solving of the internal aerodynamics configurations when
the channel is closing. Particularly, the dependence of critical flutter airflow velocity
on the penalization parameter is determined and the energy transfer between airflow
and the vibrating elastic body is analyzed.

The second part of thesis extended FSI problem to the interaction of fluid flow,
elastic body and acoustics. It addresses the aeroacoustic and the vibroacoustic
problems motivated by human phonation. The presented hybrid aeroacoustic ap-
proaches allows to predict sound based on the incompressible flow simulation, i.e.
acoustic computation has the form of the FSI results postprocessing. Alternative
sound source formulations and their numerical implementations are described and
applied in several investigated cases. The numerical results contain analysis of fre-
quency characteristics of several vocal tract (VT) models which were determined by
solving the Helmholtz equation with considered perfectly matched layer technique
at the VT end representing open-boundary condition. Further the computed sound
of vibroacoustic origin, i.e. excited purely by the VF vibration, reaches significantly
lower sound pressure levels (SPL) than the sound of aeroacoustic origin. The aeroa-
coustic simulations comprise the sound sources evaluation in the computed airflow
pattern, the sound sources interpolation on the acoustic grid and finally modelling
of the sound sources transient propagation in the VT. Three different approaches
– namely the Lighthill analogy (LH), the (simplified) perturbed convective wave
equation (sPCWE) and the aeroacoustic wave equation (AWE), are compared. The
SPL show overestimation in the case of LH and almost identical results of sPCWE
and AWE. In all cases the excited spectra of acoustic pressures are dominated by
the acoustic resonances (formants) of the vocal tract model.

Key words: Fluid-structure interaction, fluid-structure-acoustic interaction, lin-
ear elasticity, incompressible fluid flow, Navier-Stokes equations,
Lighthill acoustic analogy, perturbed convective wave equation,
aeroacoustic wave equation, finite element method, ALE method,
perfectly-matched layer, human phonation modelling.
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Chapter 1

Introduction

Fluid-structure interaction (FSI) is a coupled problem, where the solutions of elas-
tic body deformation subproblem and fluid flow subproblem depends on each other
and thus they cannot be solved independently. It is also mathematically beautiful
problem, which has many technical applications, e.g. the bridge or the airfoil design,
[40], [47], and the liquid packing system, [60], or the paper transport in printing ma-
chines, see [138], etc. More recently FSI problems found usage also in biomechanical
engineering, e.g. simulation of blood flow in vessels [34] and flow-induced vibrations
of vocal folds, [98], [102], [95], etc.

Fluid-structure-acoustic interaction (FSAI) can be understood in this scope as multi-
physical generalization of FSI, [90]. It consists of three different physical fields – the
deformation of an elastic body, the complex fluid flow and the acoustics together
with all mutual couplings. The solution of FSAI problem inherits difficulties of all
the subproblems. Typical technical problems involving FSAI are e.g. design of ven-
tilators, air-conditioning vents or engines, [82], [134], where the FSAI simulation
can help already in first stages of design to reduce significantly the sound emission.
The simulation of human phonation is a prominent example of other than purely
technical application, [139], [166].

In this thesis the FSAI solution is sought with the help of mathematical modelling
and numerical approximation by the finite element method (FEM), particularly, a
specialized (and therefore more efficient) solver for solution of each subproblem is
used. This approach is called partitioned scheme, see [89]. The coupled nature of
the problem leads to iterative loop, where the fulfillment of coupling conditions is
tested in every loop until a convergence criterion is reached. This results usually in
high computational demands.

The thesis describes a general algorithm of FSAI numerical solution with the goal
to apply all derived methodology to the simulation of human phonation. Prof.
Kaltenbacher calls exaggeratedly this problem during his lectures as “Holy Grail
of numerical simulation” due to complexity of all involved physics and presence of
strong nonlinearities, see [157].
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1.1 Motivation

The human phonation is highly interesting phenomenon under ongoing research, see
for example [105]. Despite substantial advances in latest years the human phona-
tion process has not been fully understood yet. A better understanding can help
to improve the treatment of people with voice disorders, to design suitable vocal
exercises for singers and other voice professionals or to help with the development
of new voice prothesis, see [163]. Due to the practical inaccessibility of the human
vocal folds for detail experimental investigations, the mathematical modelling and
the numerical simulations have recently become to be an important tool used in the
research, see e.g. [156].

The human voice is a part of our personality, patients with indisposed or impaired
voice experience high psychological stress, hardly quantifiable. On the other hand
the economic losses connected with the enforced absence in work, where voice is
necessary, are only in USA estimated up to $160 billions per year, see [121].

The advancement in the mathematical formulation and the numerical simulation
of the introduced problem can help also in many areas closely associated with the
mechanisms present in FSI and especially in FSAI problems as described above, see
e.g. [34], [103].

1.1.1 Human voice from medical point of view

Human voice is created by the flow-induced vibrations of vocal folds. The human
vocal folds (VFs) are a part of the larynx situated in the anterior neck, see Figure 1.1.
The larynx connecting the inferior part of the pharynx with the trachea is not only
responsible for sound production, it also adjusts oral cavity volume and prevents
swallowed material from entering the breathing airways. The walls of the larynx are
composed of cartilages, ligaments, membranes, muscles and they are covered by the
protecting respiratory mucosa. The vibrating part of the VF size is approximately:
total length 10− 16mm, vertical thickness 9− 10mm and total depth in horizontal
direction ca. 11mm, all depending on gender and age, see [156].

The larynx is composed of nine cartilages and the VFs are controlled by six muscles.
The thyroid cartilage is the biggest and strongest laryngeal cartilage, which can be
seen directly under the neck skin, also known as “Adam’s apple”. The set of cartilages
bonded together with muscles provides firm, but flexible support to the larynx, [18].

Intrinsic muscles have two main functions – to control respiration and phonation.
During the respiration the VFs are abducted, see Figure 1.2 middle. The another
muscles draw VFs together to phonatory position, Figure 1.2 right. The two most
important muscles are the cricothyroid and thyroarytenoid muscle. The cricothyroid
is primarily responsible for modification of the vocal folds length. The activation of
this muscle increases the VF tension and it plays a significant role in the setting of
the voice fundamental phonation frequency. The thyroarytenoid (vocalis) muscles
form the bulk of the vocal folds and their action mainly shorten the vocal folds and
therefore it relaxes the vocal folds tension, see [156]
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Figure 1.1: Left: Sagittal cut of upper airways – VFs are located in the circle
denoting the larynx, see [99]. Right: Frontal cut of the larynx reveals the position
and a complicated physiological structure of VFs, [18].

Figure 1.2: Left: Frontal cut of one VF with detailed tissue structure.
1 - thyroarytenoid muscle, 2 - lamina propria profunda, 3 - lamina pro-
pria media, 4 - lamina propria superficilias, 5 - epithelium, see [122].
Right: Laryngoscopic view of the vocal folds in respiratory (middle) and phonatory
(right) position. During respiration, VFs attached on the arytenoid cartilages are
abducted not to block trachea. Before phonation, VFs move closer into prephonatory
position leaving only small gap between them. Overtaken from [136].

Above the VFs in the larynx the ventricle and the ventricular folds are located,
sometimes called false vocal folds (FVFs). The ventricle is space between VFs and
FVFs. The FVFs are largely immobile, composed of ligament. The current research
indicates that they play not a negligible role in glottal flow dynamics and therefore
they can influence also the produced sound, [105].

The morphological structure of VF is quite complicated. The VFs tissue structure is
usually categorized into three main tissue layers: the epithelium, the lamina propria
and the vocalis muscle. The epithelium is a thin tissue with main purpose of main-
taining the VF shape. The lamina propria is underneath the epithelium. The three
layers of lamina propria are distinguished according to the distribution of the elastic
fibers: superficial, intermediate and deep layer. The vocalis muscle, the major bulk
of the vocal fold, is the most inner and its thickness is circa 8 mm. Figure 1.2 left

3



shows VF tissues after resection, [122].

Here, we follow rather the classification based on the mechanical (elastic) properties,
which accurate determination is highly difficult. It combines the intermediate and
the deep lamina propria into a layer called ligament. Finally we distinguish four
layers: the epithelium, the lamina propria (superficilias), the ligament and the vocalis
muscle.

1.1.2 Human voice production from a physical point of view

The air stream coming from lungs excites vibrations of the vocal folds prepared in
a prephonatory position. If the subglottal pressure is high enough, the amplitude of
vibration steeply rises until the (full) contact of both VFs is achieved. The complete
closure of the glottal channel is one of the major characteristics of the healthy human
voice. The described mechanism of the flow-induced vocal fold vibrations represents
the dynamic aeroelastic instability, usually referred in aeroelasticity as flutter, see
[40]. According to [77] the flutter regime is the necessary condition for producing
healthy voice because in this regime the energy is transferred from the flowing air
into the vibrations of the vocal folds. The time of contact is for normal healthly
voice approximately a half of one vibration period, [156], [105]. The VF opening and
closing effectively controls the flow rate through the glottis, resulting in a confined
jet. This jet in the supraglottal area breaks gradually into a full scale of vortices,
therefore the flow field in this region is quite complex.

The basic sound is created by modulated glottal jet with the fundamental frequency
given by the VFs vibration, i.e. for male it is in the range 85−155 Hz and for female
165−255 Hz, see e.g. [172]. This dominant sound is enriched by sound sources asso-
ciated with supraglottal turbulence vortices and sound sources introduced by the VF
vibration and collision. The superposition of all sound sources results in an acoustic
signal, which contains in addition to the fundamental frequency many higher har-
monics. However the frequency characteristic of sound sources is still substantially
different from produced human voice, see [156], [157]. The sound originated by the
sound sources propagates through a vocal tract, then it is articulated in mouth and
finally this acoustic signal represents a human voice as we hear it. The basic physical
conception of vocal tract function is, that it acts as an acoustic resonator with asso-
ciated resonant frequencies, see source-filter theory in e.g. [54], [144]. It means that
it amplifies frequencies in specific frequency ranges given by acoustic resonances of
the vocal tract cavities. By doing so, it effectively transforms basic sound produced
in the glottis into acoustic frequencies typical for each vowel. The resonant frequen-
cies of vocal tract called formants depend on its length and shape, see [143]. For the
higher acoustic intensities (typically singing or crying) the situation is substantially
complicated because the phonation process including sound propagation through
the vocal tract evidences strong nonlinearities and it could not be modelled any
more by the source-filter approach, see [157].
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1.2 State of the art

This section covers the most important aspects of vocal folds modelling evolution.
Since the topic of this thesis is theoretical, the main attention is paid to the theo-
retical results even if these results first in the conjunction with experimental results
can bring real progress in the human phonation research. The overview is focused
on the FSI models with an extension to the FSAI models.

Discrete models. The mankind is fascinated with human voice production since
prehistory. The systematic, scientific approach investigating human phonation dates
back to sixties of 20. century, when first simple models of mass-spring coupled to fluid
flow were established, see [59], [158]. These simple FSI models can illuminate basic
principle of VF interaction with air stream, but it cannot explain the sustainable
VF vibration, see [155]. Therefore more complicated physical models have emerged,
consisting of two or more masses connected by damped springs, see [83], [97]. These
models can estimate the instability boundary of the system by eigenvalue analysis,
see [77].

These models were step by step improved and their outcomes were able to succe-
sively predict the VF motion even in the case of contact, see [75], and to predict
the impact stress within the VF, [72], which is an important quantity for underlying
pathological processes and disorders occurring in the vocal fold tissue. Understand-
ing these processes is crucial for designing of proper treatment strategies for the
individual patients’ problems.

Fluid flow. The 1D potential flow theory [77] or simplified nonlinear flow descrip-
tion [75] can be replaced by more realistic 2D continuum models [57] and recently
also by 3D models as the computational power steeply increases [137]. However the
simulation of the fluid flow is the most time consuming part of the FSI computa-
tion. This is caused by the complex phenomena present in the fluid flow described by
Navier-Stokes equations, which are nonlinear. The accuracy of flow approximations
mostly determines the accuracy of whole FSI algorithm. The importance of flow
results accuracy for the purpose of follow-up aeroacoustic simulation is even higher.

One of the first studies solving 2D or 3D continuum model described by Navier-
Stokes equations investigated the flow only through static larynx configuration, see
e.g. [125] or [133]. They revealed that the flow field has highly transient character.
The intensive jet starting in the glottis separates from the VF boundary and further
downstream creates large, slowly decaying vortices. The jet alignment to one side
of supraglottal channel althought initial symmetry configuration was regarded to be
Coanda effect, see e.g. [150], which is according to [105] and [48] misleading1.

Another results, [57], [62], providing the dynamical effects caused by the domain
change were obtained by modification of flow solver, usually with the help of arbi-

1They argue that a variety of mechanisms for supraglottal flow asymmetries is present like e.g.
high sensitivity of the pulsatile jet to perturbations and possible transmission of instabilities from
different region.
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trary Lagrangian-Eulerian (ALE) method, see [149]. Since the solution of full FSI
problem, e.g. fluid flow coupled with structure, is multiple times computationally
expensive than the sole fluid flow solution in time dependent domain, a simplified
approach is often used. Therefore a variously complicated motion of fluid domain
walls is prescribed in order to imitate the real VF motion, see e.g. [171], [113]. A
similar approach is for the same reason used also for 3D computations, see [139] or
[123]. An axi-symmetric flow model was used e.g. in [27].

In the supraglottal fluid field complex flow structures appears and possibly tur-
bulence effects should be considered with e.g. a turbulence model. However, most
turbulence models are usually well tuned to describe the fluid flow around an airfoil
or plane wall and a choice of turbulence model, which gives also good results for
the case with massive separations, is troublesome, see [95]. Thus most promising ap-
proach in this area seems to be the application of LES models. One of the first article
using LES method for turbulence modelling in 2D static geometry was [145], for 3D
static geometry see [133]. The LES model is also applied together with prescribed
VF motion in recent studies [137], [95] or [124].

FSI continuum models. One of the first FSI continuum model of flow-induced
VF vibration was published by [45], where the finite volume approximations were
coupled with a two-mass dynamic model of the vocal fold. Similar approach was also
used later in [150]. The full FSI problem approximated by the FEM was introduced
in [112], [153] or see overview paper [21]. This approach is still used in many studies,
e.g. [57] or [147]. It provides higher accuracy especially when the structure and the
fluid mesh coincides on the interface. The drawback is the necessity to stabilize the
FE flow simulation in order to obtain a robust scheme. In last decade the numerical
approach based on the discountinous Galerkin (DG) methods can be found, see
e.g. [93], where even the VF dynamics are modelled with geometric and material
nonlinearities.

A very interesting alternative to FEM together with the ALE method provides
immersed boundary method (IBM), where the overall simulation is solved on the
Cartesian grid and in each time step a new interface is reconstructed, see e.g. [102]
or [166] for 3D simulations. A big advantage is a possibility to treat substantial
topology changes, a disadvantage is an inability to obtain refined mesh at boundary
layer. This can be possibly overcome by h-adaptivity, see e.g. [19].

The FSI solvers are slowly becoming a standard component of the commercial nu-
merical software, see e.g. COMSOL, ANSYS or ADINA etc. But anyway an user of
numerical software must be careful with the the results interpretation and during
the verification of the problem formulation as well as convergence of the numerical
solution, see e.g. [67].

FSAI continuum models. The FSAI problem was addressed e.g. in [98] or [173].
First, they solved the FSI problem and then they computed the acoustics with the
aid of acoustic analogies. As inputs for sound source calculation the computed flow
field as well as the VF vibration were used.
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More recently a different coupling of the fluid flow and the acoustics to the structure
response was investigated, see [84]. The authors used for simulation of the VF motion
the superposition of flow and acoustic pressure, where the acoustic pressure was ob-
tained with the help of linearized perturbed compressible equations (LPCE) solved
in the acoustic domain representing the whole vocal tract. The explicit partitioned
approach in the numerical simulation of this FSAI problem was used. Unfortunately
the applied sound soft boundary condition at mouth opening makes the results ques-
tionable.
Authors of paper [43] showed the effects of subglottal acoustics by using the barotropic
model of Navier-Stokes equations. These effects have been previously seen in exper-
imental studies and predicted theoretically, [157], [169]. As the computational VF
model vibrated, standing pressure waves were seen in the subglottal duct for its
certain lengths leading to variation of the phonation pressure threshold.

The FSI solution using the compressible model of Navier-Stokes equations, see e.g.
[67], can replace the FSAI solution but as further explained in Section 6.1 the well
resolved acoustic part of the solution is possible to be obtained only with solver of
high accuracy and when suitable boundary conditions are applied.

Mesh deformation. The mesh motion (adaptation) is a part of commonly used
FSI formulations based on the ALE method. The ALE mapping, bijective mapping
from reference domain to deformed one, can be constructed by many strategies. The
frequently used are the algebraic mesh motion, the elliptic smoothing, the pseudo-
structure approach or the interpolation by radial basis functions (RBF), see [98].
The first method can be used only for very simple mesh motion, the second one
already uses partial differential equations (PDE) to determine ALE mapping, but
the resulting overall mesh quality is poor, see [118]. The pseudo-elastic approach
has many advantages like robustness, easy implementation (basically the same as
structure solver) and possibility to easily tune parameters controlling the deforma-
tion, [49]. Interpolation by RBF seems promising, [110], and it could be possibly
computational less demanding. Very recently a new approach combining Eulerian
and ALE framework involving so called cut elements was proposed, see [132].

Boundary conditions for FSI problem. The formulation of boundary condi-
tions (BCs) depends on applied mathematical and numerical model. Here we focus
on the boundary conditions for incompressible Navier-Stokes equation approximated
by FEM.

For the interface between the fluid and the structure the physically correct combi-
nation of the Dirichlet and the Neumann BC is used. It can be derived from the
requirement of continuity across the interface for displacements and normal stresses.
It is also most suitable for the prescibred VF motion, see [174]. An interesting al-
ternative is more general combination of the Robin-Robin coupling BCs, which can
possibly accelerate the convergence of the coupled problem solution, see [26].

The influence of the inlet boundary conditions for the incompressible flow is even
more important because the neccesity to model the periodic closure of the glottal
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channel. The two frequently used BCs (in the FEM framework) are to prescribe
either the classical Dirichlet BC in the form of prescribed velocity or the do-nothing
type of BC with a given pressure drop between the inlet and the outlet. The Dirichlet
condition has the drawback of high, unphysical oscillations of inlet pressure values
during the channel closing phase, see [148]. The do-nothing type of BC usually
leads to significant oscillation of the inlet velocity while keeping the pressure drop
constant. Also such a behaviour is not relevant for the considered problem, e.g. it
was not observed experimentally, see e.g. [73]. A remedy for this situation seems to
be penalization approach with the idea proposed already in [25] for a scalar problem.
Its potential for this configuration of inner fluid dynamics was newly discovered in
[148].

The penalization approach imposes the inlet boundary conditions inside the weak
formulation with a penalization parameter ε. This is similar to the weakly enforced
Dirichlet BC often used in the discontinuous-Galerkin method, see [93].

Aeroacoustics. The aeroacoustics is a part of acoustics with the aim to desribe
the flow-induced sound, usually produced by flow around obstacles or by a high
Reynolds number (turbulent) flow in free jets, see e.g. [91]. Intensive development
of aeroacoustics was driven by the progressive expansion of aircrafts in the fifties
of 20-th century. At this time the aeroacoustic knowledge has primarily the form
of experimental results and expert experiences without theoretical fundamentals.
The first mathematic model of aerodynamically produced sound known as Lighthill
acoustic analogy was introduced by sir Lighthill, [96]. Acoustic analogy means some
approximative transformation of Navier-Stokes equations, which compressible vari-
ant in general describes propagation of entropy, vorticity and acoustics, see [53],
[107], [38], into PDE similar to wave equation for a representation of acoustic pres-
sure. At Lighthill time there was no possibility to use computer for PDE solution,
so his analogy can be solved analytically by application of Green’s functions. The
one of further improvements was a pretty mathematical treatment of flow-induced
sound in the domain with static or moving bodies introduced by Ffowcs Williams
and Hawkings [58]. Today, a lot of acoustical solvers in CFD programs are based on
this approach.

However nowadays, with advance in a PDE numerical solution new methods be-
came accessible. Modern computational aeroacoustics is based on the perturbation
equations [90], where the splitting of flow variables into mean, acoustic and correc-
tion term is performed with the aim to describe purely acoustic wave propagation.
Similar and quite popular sets of equations are called the acoustic perturbation equa-
tions (APE), [53], the perturbed compressible equations (PCE), [27], and linearized
perturbed compressible equations (LPCE), [134]. The splitting approach was later
generelized, see [82] or [91], leading to analogy called the perturbed convective wave
equation (PCWE) with practical formulation for low Mach numbers flow regimes.
For comprehensive overview of progress in the field of computational aeroacoustics
see [128].
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Aeroacoustics of human phonation. The theoretical background of sound
production during voicing was described in works [171] and [168] using integral
Ffowcs Williams–Hawkings analogy and sound classification as monopole, dipole
and quadrupole (see Section 2.4). They found that the most dominant sound source
during phonation is a dipole associated with net forces exerted by the surface of the
VFs onto the airflow. The other strong source is a quadrupole connected with turbu-
lence in the supraglottal area and the least prominent source is a monopole related
to the air column movement induced by VF vibration. The similar sound sources
structure was also reported by e.g. [145] or [139]. The article [71] tried to answer
a question regarding the efficiency of placing the monopole, dipole and quadrupole
sound sources into a resonator, i.e. in vocal tract. The Rossiter instability2, a flow-
acoustic resonance phenomenon typical for flow over open cavity, was discussed in
the context of human phonation for static VF configuration in [168], [65]. The im-
portance of (prescribed) glottis closure for healthy voice was studied e.g. in [27]
utilizing PCE analogy in the axi-symmetric configuration.

In paper [98] the Lighthill analogy was applied using results of 2D FSI simulation
in the computational domain consisting of short straight sub- and supra-glottal
channel, i.e. without vocal tract model, which results in prediction of the sound
sources frequencies only. In the study [134] high order IBM solver was used for solving
fluid flow in a supraglottal region with prescribed time variable flow rate and then
the LCPE analogy with inclusion of vocal tract model was applied. The aeroacoustic
simulation of the specific human subject however considering static VF geometry
was studied in [126]. In articles [139] and [95] the aeroacoustic 3D problem with vocal
tract was successfully solved utilizing the Lighthill analogy and the PCWE approach,
but it was based on the FSI solution with the prescribed movement of VF walls.
Nevertheless it evinces a good match of vowel spectra [u:] and [i:] with experiments.
The paper [175] extended used methodology also for the case of one side paralysed
VF. The efficiency of aeroacoustic simulations based on PCWE was investigated in
paper [131]. The thesis [100] presented a new and an interesting methodology called
hybrid acoustic particle image velocimetry approach which combines experimental
flow measurements and numerical acoustic simulations.

Short summary of human phonation research

The numerical simulations of human phonation using mathematical model of con-
tinuum can be basically split in two groups. The studies from the first group are
interested in the solution of FSI problem of flow-induced VF vibration for realistic
geometries and they usually do not considered the associated aeroacoustic problem,
see e.g. [153], [170], [174], [57], [166]. The second group of results deals dominantly
with the aeroacoustic treatment usually based on the roughly simplified fluid flow
simulation in the glottis and in the larynx. The highly complex solution of FSI prob-
lem is often reduced by considering a rigid glottal model ([145], [65]) typically to-
gether with some apriori given fluctuating inlet flow profile like e.g. Liljencrants–Fant
model, see e.g. [126], [134]. Another frequently used reduction of the complex FSI

2During the Rossiter instability the vortex shedding at leading edge of cavity convected to
trailing edge causes there mass oscillations (emission of acoustic waves) which further in feedback
loop induce vortex shedding at the leading edge.
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problem can be realized by prescribing highly simplified apriori given VF motion,
see e.g. [171], [27].

There are few research studies trying to join the both aforementioned approaches
with all consequences. First, papers [139], [175], [131] calculated the resulting acous-
tic signal in front of mouth based on the 3D flow results obtained by finite vol-
ume method with sophisticated prescribed periodic VF motion simulating chang-
ing convergent-divergent VF position. Another studies [98], [43], considered the full
FSAI problem however the acoustic simulation without inclusion of the vocal tract
model did not provide relevant results.

1.3 Objectives of dissertation

The aim of this thesis is to simulate the process of human phonation numerically.
The exact mathematical formulation of all relevant physical processes together with
their mutual interaction must be unquestionable part of this work. Further the nu-
merical schemes based on FEM are adopted, capable to simulate all main important
phenomena involved, for the solution of underlying PDEs. The orientation only on
the 2D coupled FSAI problem is caused by enormous rise of computational demand
for 3D version, where the extension to 3D problem is more or less straightforward.
The first two goals concern a numerical solution of the FSI problem.

The first goal is to investigate the possibilities of new penalization boundary con-
dition and to compare it with the other commonly used possibilities within the
FEM framework and to show how the application of them leads to the unphysical
behaviour of airflow mainly during the phase of channel closing and opening. The
preliminary results published in article [148] were obtained only for prescribed mo-
tion of structure and one selected value of penalization parameter ε. The analysis
how different values of ε influence the FSI solution as well as detail behaviour of the
FSI solution close to maximal channel closure using this new approach is highly de-
sired. Here, we would like to stress out that this goal is theoretical originating from
mathematical analysis of FSI problem and it could have a practical application in
the simulation of not only human phonation.

The second goal is to (numerically) study the stability boundary of the FSI prob-
lem. The knowledge of critical inlet airflow velocity is needed for determination of
phonation onset, i.e. when flow-induced vocal fold vibrations start. Flutter velocity
is one of the characteristics of the FSI system.

The second part of the thesis addresses the full problem of the human phonation
process. Following the explanation in above mentioned paragraph Short summary
the extension of (full) FSI problem to the FSAI problem would be a novel result.
Although the similar approach was already used in [98] or [173] the authors did not
obtain any reliable acoustic results because they did not include a vocal tract in the
acoustic domain as an important component of the problem. The difference against
the predominantly aeroacoustic studies or papers trying to cover both problems

10



[139], [175] is that our suggested model deals with full solution of the FSI problem
instead of flow field solution only in the domain with prescribed structure motion.

The third goal is to connect the in-house solver FSIFEM of the FSI problem
and the academic solver CFS++ of the multiphysics problems. The in-house pro-
gram FSIFEM written in C language is developed by the author of the thesis and
it implements numerical solution of FSI problem as described in chapter 4. The
program Coupled Field Simulation known under CFS++ developed at TU Wien
by team of prof. Kaltenbacher, see webpage https://cfs-doc.mdmt.tuwien.ac.

at/, is capable to solve a lot of coupled problems like e.g. piezoelectrics-acoustics,
electromagnetics-mechanics, electromagnetics-thermics, etc. Nevertheless this pro-
gram is used in the thesis to solve the sound propagation problem because of imple-
mented advanced damping layer called Perfectly matched layer (PML), see [90] or
paragraph 6.1.4. Further it offers numerical routines for sound source computation
and interpolation in the subprogram called CFSDat.

The easiest connection between solvers is realized through a support of the file for-
mat called Hierarchical Data Format version 5 (HDF5), which is an universal, very
general format useful for large, complex and heterogeneous data, see [17]. Its advan-
tage is that it is a standard file format with high performance of I/O operations,
which is open source and widely used. The program CFS++ has already HDF5 for-
mat as a native input and output format3 therefore the output support of HDF5 file
format has to be added only to the in-house program FSIFEM .

The fourth goal is to perform the aeroacoustic simulation of human phonation
based on the full FSI solution. The adopted hybrid approach usually consists of
three steps. First, the sound sources need to be determined from the previously
obtained fluid flow solution. Second, the sound sources are interpolated from a CFD
mesh to a coarser acoustic mesh in order to reduce computational demands and
third, the acoustic computation is finalized by numerical simulations of the sound
sources propagation through an acoustic domain including vocal tract model.

The first two steps, namely the sound sources computation and interpolation, are
decisive for accuracy of the whole acoustic computation. Therefore a special atten-
tion must be paid to numerical postprocessing of flow results in order to decrease
numerical errors as much as possible. Further, there are a number of different aeroa-
coustic formulations and the comparison of chosen approaches could bring more
light in their applicability in mathematical modelling of human phonation.

The fifth goal is to compare sound of aeroacoustic and vibroacoustic origin.

1.4 Structure of thesis

The structure of the thesis copies its objectives, i.e. the first half is devoted to the
FSI problem and the second half then describes the FSAI problem.

3The program CFS++ utilizes a specific version of HDF5 format denoted by suffix .cfs,
see documentation https://cfs-doc.mdmt.tuwien.ac.at/mediawiki/index.php/HDF5_Data_

Structure.
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The first chapter is comprehensive introduction of the fluid-structure-acoustic inter-
action problem related to physics of human phonation. The second chapter presents
the basic mathematical notation and the most important theorems of functional
analysis.

The third chapter contains mathematical description of the deformation of elastic
bodies, fluid flow in time dependent domains and their coupling. Specifically, all
boundary conditions and the interface conditions are presented in detail. In the
fourth chapter the numerical schemes for FSI problem based on the FEM are ex-
plained and the whole sequence of single solution steps is given. The fifth chapter
is devoted to FSI numerical results. The penalization inlet boundary condition is
compared with other alternatives for hemi- and full larynx model. The influence of
the penalization parameter on the critical flutter airflow velocity is discussed.

The aeroacoustic problem, the second major topic of the thesis, is introduced in the
sixth chapter together with the chosen acoustic analogies as a favourable solution
strategy. The numerical realization of the aeroacoustic problem and its coupling
with FSI solution is given in the seventh chapter and a special attention is paid to
the sound sources evaluation. The eighth chapter contains the results of numerical
simulations of the human phonation. Besides the frequency spectra of numerically
computed sound, the acoustic resonances of vocal tract model and the structure of
sound sources are studied.

In the last ninth chapter the discussion of achieved results and wider conclusions
are presented.
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Chapter 2

Mathematical background

In this chapter several elementary definitions and theorems of functional analysis
are summarized, see [20], [108].

2.1 Function spaces and norms

For the function space properties it is first important to characterize the set Ω over
which they are constructed, for details see [20]:

We consider Ω to be a bounded domain, i.e. an open and connected subset of Rd,
d ∈ N.

Further we call the domain boundary ∂Ω Lipschitz continuous, if it satisfies: For
any z ∈ ∂Ω there is a neighbourhood U = U(z) such, that set U ∩ ∂Ω can be in a
Cartesian coordinate system (x1, · · · , xd) expressed as

xd = F (x1, · · · , xd−1), (2.1)

and the set U ∩ Ω can be described by inequality

xd < F (x1, · · · , xd−1), (2.2)

where F is a Lipschitz continuous function.

Remark. For domains with the Lipschitz continuous boundaries the unit outward
normal vector is defined almost everywhere at ∂Ω.

By symbol C(Ω) the space of real continuous functions on a domain Ω is denoted.
For arbitrary natural number k we denote Ck(Ω) the space of all functions f , which
have continuous all partial derivatives Dαf of order |α| ≤ k on Ω. Further by C∞(Ω)
the space of infinitely differentiable functions is denoted, see [20].

The support of function f is the set {x ∈ Rd|f(x) 6= 0} and it is denoted as supp f .
Further the space D(Rd) = {f ∈ C∞(Rd)| supp f is bounded} is called the space
of test functions, i.e. it consists of functions from the class C∞(Rd) with a compact
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support. Similarly on the domain Ω the space {f ∈ C∞(Rd)| supp f ⊂ Ω} is denoted
by D(Ω).

The space of generalized functions (or distributions) denoted as D ′(Ω) is a set of
all linear and continuous functionals over D(Ω), where the continuity is meant in
the sense of convergence preserving on the space D(Ω), see e.g. [108]. By this con-
struction of the space D ′(Ω) it is allowed to define derivative also for generalized
functions f ∈ D ′(Ω), see e.g. [20]. This property is highly desired in the theory of
partial differential equations due to possibility to extend the concept of a solution
to generalized functions.

A space of all bounded linear functionals defined on a Banach space B is called the
dual space and it is further denoted by B∗. On the space B∗ the norm is defined for
φ ∈ B∗ by

‖φ‖∗ = sup
u∈B, ‖u‖6=0

|φ(u)|
‖u‖V

. (2.3)

Lebesque spaces. One of the most widely used function spaces is the Lebesque
space Lp(Ω), where 1 ≤ p <∞. These spaces are defined with the help of Lebesgue
measure and integral, see e.g. [101]. The elements of the space Lp(Ω) are character-
ized by functions f : Ω 7→ R, for which hold∫

Ω

|f |p dx < +∞. (2.4)

The spaces Lp(Ω) are the Banach spaces with the norm

‖u‖Lp(Ω) = ‖u‖p =

(∫
Ω

|u|p dx
) 1

p

, (2.5)

for 1 ≤ p <∞, see [20].

Remark. Similarly we work with the spaces Lp(∂Ω), where ∂Ω is the boundary of
the domain Ω.

For p = 2 the space L2(Ω) is the Hilbert space with the scalar product given by

(u, v)L2(Ω) =

∫
Ω

u v dx. (2.6)

In next the scalar product in L2(Ω) is denoted shortly as (·, ·)Ω.

For vector spaces L2(Ω) = [L2(Ω)]d, d ∈ N the scalar product is defined as

(f ,g)Ω =
d∑
i=1

(fi, gi)Ω, (2.7)

where functions f ,g ∈ L2(Ω) and fi, gi denotes their i-th component.
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Sobolev spaces. Similarly as in [20] we denote the derivative of multivariable
functions over Rd with respect to multi-index α = (α1, . . . , αd) with αi ∈ Z+

0 as the

partial derivative Dα = ∂|α|

∂x
α1
1 ...∂x

αd
d

, where |α| =
∑d

i=1 αi and d ∈ N.

For k ∈ N and 1 ≤ p < +∞ the Sobolev spaces are defined

W k,p(Ω) = {u ∈ Lp(Ω)| ∀α ∈ (Z+
0 )d, |α| ≤ k,Dαu ∈ Lp(Ω)}, (2.8)

where the derivatives Dαu are considered in the sense of distributions, see [20], [108].
The norm on the space W k,p(Ω) is defined by

‖u‖Wk,p(Ω) = ‖u‖k,p,Ω =
∑
|α|≤k

(∫
Ω

|Dαu|p dx
) 1

p

. (2.9)

Similarly as for Lebesque space with p = 2 the spaceW k,2(Ω) is the Hilbert space and
it is further denoted as Hk(Ω), k ∈ N. Similarly, the by Hk(Ω) the vector Sobolev
spaces is meant, i.e. defined by the Cartesian product Hk(Ω) = [Hk(Ω)]d, d ∈ N.

2.2 Important theorems

The existence of boundary values of functions from the Sobolev spaces postulates
the trace theorem. Further essential results of functional analysis are also stated.

Theorem: 1 (Trace theorem). Let Ω ⊂ Rd be a bounded domain with Lipschitz con-
tinuous boundary. Then there exists unique continuous linear operator T : H1(Ω) 7→
L2(∂Ω) such, that that Tu = u|∂Ω holds ∀u ∈ C∞(Ω).

For the statement and proof see e.g. [108].

Theorem: 2 (Substitution theorem). Let U, V be closed sets in Rd with piecewise
continuous boundary and let ϕ be an bijective continuously differentiable mapping of
the set U onto V with nonzero Jacobian Dϕ for every x̂ ∈ U . Then for any function
f ∈ C(V ) holds ∫

V

f(x) dx =

∫
U

f(ϕ(x̂)) |Dϕ(x̂)| dx̂. (2.10)

For proof see [116].

Theorem: 3 (Green’s theorem). Let Ω ⊂ Rd be a bounded domain with a Lipschitz
continous boundary ∂Ω and let functions f, g ∈ C1(Ω). Then it holds∫

Ω

∂f

∂xi
g dx =

∫
∂Ω

fgni dS −
∫
Ω

f
∂g

∂xi
dx, i = 1, . . . , n, (2.11)

where ni is i-th component of the unit outer normal to ∂Ω.

For statement and proof see [55].
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Theorem: 4 (Gauss theorem). Let Ω ⊂ Rd be a bounded domain with a piecewise
smooth boundary ∂Ω and let be vector function f ∈ C1(Ω). Then it holds∫

∂Ω

f · n dS =

∫
Ω

∇ · f dx, (2.12)

where n denotes the unit outer normal to ∂Ω.

For statement and proof see [116].

Theorem: 5 (Lax - Milgram theorem). Let V be a Hilbert space, a(·, ·) be a bilinear
form defined on V × V and L(·) be a linear bounded functional defined on V . Let
further form a(·, ·) be

1. bounded on V , i.e. ∃K > 0, such that |a(u,v)| ≤ K‖u‖V ‖v‖V ∀u,v ∈ V ,

2. coercive on V , i.e. ∃α > 0, such that |a(v,v)| ≥ α‖v‖2
V ∀v ∈ V .

Then there exists an unique function u ∈ V such, that a(u,v) = L(v) ∀v ∈ V .
Moreover it holds ‖u‖ ≤ 1

α
‖L‖∗.

For statement and proof see [116] or [52].

2.3 Fundamental solution of wave equation

The following two sections are devoted to basic properties of acoustics and aeroa-
coustics. Although the thesis deals with the 2D model of human phonation, the
acoustics is a 3D phenomenon and therefore following two sections refer purely to
3D acoustic problem.

The basic model of pressure wave propagation generally in R3+1 (and also in R2+1)
is governed by wave equation(

1

c2

∂2

∂t2
−∆

)
p(x, t) = 0, (2.13)

where c is the speed of sound, see e.g. [164]. The solution p(x, t) is sought in the sense
of distributions, i.e. in the space D ′(R3+1), for definition see [164]. Let us consider
wave equation (2.13) with a point source located in the point y ∈ R3 and occurring
at time τ > 0 (

1

c2

∂2

∂t2
−∆

)
G(x, t) = δ(t− τ) δ(x− y), (2.14)

where δ(·) denotes the delta function and by δ(x − y) is meant δ(|x − y|), see [78].
Then G(x, t) satysfing equation (2.14) is the fundamental solution of wave equation,
which is called the Green’s function. The Green’s function, see e.g. [78], reads

G(x, t) =
1

4π|x− y|
δ

(
t− τ − |x− y|

c

)
, (2.15)
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where the coordinates (arguments) x, t represent the observer position at time t
whereas the coordinate y means the position of the sound source at time τ , see e.g.
[46]. By |x−y| the Euclidean distance of two points in R3 is denoted. More precisely,
the Green’s function G = G(x, t) depends on four variables G = G(x, t; y, τ).

Remark. The Green’s function for the wave equation in R2 has different form than
(2.15). It is defined with the aid of the Heaviside function, thus its behaviour is
fundamentally different compared to 3D problem, see [79].

Remark. The exact form of Green’s function for the case of a bounded domain Ω
depends on the chosen geometry configuration. The fundamental solution for the
bounded domain (contrary to the considered unbounded 3D case) must also satisfy
boundary conditions, see [79].

A solution of the wave equation for a more general sound source is now derived. A
distributed sound source F(y, τ) formally satisfies

F(y, τ) =

+∞∫
−∞

∫
R3

F(x, t)δ(x− y)δ(t− τ) dx dt. (2.16)

Then the solution of wave equation with this distributed sound source F(y, τ) can
be written as

p(x, t) =

+∞∫
−∞

∫
R3

F(y, τ)G(x, t) dy dτ =
1

4π

+∞∫
−∞

∫
R3

F(y, τ)

|x− y|
δ

(
t− τ − |x− y|

c

)
dy dτ

=
1

4π

∫
R3

F
(
y, t− |x−y|

c

)
|x− y|

dy, for t > 0, x ∈ R3. (2.17)

It means that the solution of the wave equation with distributed sound sources (2.17)
at a time-point x, t is composed of contributions from all points of the distributed
source, which arrives at point x at time t (i.e. the contribution has to be emitted

at time t − |x−y|
c

with |x−y|
c

being travel time) and which strength is attenuated by
distance from observer (i.e. by 1

|x−y|).

In acoustics the concept of compactness of sound sources is used quite often, see e.g.
[79]. The acoustic source is called (acoustically) compact if its Helmholtz number
He � 1. The Helmholtz number is (dimensionless) ratio of a geometrical length
scale l of acoustic sources (i.e. the smallest diameter of ball containing all acoustic
sources) to their typical acoustic wavelength λ, i.e. He := l/λ. For compact sound
sources the exact solution (2.17) can be substantially simplified. This simplification
is recommended for practical purposes for He < 1/4, see [46].

The exact solution (2.17) of the wave equation with distributed compact sound
sources can be approximated as

p(x, t) ≈ 1

4π|x|

∫
R3

F
(
y, t− |x|

c
+
x · y
c|x|

)
dy, (2.18)
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for observer position x far from the sources (|x| → +∞). The formula (2.18) is
called Fraunhofer approximation, see e.g. [68]. From comparison of equations (2.17)
and (2.18) follows that the distance attenuation 1

|x−y| is approximated by 1
|x| as

|x| → +∞. However the arguments in the integrand needs to be approximated
more carefully in order to preserve the information of the phase difference of sound
sources, see [46]. By retaining the contribution x·y

c|x| in the argument of function F it is
ensured that any interference between sound waves generated at different positions
within the source region is correctly described by the far-field approximation, see
[79].

2.4 Theoretical classification of sound sources

The arbitrary distributed, but acoustically compact source observed from large dis-
tance can be approximated by a point source, see e.g. [78]. The characteristics of
this point source, i.e. radiation directivity and scaling laws, can be described by a
multipole expansion, see e.g. [119]. The expansion members are called monopole,
dipole, quadrupole, etc. The importance of expansion members usually decreases in
the given order. Each of the expansion terms describes a different physical concept
of sound production.

Figure 2.1: Scheme of sound source located around coordinates origin 0 and observer
at position x. Distance |x− y| between point y in sound source region of volume V
and observer is marked.

Let be a given sound source F distributed in a small volume V with its center
located at the coordinates origin 0, see Figure 2.1. Before proceeding to convolution
with Green’s function we perform Taylor expansion of G(x, t; y, τ) around 0 (in the
sense of distributions) in the coordinate y

G(x, t; y, τ) = G(x, t; 0, τ) + (∇yG) |0 · y +
1

2!
yT · (∇y∇yG) |0 · y + . . . , (2.19)

see [46]. Then according to equation (2.17) the solution of the wave equation with
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distributed sound source F can be obtained as

p(x, t) =

+∞∫
−∞

∫
R3

F(y, τ)G(x, t; y, τ) dy dτ = (2.20)

=

+∞∫
−∞

G(x, t; 0, τ)

∫
V

F(y, τ) dy dτ +

+∞∫
−∞

(∇yG) |0 ·
∫
V

yF(y, τ) dy dτ

+
1

2

+∞∫
−∞

(∇y∇yG) |0:

∫
V

y ⊗ yF(y, τ) dy dτ + . . . ,

where symbol : denotes the double-dot product between two tensors and ⊗ denotes
the tensor product, see e.g. [36].

Green’s function G(x, t; y, τ) e.g. as given in (2.15) can be also written as function
with arguments G(|x− y|, t− τ). Then it can be shown

∂i+j+kG(|x− y|, t− τ)

∂yi1 ∂y
j
2 ∂y

k
3

∣∣∣∣
0

= (−1)i+j+k
∂i+j+kG(|x− 0|, t− τ)

∂xi1 ∂x
j
2 ∂x

k
3

, (2.21)

i.e. the derivatives of G(|x − y|, t − τ) evaluated at y = 0 do not depend on coor-
dinates y, see e.g. [119]. According to [46] equation (2.20) can be rewritten in the
componentwise notation with |x− 0| = |x| by using equation (2.21) as

p(x, t) =
∞∑

i,j,k=0

+∞∫
−∞

(−1)i+j+k

i!j!k!

∂i+j+kG(|x|, t− τ)

∂xi1 ∂x
j
2 ∂x

k
3

∫
V

yi1 y
j
2 y

k
3 F(y, τ) dy dτ. (2.22)

Remark. No assumption on the exact form of Green’s function in this section has
been required up to now. It means that the same derivation can be repeated also
with the fundamental solution of different problem configuration (e.g. with different
boundary conditions), see [46].

Using the formula of free-space Green’s function (2.15) with |x − y| replaced by
|x− 0| =: |x|, i.e. G(|x− 0|, t− τ) = δ(t− τ + |x|/c)/(4π|x|), and integration over
time in (2.22) results to

p(x, t) =
∞∑

i,j,k=0

(−1)i+j+k
∂i+j+k

∂xi1 ∂x
j
2 ∂x

k
3

(
mijk(τ0)

4π|x|

)
, (2.23)

where functions mijk given as

mijk(τ0) =
1

i!j!k!

∫
V

yi1 y
j
2 y

k
3 F(y, τ0) dy (2.24)

are evaluated in retarded time, i.e. at time τ0 = t − |x|
c

, so mijk(τ0) still depend on
x, see [46].
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The summation terms mijk are called multipole moments of order 2i+j+k of the
source F . The zeroth term m000 is called monopole moment, while all the first terms
m100,m010 and m001 are called dipole moments, see [119]. The next terms are then
quadrupole (i+ j + k = 2), octupole (i+ j + k = 3), etc.

With the help of the Fraunhofer approximation the multipole expansion gets a more
simple form. We obtain for very large distances r0 := |x| of the observer to the
compact sound source using interchange of time and space derivatives, for details
see e.g. [79],

p(x, t) ≈ 1

4πr0

∞∑
i,j,k=0

1

ci+j+k

(
∂r0

∂x1

)i(
∂r0

∂x2

)j (
∂r0

∂x3

)k
∂i+j+kmijk(τ0)

∂ti+j+k
, (2.25)

where τ0 depends on t and all terms proportional to 1
rn
, n ≥ 2 were neglected, see

also [46]. In spherical coordinates the terms ∂r0
∂xl

= cosϑl, l ∈ {1, 2, 3} represent
the direction cosines relative to the coordinate axes xl. They express the sound
directivity and its plot is called the radiation pattern. The graphs of these radiation
patterns in spherical coordinates create so called radiation lobes, see Figures 2.2,
2.3 and 2.4.

Figure 2.2: Left: Acoustic field induced by monopole point source located at axis
origin. Right: Graph of radiation pattern. The sound emission is uniform in all
directions.

Monopole. The basic model of the acoustic monopole is a volume source rep-
resenting its expansion and contraction. Let point source be of the form q(t)δ(x)
located at y = 0. Then the solution of wave equation (2.13) with this considered
source is given by convolution of the source with the Green’s function as

p(x, t) =

+∞∫
−∞

∫
R3

G(x, t; y, τ) q(τ)δ(y) dy dτ =
1

4π|x|
q

(
t− |x|

c

)
, (2.26)

i.e. the acoustic source will manifest at observer position after time delay |x|
c

needed
for the signal to travel from the source position to the observer position. Formula
(2.26) provides the scaling of pressure as p ∼ O( 1

|x|) for |x| → +∞ with the uniform
sound directivity, see Figure 2.2. The monopole represents the most effective type of
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aeroacoustic source concerning the radiation of acoustic energy to the surrounding,
[78]. Examples of acoustic monopoles are e.g. model of pulsating sphere, explosion
or exhaust pipe, [46].

Figure 2.3: Left: Acoustic field induced by dipole point source located at axis origin.
Right: Graph of radiation pattern. The sound emission is maximal at dipole axis,
while in vicinity of 90◦ and 270◦ the emitted sound pressure level falls rapidly to
zero (increasing diameter of concentric circles shows an increasing scale of sound
pressure level).

Dipole. The dipole can be represented by two point sources (monopoles) of equal
but opposite strengths placed a short distance apart (much smaller compared to the
radiated sound wavelength). A generalized sound source F(x, t) in the case of the
point dipole source has the form

F(x, t) = div (f(t)δ(x)) =
∂

∂xj
(fj(t)δ(x)), (2.27)

where fj are components of (volume) force density f applied to the fluid (for sim-
plicity) at the origin, see e.g. [78], and the Einstein summation convention is used.
It means that if any index appears in an expression repeatedly then the summation
over it is performed, here in the range 1 − 3. Then the solution of wave equation
with dipole source on the right hand side (2.27) is given as

p(x, t) =

+∞∫
−∞

∫
R3

G(x, t; y, τ)
∂

∂yj
(fj(τ)δ(y)) dy dτ =

∂

∂xj

(
fj(t− |x|/c)

4π|x|

)
. (2.28)

For far observer position (x→ +∞) equation (2.28) can be approximated as

p(x, t) ≈ xj
4πc|x|2

∂fj
∂t

(t− |x|/c), (2.29)

see e.g. [78]. The pressure for |x| → +∞ scales still as p ∼ O( 1
|x|) nevertheless

the sound directivity is now dependent on one polar angle due to the term
xj
|x| .

The directivity has peaks in direction parallel to the dipole axis, see Figure 2.3.
In the case of dipole sound source produced aerodynamically, i.e. sound generated
by a fluid flow with Mach number denoted by Ma, which is defined as the ratio
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of characteristic flow velocity magnitude and speed of sound, the dipole radiation
efficiency is lower approximately by factor of Ma2 compared to the monopole sound
source, [78]. Examples of acoustic dipole is e.g. the (compact) force acting on the
acoustic medium or cylinder in crossflow, [46].

Quadrupole. The basic physical conception of quadrupole is four identical point
sources located close to each other with the sum of sources equal zero and with also
all the dipole moments equal zero. A general (distributed) quadrupole source can
be written as

F(x, t) =
∂2fij
∂xi∂xj

(x, t), (2.30)

with fij being components of the (fluid) stress tensor F, see e.g. [78]. Then the
solution of wave equation (2.13) with the quadrupole source in form (2.30) using
Green’s function (2.15) reads

p(x, t) =

+∞∫
−∞

∫
R3

G(x, t; y, τ)
∂2

∂yi ∂yj
fij(y, τ) dy dτ =

∂2

∂xi∂xj

∫
R3

fij(y, t− |x− y|/c)
4π|x− y|

dy,

(2.31)

see e.g. [78]. Solution (2.31) can be approximated for the compact sound sources
and for the far observer (x→ +∞) by neglecting all the terms decaying faster than
O( 1
|x|), i.e.

p(x, t) ≈ xixj
4πc2|x|3

∂2

∂t2

∫
R3

fij

(
y, t− |x|

c
+
x · y
c|x|

)
dy, (2.32)

see e.g. [119]. The sound directivity now depends on two angles, see Figure 2.4, [79].
It can be shown that the theoretical radiation efficiency of aeroacoustic quadrupole
sound source is weaker than the dipole by additional Ma2, [78]. The typical examples
of acoustic quadrupole is the turbulent stress distributions, see [78].

Figure 2.4: Left: Acoustic field induced by quadrupole point source located at
axis origin. Right: Graph of radiation pattern. The sound emission is maximal
at quadrupole axis, i.e. at angles of ±45◦ and ±135◦, while for the lines coincident
with coordinate axis x1 and x2 the emitted sound pressure level is zero.
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Chapter 3

Mathematical model of FSI
problem

In this chapter the mathematical model of FSI problem is presented. It consists of the
systems of equations describing the elastic body motion, the equations modelling the
fluid flow and their couplings. In all cases the mathematical concept of continuum
mechanics is used, i.e. we assume that it is possible to consider matter as a continuous
medium described by continous (or even continuously differentiable) functions, e.g.
mass is presented by density etc., see [36]. For the purpose of clarity the quantities
connected with the fluid flow are denoted with the help of the upper index f , for
the structure description the (upper) index s is used.

This chapter is divided into five sections. First, the used coordinates systems are
introduced together with the ALE method, then the elastic problem is described.
The model of the compressible and the incompressible viscous fluid flow is given in
the third and the fourth sections, respectively. The last section presents the mathe-
matical formulation of the FSI coupled problem.

Geometry of the FSI problem

Here, a simplified two-dimensional model of FSI problem is introduced, see Figure
3.1, where the reference and the deformed states are shown. For the description of
the elastic structure deformation the reference coordinates are utilized, i.e. compu-
tational domain Ωs = Ωs

t = Ωs
ref ⊂ R2 at arbitrary time t is used.

Domain Ωf
ref ⊂ R2 represents the reference fluid domain, e.g. the domain occupied

by fluid at time instant t = 0 with the common interface ΓWref
= ΓW0 between

the fluid and the structure domain. The deformation of reference domain Ωf
ref onto

domain Ωf
t ⊂ R2 occupied by fluid at any time instant t ∈ (0,T) is determined

by the motion of the elastic structure and more specifically by the displacement of
reference interface ΓWref

onto ΓWt . It is treated with the aid of the ALE method.

We suppose that domains Ωs and Ωf
ref are disjoint with the common non-empty

interface ΓWref
= Ω

s ∩ Ωref
f
.
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Figure 3.1: Scheme of FSI configuration in the reference state on the left and in
a deformed state at arbitrary time t on the right. The computational domain is
composed of the elastic structure domain Ωs and the fluid domain Ωf

t together with
boundaries: inlet ΓfIn, outlet ΓfOut, symmetric boundary ΓfSym, walls ΓfDir, ΓsDir and
interface ΓW.

3.1 ALE method

First, the Eulerian and the Lagrangian descriptions are presented. Then, in order
to treat the flow field description in time dependent domains, the ALE method is
introduced, see e.g. [149].

Lagrangian description

In the Lagrangian description, sometimes called the material description, a motion
of every individual particle of continuum is followed using the Lagrangian mapping
L . The motion of the particle with a reference X ∈M0 is described as

x = L (X, t), ∀t ∈ (0,T). (3.1)

Here, we assume that the reference is chosen as L (X, 0) = X. This means that the
mapping L at any time t determines the trajectory of the particle (point) X from
the reference domain M0 onto new configuration Mt, which consists of the same
fluid particles, i.e.

Mt = {x| x(t) = L (X, t), X ∈M0},

see e.g. [55].

The mapping L is assumed to satisfy the following conditions

C1) L (X, 0) = X, for any X ∈M0,

C2) for arbitrary t ∈ (0,T) the mapping X −→ L (X, t) is bijective mapping of
M0 onto Mt,

C3) L is continuously differentiable,

C4) the Jacobian of mapping L satisfies J(X, t) > 0 for any t > 0 and X ∈M0.

24



The conditions (C1-4) allow to define the velocity v̂ and the acceleration â of a point
X ∈M0 as

v̂(X, t) =
∂L

∂t
(X, t), (3.2)

â(X, t) =
∂2L

∂t2
(X, t), (3.3)

if the derivatives on the right hand side exist, see e.g. [55].

Eulerian description

The Eulerian description, sometimes called also the spatial description, is based on
the determination of fluid particle velocity v passing through a fixed point x at time
t. The velocity v is related to the Lagrangian velocity (3.2) by

v(x, t) = v̂(X, t) =
∂L

∂t
(X, t), (3.4)

where X is the reference of the point x at time t, i.e. x = L (X, t) according to
(3.1).

Based on (3.4) and (3.3) the acceleration can be computed under assumption v ∈
C1(M0 × (0,T)) as

a(x, t) =
Dv(x, t)

Dt
=
∂v(x, t)

∂t
+

2∑
i=1

vi(x, t)
∂v(x, t)

∂xi
, (3.5)

where the symbol D
Dt

denotes the material (or the substantial) derivative D
Dt

=
∂
∂t

+ v · ∇, see [55].

ALE method

The ALE method (arbitrary Lagrangian-Eulerian method) can be understood as a
generalization of the Eulerian and the Lagrangian descriptions, [81], see Figure 3.2.
The ALE method is based on an one-to-one (arbitrary) mapping At of the reference
domain Ωf

ref onto the domain Ωf
t at any time instant t ∈ (0,T), i.e. x = At(X) ∈ Ωf

t

for X ∈ Ωf
ref .

The mapping At is assumed to be diffeomorphism between Ωf
ref and Ωf

t . Moreover
it is assumed to satisfy

∂At
∂t
∈ C(Ωf

ref), At(∂Ωf
ref) = ∂Ωf

t , ∀t ∈ (0,T). (3.6)

Particularly for the considered geometry, see Figure 3.1, it means that all boundaries
with an exception of the moving interface remain static and that the reference in-
terface ΓWref

is mapped onto the deformed one ΓWt at any time instant t, see Figure
3.2.
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Figure 3.2: Schematic difference between the Lagrangian and the ALE descriptions
of a fluid domain. The fixed domain Ωf

ref described in the Eulerian coordinates is

shown top, while the time evolution of domain Ωf
ref given by Lagrangian mapping Lt

(= L ) is displayed bottom left. Bottom right is depicted the computational domain
at time t described with the help of the ALE method, i.e. the domain Ωf

t = At(Ω
f
ref).

Let us denote for an arbitrary function f(x, t) defined for x ∈ Ωf
t and t ∈ (0,T) the

transformed function on Ωf
ref by f̂(X, t), i.e. f(x, t) = f(At(X), t) = f̂(X, t), where

x = At(X) ∈ Ωf
t , X ∈ Ωf

ref .

One can see that a point x = At(X) with a fixed reference X ∈ Ωf
ref is moving in

time with the so-called domain velocity which can be computed as

wD(x, t) = ŵD(X, t) =
∂

∂t
At(X), t ∈ (0,T), X ∈ Ωf

ref . (3.7)

Further, the ALE derivative is introduced as the time derivative of an arbitrary
continuous function f(x, t) = f(At(X), t) with respect to a fixed point X ∈ Ωf

ref , i.e.

DA

Dt
f(x, t) =

d

dt
(f(At(X), t)) =

∂f

∂t
(x, t) + wD(x, t) · ∇f(x, t), (3.8)

where the chain rule was applied. For more details and for the proof see [149] or
[57].

Remark. In a general case if the ALE mapping would be chosen independently of
described procedure as At = Lt, then we would obtain the Lagrangian description
and relation (3.8) would change to the material derivative as given by equation (3.5).
On the other hand if the ALE mapping would be chosen as identity, i.e. At = I,
then we would get the Eulerian description and the relation (3.8) would become
partial time derivative of function f(x, t).

3.2 Elastic body

In this section the static and the dynamic linear elasticity problem is presented using
the Lagrangian description.
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Elastic forces

Let us consider an elastic body represented by a bounded domain Ωs ⊂ R2 with the
Lipschitz continuous boundary ∂Ωs. The two types of forces can act on arbitrary
control volume of the elastic body – these are the volume and the surface forces.
The volume force acts on every particle inside a volume element V with volume
density f s = (f si ). The surface forces are an external mechanical stresses, which act
on the body surface. It can be described at any point of the body with the aid of
(symmetric) Cauchy stress tensor τ s = (τ sij), see e.g. [36].

Static and dynamic force balance

The (static) force balance between volume forces f s and surface forces given by τ s

at arbitrary point of the elastic body X ∈ Ωs is described by

f si +
∂τ sij
∂Xj

= 0, (3.9)

see e.g. [109]. Let us emphasize that in equation (3.9) the Einstein summation con-
vection (for j = 1, 2) is used. We shall use this convection also in what follows.
Further let us mention that the balance of moments is automatically satisfied due
to the symmetry of the tensor τ s, see e.g. [36].

Assuming moreover that the functions τ s, f s and the displacement u = (u1, u2)
depend also on time t, the equations of dynamic force balance reads, see e.g. [36],

−ρs∂
2ui
∂t2

+
∂τ sij
∂Xj

+ f si = 0 in Ωs, (3.10)

where ρs denotes the elastic body density and the term −ρs ∂2ui
∂t2

represents inertia
forces. In order to solve equation (3.9) or (3.10) the Hooke’s law is used with the
assumption of planar deformations.

Hooke’s law

The generalized Hooke’s law describes linear dependence of the stress tensor com-
ponents (τ sij) on the strain tensor components (esij) with the aid of a fourth order
tensor Cijkl, [109], i.e.

τ sij = Cijkl e
s
kl, (3.11)

where k and l are indices of summation. The fourth order tensor Cijkl is symmetric
in index pairs i and j, k and l. It has in general 21 independent coefficients, called
elastic coefficients, [36]. For the considered homogeneous isotropic body the number
of independent coefficients reduces to two and the tensor Cijkl can be written with
the aid of two Lamé coefficients λs, µs. Thus equation (3.11) is simplified to

τ sij = λs (div u) δij + 2µsesij, (3.12)
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where δij denotes the Kronecker’s delta. The Lamé coefficients can be determined
from known material constants, e.g. from Young’s modulus of elasticity Es and
Poisson’s ratio σs according to the formulas

λs =
Eσ

(1 + σ)(1− 2σ)
, µs =

E

2(1 + σ)
, (3.13)

see e.g. [140].

Remark. The linear relation between the Cauchy strain tensor and the stress ten-
sor considered here and represented by Hooke’s law is widely used in engineering
practice. For more complicated, nonlinear relations, see e.g. [111].

Elastic deformation

The elastic body deformation is described by the vector function of displacement
u(X, t) = (u1, u2), where the components of u are the projections onto the coordinate
axis. The components of the strain tensor εs, which expresses the change of the
distance of two infinitesimally distant points, are given as

εsjk =

(
∂uj
∂Xk

+
∂uk
∂Xj

+
∂ui
∂Xj

∂ui
∂Xk

)
, (3.14)

see e.g. [109]. For small displacements the second order terms can be neglected and
the strain tensor can be replaced by the small strain tensor es with the components

esjk =
1

2

(
∂uj
∂Xk

+
∂uk
∂Xj

)
. (3.15)

The small strain tensor is the symmetric tensor of the second order, see e.g. [36].

Remark. The replacement of tensor εs by small strain tensor es can be understand
as a linearization (of the geometrical nonlinearity). For a large deformation, partic-
ularly for the case with substantial rotations of the structure, the use of es may lead
to an incorrect modelling of the structure deformation, see [111], [93].

Initial and boundary conditions

System of equations (3.10) needs to be equipped with initial and boundary condi-
tions. The initial conditions for the displacement and for the velocity at time t = 0
and at any point X ∈ Ωs read

a) u(X, 0) = u0(X), b)
∂u

∂t
(X, 0) = u1(X). (3.16)

The boundary conditions for t ∈ (0,T) are considered in the form

a) u(X, t) = 0, for X ∈ ΓsDir, (3.17)

b) τ sij(X, t)n
s
j(X) = qsi (X, t), for X ∈ ΓWref

.
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The first equation of (3.17) is the zero Dirichlet boundary condition representing
the firmly fixed boundary of the structure. The second equation is the Neumann
boundary condition prescribing the action of the aerodynamic forces qs = (qs1, q

s
2)

on the interface ΓW between the structure and the fluid. The both parts of boundary
ΓWref

,ΓsDir are mutually disjoint parts of the boundary ∂Ωs = ΓWref
∪ΓsDir (see Figure

3.1) and nsj(X) are the components of the unit outer normal to ΓWref
.

3.3 Compressible fluid flow

For the considered case of air flow through the vocal tract during phonation the
typical flow velocities are less than 0.3 Mach and in a such case the flow can be
modelled as incompressible. However in order to address the acoustic phenomenon
the compressibility needs to be taken into account. The flow of compressible fluid
can be described by the Navier-Stokes equations, see e.g. [55]. Let us start with the
compressible fluid flow description for a static fluid domain Ωf

ref .

Mass conservation. The mass conservation is described by the continuity equa-
tion given by

∂ρf

∂t
+∇ · (ρfv) = 0, in Ωf

ref , (3.18)

where v denotes the fluid flow velocity and ρf is the fluid density, [30].

Momentum conservation. The momentum conservation can be formulated in
the so called conservative form

∂(ρfv)

∂t
+ div (ρfv ⊗ v) = divσf + ρfgf , in Ωf

ref , (3.19)

where σf denotes the Cauchy’s stress tensor and vector ρfgf is the volume force
density, see e.g. [22]. The symbol ⊗ denotes the tensor product, see e.g. [36]. With
the help of continuity equation (3.18) the momentum conservation can be rearranged
into the equivalent, so-called non-conservative, form

ρf
(
∂v

∂t
+ (v · ∇)v

)
= div σf + ρfgf . (3.20)

Let us mention that the system of equations (3.18), (3.19) needs to be coupled with
the equation for the energy conservation and enclosed by thermodynamic relations,
see e.g. [55].

Rheological relation

The Cauchy’s (fluid) stress tensor is related to other fluid quantities by rheological
relations, here the Newtonian fluid is assumed, see e.g. [30]. According to Stokes
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postulates the constitutive law reads

σf = (−p+ λfdiv v)I + 2µfD(v), (3.21)

where λf and µf are the first and the second viscosity coefficients, I denotes the
identity I = (δij) and D is the rate of deformation tensor D = D(v) = (dij) with

components dij = 1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
. The viscous part of the fluid stress tensor is given

by

τ f = λf (div v)I + 2µfD(v), (3.22)

see e.g. [55].

3.4 Incompressible fluid flow

In this section the compressible fluid flow model is simplified to the incompressible
fluid flow model using the constant density assumption. Such a model is usable for
almost incompressible fluid, e.g. for fluid with almost negligible density fluctuations.
This is the case of a compressible fluid flow with low Mach numbers. Further the
governing system of equations is rewritten in the ALE form, incorporating the effects
of the time variable flow domain Ωf

t . The final system of equations is then completed
by initial and boundary conditions.

Incompressibility

Let us consider here the density ρf to be constant, i.e. ρf (x, t) = ρ0. The mass
conservation represented by (3.18) then reduces to the continuity equation in the
form

∇ · v = 0, in Ωf
ref . (3.23)

Similarly, the momentum conservation (3.20) gains the form

ρ0

(
∂v

∂t
+ (v · ∇)v

)
= ρ0g

f −∇p+ µf∆v, (3.24)

and after dividing equation (3.24) by ρ0 we get

∂v

∂t
+ (v · ∇)v = gf −∇p̃+ νf∆v, in Ωf

ref , (3.25)

where νf = µf

ρ0
is the kinematic fluid viscosity and p̃ = p

ρ0
is the kinematic pressure,

see e.g. [30]. In what follows the tilde is for the sake of simplicity omitted, i.e. we will
write p = p̃ and in the context of the fluid problem it means the kinematic pressure.

Now, the system of equations (3.23) and (3.25) is complete and no additional equa-
tion of energy conservation is needed because the assumption ρf = const. decouples
the energy equation from the mass and the momentum conservation equations.
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For the case of human phonation simulation the incompressible viscous fluid flow
model appears as a reasonable accurate approximation, see [105]. The highest flow
velocity about 60 m/s ≈ 0.2 Ma is achieved at the glottis, and the other phenomena
connected with the need of compressible fluid flow model like shock waves, Rositta
instability of boundary layer or heat transfer have not been observed or do not play
any significant role, see [156].

Remark. More detailed arguments, when the use of incompressible fluid model is
appropriate, are stated in e.g. [22] and [107]. The book [22] shows with simplified
model that the value of 0.3 Ma presents a very approximate boundary below which
the relative pressure difference of compressible and incompressible model is smaller
than 5%. The article [107] explains that incompressible Navier-Stokes equations can
be understood as limit of compressible Navier-Stokes equations for low Mach number
approaching zero.

ALE formulation

In order to describe a fluid flow in the time variable domain Ωf
t the ALE method

is used. In this case the time derivative is replaced by the ALE derivative, which
delivers us so-called ALE formulation of the incompressible Navier-Stokes equations,
see e.g. [57], i.e. we get the system of equations

DAv

Dt
+ ((v −wD) · ∇)v +∇p = νf∆v + gf , div v = 0, in Ωf

t , (3.26)

where DA

Dt
denotes the ALE derivative and wD denotes the ALE domain velocity,

see Section 3.1.

Initial and boundary conditions

Equations (3.26) must be supplied by relevant initial and boundary conditions. The
deformation of Ωf

t (given by the ALE mapping At) is considered to be known for
any time instant t, see next Section 3.5. The initial condition we assume in the form

v(x, 0) = v0(x), x ∈ Ωf
0 , (3.27)

where velocity field v0 should satisfy div v0 = 0, usually we set v0 = 0.

Further boundary ∂Ωf
t is assumed to be formed by the mutually disjoint parts ∂Ωf

t =
ΓfIn ∪ ΓfDir ∪ ΓWt ∪ ΓfSym ∪ ΓfOut (here ΓfIn denotes the inlet, ΓfDir is the wall, ΓWt the

moving interface, ΓfSym is the boundary part with prescribed symmetry boundary

condition and ΓfOut is the outlet, see Figure 3.1). The following boundary conditions
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are prescribed:

a) v(x, t) = 0 for x ∈ ΓfDir,

b) v(x, t) = wD(x, t) for x ∈ ΓWt , (3.28)

c) c1) v(x, t) · nf = 0, c2)
∂(v · tf )
∂nf

= 0 for x ∈ ΓfSym,

d) (p(x, t)− pref)n
f = νf

∂v

∂nf
− 1

2
v(v · nf )−, for x ∈ ΓfOut,

for any t ∈ (0,T). Vectors nf and tf are the unit outward normal and the unit
tangent to boundary ∂Ωf

t , respectively. Symbol (α)− denotes the negative part of any
real number α, i.e. (α)−= min(α, 0), and pref is a reference pressure. The symmetry
boundary condition in our case ΓfSym = {x1 ∈ 〈xmin, xmax〉, x2 = 0} simplifies to the

form v2(x, t) = 0, ∂v1

∂x2
= 0.

The outlet boundary condition (3.28 d) is a modified formulation of the do-nothing
boundary condition (also called directional do-nothing BC, see [35]), and it increases
the stability of the model by suppressing a possible backward flow through the outlet
boundary according to the analysis given in [35], see its application example in [3].

At the inlet part of the boundary several possible forms of boundary conditions
are considered. For this purpose the inlet boundary is formally divided into three
disjoint parts: ΓfIn = ΓfIn,dir ∪ ΓfIn,p ∪ ΓfIn,ε. The following boundary conditions are
prescribed for any t ∈ (0,T):

a) v(x, t) = vDir(x, t), for x ∈ ΓfIn,dir,

(3.29)

b) (p(x, t)− pin)nf − νf ∂v

∂nf
(x, t) = −1

2
v(v · nf )−, for x ∈ ΓfIn,p,

c) (p(x, t)− pin)nf − νf ∂v

∂nf
(x, t) = −1

2
v(v · nf )− +

1

ε
(v − vDir), for x ∈ ΓfIn,ε.

The choice of the inlet boundary condition is done e.g. by setting ΓfIn = ΓfIn,dir and

ΓfIn,p = ΓfIn,ε = ∅. This notation facilitates the explanation of the weak formulation
in the next chapter.

Condition (3.29 a) represents the classical Dirichlet boundary condition for velocity.
Condition (3.29 b) can be understood as prescribing pressure difference ∆p = pin −
pref between the inlet ΓfIn and the outlet ΓfOut. Boundary condition (3.29 c) prescribes
inlet airflow velocity vDir by the penalization approach with the help of a suitably
chosen penalization parameter ε, see [25], [148]. The inlet pressure pin in condition
(3.29 c) is set to zero. The value of parameter ε controls the switching between
the Dirichlet boundary condition (limit ε → 0+) and the pressure drop boundary
condition (limit ε→ +∞). Further details describing the choice of parameter ε are
presented in Sections 5.2 and 5.3.
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3.5 Coupled FSI problem

In this section coupling conditions of the fluid and the structure subproblems are
presented and the coupled problem formulation is summarized.

3.5.1 Fluid-structure coupling

First, as the FSI problem is a coupled problem the location of the common interface
ΓWt at time t is unknown. Its location corresponds to an established force equilibrium
between the aerodynamic and the elastic forces and it can be implicitly described
with the aid of elastic body displacement u as

ΓWt =
{
x ∈ R2|x = X + u(X, t), X ∈ ΓWref

}
. (3.30)

The structure and the fluid subproblems are coupled by the kinematic and the
dynamic boundary condition prescribed at the common interface ΓWt .

For the elastic body the so-called dynamic boundary condition is derived from
the requirement of stress continuity across the interface ΓWt in the normal direction,
see e.g. [90]. The prescribed Neumann type boundary condition has form (3.17 b),
where the vector qs = (qsi ) reads

qsi (X, t) = −
2∑
j=1

σfij(x, t)n
f
j (x), x = X + u(X, t), X ∈ ΓWref

, (3.31)

where the components of σfij are calculated for the considered formulation as σfij =

−ρfp δij + ρfνf ( ∂vi
∂xj

+
∂vj
∂xi

), where p denotes the kinematic pressure.

The so-called kinematic boundary condition follows from the continuity require-
ment of the fluid and the structural velocities at the interface ΓWt , see e.g. [57]. Since
the structure velocity ∂u

∂t
at the interface ΓWt is equal to the domain velocity wD,

it has the form of Dirichlet boundary condition (3.28 b).

3.5.2 FSI formulation

The FSI problem formulation consists of the elastic subproblem and the fluid sub-
problem coupled via boundary conditions (3.31) and (3.28 b). Moreover for a com-
plete formulation of the fluid flow subproblem an ALE mapping At is sought based
on the solution of the elastic subproblem, that satisfies

At : Ωf
ref → Ωf

t , At(∂Ωf
ref)→ ∂Ωf

t ∀t ∈ (0,T).

Once the mapping At is known, the ALE domain velocity wD is determined accord-
ing to equation (3.7).

As a solution of the elastic subproblem we regard such function u ∈ C2(Ωs ×
[0,T]), that equation (3.10) holds:

ρs
∂2u

∂t2
= div τ s + f s, in Ωs × (0,T),
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together with initial and boundary conditions (3.16) and (3.17). Stress tensor τ s is
expressed by u using relation (3.12) with piecewise constant Lamé coefficients and
the aerodynamic force qs is given by equation (3.31).

We assume Ωs ⊂ R2 is a bounded domain with (piecewise) Lipschitz continuous
boundary ∂Ωs = ΓsDir ∪ ΓsWref

, where ΓsDir 6= ∅. Further we suppose, that f s ∈
C(Ω

s × [0,T]), uDir ∈ C(ΓsDir × [0,T]), qs ∈ C(ΓWref
× [0,T]) and u0,u1 ∈ C(Ω

s
),

ρs is constant.

In the fluid flow subproblem we seek for velocity v ∈ C2(Ωf
t × [0,T]) and pressure

p ∈ C1(Ωf
t × [0,T]) such, that they fulfill partial differential equations (3.26):

DAv

Dt
+ ((v −wD) · ∇)v +∇p = νf∆v + gf , div v = 0, in Ωt

t × (0,T),

together with initial and boundary conditions (3.27) and (3.28), (3.29). The ALE
domain velocity wD is given by (3.7), viscosity νf is constant.

Further we assume gf ∈ C(Ω
f

t × [0,T]), vDir ∈ C(ΓfDir × [0,T]), v0 ∈ C(Ω
f

t ) and
pref and ε are appropriate constants. The fluid computational domain Ωf

t ⊂ R2 is

assumed to be bounded with (piecewise) Lipschitz continuous boundary ∂Ωf
t for ∀t ∈

[0,T]. The boundary is composed of mutually disjoint parts: ΓfDir,Γ
f
Out,Γ

f
Wt
,ΓfSym,Γ

f
In.

The inlet part ΓfIn is further (formally) composed of ΓfIn,dir,Γ
f
In,p and ΓfIn,ε.
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Chapter 4

Numerical model of FSI problem

This chapter contains a detailed description of numerical schemes based on the finite
element method applied for approximation of the FSI problem. The first section de-
scribes the approximation of the elastic subproblem. In the second one the numerical
scheme for the fluid flow subproblem is presented. The necessary stabilization of the
method as well as the realization of different inlet boundary conditions is discussed.
Third section is devoted to the construction of the ALE mapping, the computation
of aerodynamic forces and the application of the strongly coupled algorithm for so-
lution of the whole coupled FSI problem. The described procedures are implemented
in the in-house program FSIFEM, see [1].

4.1 Elastic body

The spatial and the time discretization of linear elasticity problem (3.10) with
boundary conditions (3.17) and initial conditions (3.16) is described in this section.

4.1.1 Spatial discretization

In order to apply FEM the classical formulation (3.10) is reformulated weakly.

Weak formulation

Starting with equation (3.10) we multiply it at a fixed time t ∈ (0,T) by a test
function ψ = (ψ1, ψ2) from space V = {f ∈ H1(Ωs)|f = 0 on ΓsDir} ⊂ H1(Ωs),
integrate it over Ωs and apply Green’s theorem (see Section 2.2). Thus we arrive to∫

Ωs

ρs
∂2ui
∂t2

ψi + τ sij
∂ψi

∂Xj

dX =

∫
Ωs

f si ψ
i dX +

∫
ΓWref

qsi ψ
i dS, (4.1)

where the definition of space V and boundary condition (3.17 b) were used.

35



Further, using the symmetry of stress tensor τ s, Hooke’s law (3.11) and assuming
an isotropic body we get∫

Ωs

τ sij
∂ψi

∂Xj

dX =

∫
Ωs

τ sij(u)esij(ψ) dX =

∫
Ωs

(
λs (div u)δij + 2µsesij(u)

)
esij(ψ) dX,

(4.2)

see e.g. [39]. Then using (4.2) in (4.1) the weak form of equation (3.10) reads(
ρs
∂2ui
∂t2

, ψi
)

Ωs
+
((
λsδij (div u) + 2µsesij(u)

)
, esij(ψ)

)
Ωs

=
(
f si , ψ

i
)

Ωs
+
(
qsi , ψ

i
)

ΓWref

,

(4.3)

where by symbol (·, ·)D the scalar product in space L2(D) is denoted (see Chapter
2), see [80].

As weak solution of (3.10) at fixed time t we call such function u : (0,T) 7→ H1(Ωs),
that satisfies equation (4.3) for any ψ ∈ V, boundary condition (3.17 a) holds and
the second partial derivative ∂2u

∂t2
exists and ∂2u

∂t2
∈ L2(Ωs).

Let us mention that the existence and uniqueness of weak solution for the stationary
case, i.e. ∂2u

∂t2
= 0, follows from Lax-Milgram theorem, see Section 2.2. Its assump-

tions can be verified with the help of Friedrichs and Korn inequalities, see e.g. [109].

Discrete formulation

The finite element method is used to approximate solution of problem (4.3). The
finite element method is based on a decomposition of the computational domain
Ωs into finite number of polygons, e.g. triangles. For simplicity we assume that
Ωs ⊂ R2 is polygonal domain covered by an admissible triangulation T sh , see e.g.
[39]. It means that triangles K ∈ T sh are closed, with mutually disjoint interiors
and

⋃
K∈T sh

K = Ωs. The intersection of two elements (triangles) is either common

vertex, edge or empty set, see Figure 4.1.

Figure 4.1: The first two pictures on the left show examples of inadmissible trian-
gulation, while the picture on the right demonstrates an admissible triangulation.

The approximate solution uh is sought in a finite dimensional finite element space
Vh = Vh × Vh, where

Vh = {f ∈ C(Ωs)|f = 0 on ΓsDir, f |K ∈ P1(K) ∀K ∈ T sh } ⊂ V, (4.4)
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where P1(K) is the space of polynomials of degree less or equal one on the triangle
K, i.e. the standard linear Lagrange triangular elements are used, see e.g. [39]. Let
us denote by Nh the dimension, i.e dim Vh = Nh. The basis functions ψi ∈ Vh of the
space Vh are defined for i = 1, . . . , Nh by the formula ψi(Xj) = δij, j = 1, . . . , Nh,
where by Xj the vertices of the triangulation τ sh are denoted (with the exception of
the triangulation vertices laying on the boundary ΓsDir). Further the basis functions of

the space Vh are chosen as ψj(X) =

(
ψj(X)

0

)
and ψj+Nh

(X) =

(
0

ψj(X)

)
for j =

1, . . . , Nh.

The choice (4.4) of the approximation space Vh ensures a sparse structure of mass
and stifness matrices and a possibility to use a simple affine equivalent elements
leading to a simple practical implementation, see e.g. [86].

Any function of the space Vh can be expressed as a linear combination of the basis
functions ψ1, . . . ,ψ2Nh

. The approximate solution uh at time t ∈ (0,T) can be
written as

uh(X, t) =

2Nh∑
j=1

αj(t)ψj(X), (4.5)

where we assume that unknown coefficients of the linear combination are αj(t) ∈
C2([0,T]). Particularly for the presented choice of the basis functions, the coefficients
αj and αj+Nh denote the values of uh,1 and uh,2 at the vertex Xj, respectively.

Using uh in the form (4.5) and taking the test functions ψ in equation (4.3) from the
space Vh leads to the system of 2Nh ordinary differential equations of the second
order for the unknown vector of coefficients α(t) = (αj(t))

2Nh
j=1

Mα̈+ Dα̇+ Kα = b(t), (4.6)

where the term Dα̇ was added with the matrix D = εs1M + εs2K representing the
proportional damping model with suitably chosen parameters εs1, ε

s
2, see paragraph

5.1.1. The vector b = b(t) has the components

bi = (f s,ψi)Ωs + (qs,ψi)ΓWref
(4.7)

and the elements of matrices M = (mij),K = (kij) are given by

mij = (ρsψj,ψi)Ωs , kij = (λs(div ψj) δij + 2µses(ψj), e
s(ψi))Ωs . (4.8)

The matrices K and M are usually called the stiffness matrix and the mass matrix,
respectively. The matrices K,M are symmetric and positive-definite matrices, see
e.g. [146], [39].

The convergence analysis for the stationary case can be found e.g. in book [39]. In
practical implementation the numerical quadrature with accuracy up to the second
order replaces the integration formulas given by (4.7) and (4.8), see e.g. [31].
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Initial conditions

The system (4.6) needs to be equipped by an initial condition for α(0) and α̇(0).
This can be accomplished by the projection of the given functions u0,u1 ∈ C(Ω

s
)

on the space Vh at time t = 0, i.e.

(uh(X, 0)− u0(X),ψh(X))Ωs = 0 and (
∂uh
∂t

(X, 0)− u1(X),ψh(X))Ωs = 0,

(4.9)

for all ψh ∈ Vh.

4.1.2 Time discretization

The time discretization of problem (4.6) is realized by the Newmark method. Its
advantages are the tailored design for second order systems, the unconditionally
stability and the second order accuracy, see e.g. [42], [80]. In order to describe the
time discretization, the time interval [0,T] is divided into N equidistant intervals,
where tn = n∆t for n = 0, 1, . . . , N and ∆t = T

N
. The same time interval partition

is also considered for the time discretization of the fluid flow problem.

Newmark method

Application of the Newmark method is explained here first for a general second
order ordinary differential equation (ODE) written as

ÿ(t) = f(t, y(t), ẏ(t)), for t ∈ (0,T), (4.10)

with the initial conditions

y(0) = y0, ẏ(0) = y1,

where f : [0,T]×R×R 7→ R is supposed to be a continuous function and y0, y1 ∈ R.

Using the time discretization we introduce approximations yn ≈ y(tn), ẏn ≈ ẏ(tn)
and fn = f(tn, y

n, ẏn). Then the numerical scheme can be written in a following
way

yn+1 = yn + ∆tẏn + ∆t2
(
βfn+1 + (

1

2
− β)fn

)
, (4.11)

ẏn+1 = ẏn + ∆t
(
γfn+1 + (1− γ)fn

)
, (4.12)

where β and γ are parameters, β ∈ [0, 1
2
] and γ ∈ [0, 1]. For the choice γ = 1

2
, β = 1

4

the Newmark method is of second order accuracy and unconditionally stable, see
[42].

The Newmark method given by (4.11) and (4.12) represents an implicit scheme due
to the presence of the term fn+1 on the right hand side of (4.11) and (4.12). The
arising nonlinear equation needs to be solved e.g. by Newton method. However, if the
Newmark method is applied on a linear equation or on a linear system of equations
(as in the case of the system (4.6)), then the resulting scheme is also linear and its
solution is straightforward.
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Application of the Newmark method

The choice t = tn+1 for system (4.6) yields

Mα̈(tn+1) + Dα̇(tn+1) + Kα(tn+1) = b(tn+1). (4.13)

Replacing α(tn+1) by αn+1 and α̇(tn+1), α̈(tn+1) by the approximations α̇n+1, α̈n+1

given by relations (4.11), (4.12) we obtain

Mα̈n+1 + D
(
α̇n + ∆t(1− γ)α̈n + ∆tγα̈n+1

)
+

+ K
(
αn + ∆tα̇n +

1− 2β

2
∆t2α̈n + β∆t2α̈n+1

)
= bn+1. (4.14)

Using some algebra equation (4.14) can be rearranged as

Aα̈n+1 = gn+1, (4.15)

where A is the matrix A = (M + γ∆tD + β(∆t)2K) and the vector gn+1 is given by

gn+1 = bn+1− Dα̇n −(1− γ)∆tDα̈n −Kαn −∆tKα̇n − 1− 2β

2
(∆t)2Kα̈n, (4.16)

see e.g. [90].

The procedure of numerical solution is following:

From the initial conditions at time t0 = 0 the displacement α0 and the velocity
α̇0 are determined using equations (4.9). The acceleration α̈0 is computed from the
system of linear equations (4.6) for t = t0.

Now for arbitrary n = 0, 1, 2, . . . we repeat:
The acceleration α̈n+1 at tn+1 is computed by solving the system (4.15), where the
known values αn, α̇n, α̈n are used to compute gn+1 from (4.16). Then employing the
relations analogous to (4.11) and (4.12) the velocity and the displacement approxi-
mations α̇n+1 and αn+1 at tn+1 are computed, respectively.

4.2 Fluid flow

In order to approximate the fluid flow problem one needs to take into an account
the nonlinearity due to present convection and another difficulty is caused by the
incompressibility constraint. Moreover the dominating convection has to be treated.
The time discretization is applied before the derivation of the weak formulation,
where a special attention is paid to the application of the considered boundary
conditions. At the end of this section the stabilization and the linearization of the
obtained nonlinear system of algebraic equations are described.

4.2.1 Time discretization

Similarly as for the elasticity problem the equidistant division of the time interval is
used with the same time step ∆t, i.e. the time interval [0,T] is divided into intervals

39



given by the partition tn = n∆t for n = 0, 1, . . . , N . Further the approximations at
the n-th time level are denoted by vn ≈ v(tn),wn

D ≈ wD(tn), pn ≈ p(tn),gn ≈ g(tn).

According to [62] the overall accuracy of FSI algorithm is determined by the used
approximation of the lowest order of accuracy. In order to maintain the second order
of accuracy in time the ALE derivative is approximated with the backward difference
formula of second order (BDF2) as

DAv

Dt
(tn+1) ≈ 3vn+1 − 4vn + vn−1

2∆t
, (4.17)

where for a fixed time instant tn+1 we denote vi(x) = vi(x̃) for x̃ = Ati(A
−1
tn+1

(x)),

i ∈ {n− 1, n} and x ∈ Ωf
tn+1

.

Further, for the sake of simplicity we focus on the discretization at a fixed time
instant tn+1 and thus in next sections we omit the index n + 1, i.e. we denote
v := vn+1,Ωf := Ωf

tn+1
, etc.

4.2.2 Weak formulation

In order to obtain the weak formulation of fluid flow problem (3.26) in space, the
first and the second equation of (3.26) are multiplied by test functions ϕ ∈ X
and q ∈ M , respectively. Here the space X = X1 × X2 is defined as X1 = {f ∈
H1(Ωf )| f = 0 on ΓfDir ∪ ΓfIn,dir ∪ ΓfWt

} ⊂ H1(Ωf ), X2 = {f ∈ X1| f = 0 on ΓfSym}
and M = L2(Ωf ). Then both equations (3.26) are integrated over the fluid domain
Ωf and summed up into a single equation. Finally the use of Green’s theorem on
the pressure and the viscous terms with considered g = 0 yields, see e.g. [152],(

3v

2∆t
,ϕ

)
Ωf

+ (((v −wD) · ∇)v,ϕ)Ωf + νf (∇v,∇ϕ)Ωf − (p, divϕ)Ωf+ (4.18)

+ (q, div v)Ωf =

(
4vn − vn−1

2∆t
,ϕ

)
Ωf

+

(
νf

∂v

∂nf
− pnf ,ϕ

)
∂Ωf

.

The contribution to the last term on the right hand side of (4.18) is equal zero at
boundaries ΓfDir,Γ

f
Wt

and ΓfIn,dir according to the definition of the space X, as well as

at the ΓfSym because the second (normal) component of the test function ϕ equals

zero (ϕ ∈ X) due to the outer normal nf = (0, 1)T at the boundary ΓfSym, see Figure
5.1.

Therefore the term
(
νf ∂v

∂nf
− pnf ,ϕ

)
∂Ωf

can be nonzero only at boundaries ΓfIn,p,Γ
f
In,ε

and ΓfOut. This is why for the FE method usually the classical do-nothing boundary
is realized by setting this term equal to zero due to the prescription of the condition
νf ∂v

∂nf
−pnf = 0 at the outlet part of the domain (ΓfOut), see e.g. [64]. However, such

a boundary condition leads possibly to instability in particular for the case, when
strong vortices leave the outflow part of boundary causing backward inflow into Ωf

t .
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In order to overcome this issue the convective term is further reformulated as

(((v −wD) · ∇)v,ϕ)Ωf =
1

2
(((v − 2wD) · ∇)v,ϕ)Ωf −

1

2
((v · ∇)ϕ,v)Ωf +

+
1

2

(
(v · nf )+v,ϕ

)
∂Ωf

+
1

2

(
(v · nf )−v,ϕ

)
∂Ωf

, (4.19)

where (α)+ is max{0, α} and (α)− is min{0, α}, α ∈ R. The first three terms of
(4.19) are included into the weak formulation, whereas the last term is nonzero only
at boundaries ΓfOut, ΓfIn,p and ΓfIn,ε due to the definition of the space X and condition
(3.28 c).

The summation of the last terms of equations (4.18) and (4.19) motivates the spec-
ification of the outlet boundary condition prescribed at ΓfOut

(p(x, t)− pref)n
f − νf ∂v

∂nf
= −1

2
v(v · nf )−, (4.20)

where pref is a reference pressure value at ΓfOut, see [57], [148]. Condition (4.20) is
called the directional do-nothing boundary condition.

Let us further concentrate on the inlet boundary conditions prescribed at the for-
mally divided inlet part of boundary ΓfIn = ΓfIn,dir ∪ ΓfIn,p ∪ ΓfIn,ε. The boundary con-

dition at the part of boundary ΓfIn,p is given by (4.20), where the reference pressure
is replaced by the inlet pressure pin. The formulation of boundary condition (3.29 c)
at ΓfIn,ε follows the same procedure, where the reference pressure is set pref = 0 and

penalization term 1
ε
(v − vDir,ϕ)ΓfIn,ε

is added to the weak formulation with ε > 0.

At boundary ΓfIn,dir the boundary condition gets the form v = vDir.

Finally, a solution of the weak formulation of problem (3.26) at time tn+1 is a such
function pair V = (v, p) ∈ H1(Ωf )×M , that

a(V, V,Φ) = f(Φ) (4.21)

is satisfied for any test function pair Φ = (ϕ, q) from space X ×M and moreover

velocity v satisfies boundary conditions (3.28 a, b, c1) and (3.29 a) and DAv
Dt
∈

L2(Ωf ).

Here, the trilinear form a(·, ·, ·) with arguments V ∗ = (v∗, p∗), V = (v, p) and Φ =
(ϕ, q) is given as

a(V ∗, V,Φ) =

(
3v

2∆t
,ϕ

)
Ωf

+
1

2
(((v∗ − 2wD) · ∇)v,ϕ)Ωf −

1

2
((v∗ · ∇)ϕ,v)Ωf+

+
1

2
((v∗ · n)+v,ϕ)ΓfOut

+ νf (∇v,∇ϕ)Ωf − (p, divϕ)Ωf + (q, div v)Ωf+

+
1

2
((v∗ · n)+v,ϕ)ΓfIn,p∪ε

+
1

ε
(v,ϕ)ΓfIn,ε

, (4.22)

where the union ΓfIn,p∪ΓfIn,ε is abbreviated as ΓfIn,p∪ε. The linear functional f(·) reads

f(Φ) =

(
4vn − vn−1

2∆t
,ϕ

)
Ωf

+ (prefn
f ,ϕ)ΓfOut

+
(
pin nf ,ϕ

)
ΓfIn,p

+
1

ε
(vDir,ϕ)ΓfIn,ε

.

(4.23)
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Let us recall that in practice only one of the sets ΓfIn,dir,Γ
f
In,p,Γ

f
In,ε is chosen to be

nonempty leading to significant reduction of boundary terms in (4.22) and (4.23).

Remark. Similarly as for the stationary elastic problem the proof of existence and
uniqueness for the stationary formulation of fluid problem 4.18 on fixed domain Ωf

and moreover with zero Dirichlet boundary condition can be found for example in
book [114] under the assumption of “small data”. In the same book it is explained,
that for instationary case, when the aforementioned equation is extended by term
(∂v
∂t
,ϕ)Ωf , a general question of existence and uniquiness is still opened. Some results

exist only for specific cases besides others depending on the value of viscosity and
the problem dimension has to be also taken into account. More detailed explanation
can be found in [152].

4.2.3 Finite element approximation

During discretization of problem (4.21) the velocity and the pressure spaces are
replaced by finite element subspaces Hh ⊂ H1(Ωf ) and Xh = X ∩ Hh, Mh ⊂
M . In order to obtain stable method the finite element spaces Xh,Mh have to
fulfill the Babuška–Brezzi condition, also called inf-sup condition, see e.g. [64]. The
discrete Babuška–Brezzi inf-sup condition is satisfied if there exists a constant C > 0
independent of mesh parameter h such that

inf
ph∈Mh,ph 6=0

sup
vh∈Xh,vh 6=0

|(ph,∇ · vh)Ωf |
‖ph‖L2(Ωf )‖vh‖H1(Ωf )

≥ C. (4.24)

If the inf-sup condition is not fulfilled, then the numerical scheme is unstable, see
e.g. [114]. For erudite theoretical analysis of inf-sup problems see e.g. [52].

Finite element spaces

Similarly as for the elasticity problem we assume that domain Ωf
t ⊂ R2 is polygonal

and it is covered by an admissible triangulation T fh . Based on this triangulation
the finite elements known as minielements (P1-bubble/P1 elements) are used, see
[114]. It means that spaces Hh,Xh,Mh for velocity and pressure approximations are
chosen as

Hh = {fi ∈ C(Ωf )| fi|K ∈ Pbub1 (K) ∀K ∈ T fh }, (4.25)

Xh = {f ∈ Hh| f = 0 on ΓfDir ∪ ΓfIn,dir ∪ Γfwt
} ⊂ X,

Mh = {f ∈ C(Ωf )| f |K ∈ P1(K) ∀K ∈ T fh },

where P1(K) is the space of at most first degree polynomials on the triangle K
and the space Pbub1 (K) = P1(K) ∪ {ϕbub} is the P1 space enriched by the cubic
bubble function ϕbub, which can be written using the barycentric coordinates λi
as ϕbub = λ1 · λ2 · λ3, see e.g. [52]. The degrees of freedom for the minielement are
shown in Figure 4.2. The choice of minielement satisfies the Babuška-Brezzi (inf-sup)
condition, see e.g. [114], what ensures the stability of the numerical scheme.
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Remark. The extension of space P1 by the (cubic) bubble function can be also
understood as a method how to stabilize the finite element with equal orders of
polynomials used for the approximation of velocity space Xh and pressure space
Mh, see [114].

Figure 4.2: P1-bubble/P1 finite element. The dots in vertices denote unknown values
of pressure basis functions, the arrows mark points associated with unknown values
of velocities. The triangle center of mass S is related to basis (bubble) function ϕbub.

Discrete problem

The discrete problem reads: find Vh = (vh, ph) ∈ Hh ×Mh such, that

a(Vh, Vh,Φh) = f(Φh) (4.26)

holds for any test function pair Φh = (ϕh, qh) ∈ Xh ×Mh and moreover vh satisfies
boundary conditions (3.28 a, b, c1) and (3.29 a).

The system (4.26) as well as (4.21) is nonlinear due to the convective terms in
the definition of the form a(·, ·, ·). The method of linearization is described later,
nevertheless (nonlinear as well as linearized) system (4.26) has saddle-point structure
which algebraic solution is more demanding compared to symmetric and positive
system in the case of the elasticity problem.

4.2.4 Stabilization

The choice of the minielement guarantees only the stability due to possible incompat-
ibility of velocity-pressure spaces. Still another possible source of instability appears
in the considered problem: For high Reynolds numbers the use of Galerkin approx-
imations leads (at least on coarse meshes) to the non-physical oscillations of the
numerical solution, also called Gibbs phenomenon, see e.g. [56]. The necessary mesh
refinement to avoid it usually results in large systems of nonlinear equations, which
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are computationally very expensive to solve. Thus, an alternative is to introduce
an additional stabilization as upwind, see e.g. [56]. In order to introduce such sta-
bilization, let us emphasize that the instability is principally caused by unresolved
velocity gradients due to too coarse grid. The regions with unresolved high velocity
gradients can be characterized by high values of local Reynold number ReK , see e.g.
[56, 146].

The numerical solution can be stabilized with the aid of an added streamline diffusion
however this simple approch makes the scheme only first order accurate, see [86]. On
the other hand the streamline diffusion can be included formally as a modification of
test functions, see [86]. This approach keeps the stabilized problem fully consistent
with the original one. Therefore it is possible to reach higher order convergence or
in some cases even the optimal convergence rates, see e.g. [63], [86] or [62].

In order to overcome the possible numerical instability a combination of the streamline-
upwind/Petrov-Galerkin method (SUPG) and pressure-stabilization method (PSPG)
together with div-div stabilization are applied. The stabilized problem reads: Find
a function pair Vh = (vh, ph) ∈ H1

h(Ω
f ) ×Mh such, that vh satisfies the boundary

conditions (3.28 a, b, c1) and (3.29 a) and

a(Vh;Vh,Φh) + Lh(Vh;Vh,Φh) + Ph(Vh;Vh,Φh) +Dh(Vh;Vh,Φh) = (4.27)

= f(Φh) + Fh(Vh; Φh) +Gh(Vh; Φh),

is satisfied for any test functions Φh = (ϕh, qh) ∈ Xh ×Mh, where the (nonlinear)
forms Lh(·, ·, ·), Ph(·, ·, ·) and Dh(·, ·) are defined as

Lh(V
∗;V,Φ) =

∑
K∈Th

δK

(
3v

2∆t
+ ((v∗ −wD) · ∇)v +∇p− ν∆v, ((v∗ −wD) · ∇)ϕ

)
K

,

Ph(V
∗;V,Φ) =

∑
K∈Th

δK

(
3v

2∆t
+ ((v∗ −wD) · ∇)v +∇p− ν∆v, ∇q

)
K

, (4.28)

Dh(V
∗;V,Φ) =

∑
K∈Th

τK (div v, divϕ)K ,

and the functionals Fh(·), Gh(·) are given as

Fh(V
∗; Φ) =

∑
K∈Th

δK

(
4vn − vn−1

2∆t
, ((v∗ −wD) · ∇)ϕ

)
K

, (4.29)

Gh(V
∗; Φ) =

∑
K∈Th

δK

(
4vn − vn−1

2∆t
, ∇q

)
K

.

The parameters τK , δK are dependent on the local transport velocity v∗, i.e. τK =
τK(V ∗), δK = δK(V ∗). They are (locally) determined as

τK = ν

(
1 +ReK + 2

h2
K

ν∆t

)
, δK =

h2
K

τK
, (4.30)

based on the local Reynold number ReK defined as

ReK =
hK ||v∗ −wD||L2(K)

2ν
(4.31)
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and the local element length hK . Here, hK is taken as square root of the triangle K
volume, see [57], [62].

Linearization

The nonlinear system of equations (4.27) is solved with the aid of fixed point iter-
ations, see [51], [159]. Starting from an initial estimate V 0

h we seek the sequence of
approximations V j+1

h = (v•,j+1
h , p•,j+1

h ) ∈ H1
h(Ω

f ) ×Mh, j = 0, 1, 2, . . . such, that
v•,j+1
h satisfies the boundary conditions (3.28 a, b, c1), (3.29 a) and

a(V j
h ;V j+1

h ,Φh) + Lh(V
j
h ;V j+1

h ,Φh) + Ph(V
j
h ;V j+1

h ,Φh) +Dh(V
j
h ;V j+1

h ,Φh) =

= f(Φh) + Fh(V
j
h ; Φh) +Gh(V

j
h ; Φh) (4.32)

holds for any Φh ∈ Xh×Mh. The process is repeated until the convergence criterion

‖V j+1
h − V j

h ‖
2
L2(Ωf ) < εf (4.33)

is reached with a prescribed εf > 0.

The linear system of equations (4.32) is solved with the help of the mathematical
library UMFPACK implementing the unsymmetric multifrontal method, see [44].
The library implements the direct solver based on the LU matrix decomposition
for sparse matrices with native Compressed Column Format (CCF). An alternative
could be e.g. the Math Kernel Library (MKL) developed by Intel Corporation, see
[16].

4.3 FSI coupling

This section presents two ingredients of FSI numerical solution – the construction
of ALE mapping using pseudo-elastic approach for the fluid computational domain
and the way how are the kinematic and the dynamic coupling conditions realized.
Then the coupling procedure of the FSI solution is given.

4.3.1 Construction of ALE mapping

The mathematical description of fluid flow problem (3.26) is based on the ALE
mapping At, a smooth mapping of Ωf

ref onto Ωf
t for any t ∈ (0,T). In practical

implementation such mapping needs to be constructed only at discrete time instants.
One possibility how to construct ALE mapping at a fixed time instant tn+1 is to use
the pseudo-elastic approach, see e.g. [98].

In the pseudo-elastic approach the mapping At is sought in the form of displacement
of the original configuration subject to pseudo-elastic equations. This stationary
problem solved in the Lagrangian coordinates is supplied with the Dirichlet bound-
ary conditions for the known displacement of boundary ∂Ωf , where specially the
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displacement of boundary ΓWref
is given by the known displacement of structure u.

The pseudo-elastic problem reads: Find an unknown displacement d(X) = (d1, d2)
of points X ∈ Ωf

ref satisfying the boundary conditions

d(X) = 0, on ΓfDir ∪ ΓfIn ∪ ΓfOut,

d(X) = u(X, tn+1), on ΓWref
, (4.34)

d(X) · nf = 0, tf · τaleij (X) · nf = 0, on ΓfSym,

and the pseudo-elastic equations
∂τaleij

∂Xj

= 0, in Ωf
ref , (4.35)

where τaleij = λale(div d) δij+2µaleesij(d) and λale, µale are artificial Lamé coefficients.
Let us emphasize that it was found out to be a significant advantage to prescribe only
the normal component of the displacement and to keep the tangential displacement
free on the boundary ΓfSym. This condition allows to handle a substantially larger
deformation of the computational fluid mesh.

Similarly as described in paragraph 4.1.1 the system of equations (4.35) is weakly
formulated and the displacement d is approximated by dh taken as a linear com-
bination of basis functions from space Wh ⊂ H1(Ωf

ref). Here, the piecewise linear

finite element functions are used, i.e. Wh = Wh × W̃h is defined as

Wh = {f ∈ C(Ωs)|f = 0 on ΓfDir ∪ ΓfIn ∪ ΓfOut ∪ ΓWref
, f |K ∈ P1(K) ∀K ∈ T fh }

(4.36)

and W̃h = {f ∈ Wh|f = 0 on ΓfSym} due to considered geometry of Ωf
ref with

nf (x) = (0, 1)T for x ∈ ΓfSym and the last two boundary conditions (4.34). The basis
functions ψi ∈Wh are chosen as Lagrange finite elements of first order, see previous
paragraph 4.1.1. The same discretization procedure leads to the algebraic system for
unknown vector αale as described in paragraph 4.1.1, i.e.

Kaleαale = 0, (4.37)

where the components of matrix Kale = (kaleij ) are given as

kaleij = (λale(div ψj) δij + 2µalees(ψj), e
s(ψi))Ωfref

. (4.38)

The robustness of ALE mapping construction is very important for the whole FSI
algorithm. This robustness can be increased by a suitable choice of the parameters
λale, µale such, that the ALE mapping constructed by pseudo-elastic approach de-
livers regular mesh on Ωf

t also for highly deformed boundaries, e.g. given by large
deformation of the interface ΓfWt

. For instance, the unphysical choice of λale = −µale
was recommended in [49] as it should allow a rigid structure rotation without intro-
ducing large deformation in the surrounding computational mesh (where the asso-
ciated stress σale should be theoretically zero). Another possibility is to scale λale

with the triangle area or the distance from boundary ΓfSym in order to make small
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triangles, e.g. near boundaries with VF, more stiff, see [98]. Last, the best robustness
was obtained with λale, µale chosen to be constants based on our experience for the
considered geometry.

In the next paragraph the numerical approximation of the domain velocity computed
from the constructed ALE mapping is described. By this it is also determined the
numerical implementation of the kinematic coupling condition.

Numerical realization of domain velocity

The (discrete) domain velocity is a part of the fluid flow formulation (4.22) as well
as a part of kinematic boundary condition (3.28 b). The discrete domain velocity
wD,h at any vertex xj of T fh at time tn+1 is approximated with the help of BDF2
formula using the displacements dh computed from pseudo-elastic equations (4.37)
in time instants tn+1, tn, tn−1 as

wn+1
D,h (xj) =

3dn+1
h (Xj)− 4dnh(Xj) + dn−1

h (Xj)

2∆t
, (4.39)

where xj = At(Xj). This discretization satisfies the geometry conservation law, see
e.g. [61].

4.3.2 Dynamic coupling condition

In order to take into account also the dynamic coupling condition of form (3.17 b)
the aerodynamic forces acting on the structure needs to be evaluated. Here, three
applicable methods of the aerodynamic forces evaluation are described, see also
author’s analysis [9].

Extrapolation from interior of fluid domain

The first approach of the dynamic coupling condition evaluation is to extrapolate
the aerodynamic quantities from the interior of the fluid domain onto boundary
ΓWt and then use these extrapolated values to approximate aerodynamic forces
qs given by (3.31). The structural and the fluid computational meshes (for the
reference domain) are chosen to be conforming over the common interface ΓWref

, i.e.
the vertices lying on ΓWref

are common for both meshes, see Figure 4.3. This fact
together with the implemented finite elements of the first order (bubble function is
vanishing at each triangle boundary) simplifies the situation. For any edge S from
the common interface the components of the fluid stress tensor are extrapolated
from the fluid mesh element KS adjacent to the edge S. The boundary integrals are
then approximated with the help of a numerical quadrature formula.

Local reconstruction technique

The second possibility is the application of the local reconstruction technique in-
troduced by Babuška, see e.g. [24], which can possibly increase the accuracy of
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Figure 4.3: Illustration of conforming meshes of structure domain Ωs and fluid do-
main Ωf

t with interface ΓWt .

aerodynamic forces computation in comparison with the previous approach. The
idea is based on the reconstruction of the velocity gradient at arbitrary vertex A of
fluid mesh T fh (denoted as ∇vreconstr(A)). In our case only the vertices located at

the boundary ΓfWt
are considered. The procedure is following:

To reconstruct the gradient of velocity vh at a vertex A located on ΓWt , the local
patch of elements PA, see Figure 4.4, is used. The local patch PA is composed of
all triangles K ∈ T fh being neighbour of vertex A. Its number is denoted by N . In
every triangle of the patch the gradient ∇vh(Sj) located at the center of the j-th
triangle Sj is computed.

In the case of N = 1 we use directly value ∇vh(S1) as ∇vreconstr(A). For N = 2
the average of ∇vh(S1) and ∇vh(S2) weighted by triangle areas is used. For N ≥ 3
the least square method for fitting data ∇vh(Sj) for all Kj ∈ PA to determine
∇vreconstr(A) is applied, see [24].

Figure 4.4: Example of two local patches. The local patch of point A consists of two
triangles, while the local patch of point B is constituted by three adjacent triangles.

The local reconstruction procedure is used only for the computation of velocity gra-
dients as the pressure approximation is in our case chosen as a continuous function.
The evaluation of the aerodynamic forces is then done with a numerical quadrature
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(used for boundary integral), similarly as above. The local reconstruction is the de-
fault option of the aerodynamic force calculation in program FSIFEM . It is further
used in the numerical simulations of Chapter 5 since it provides theoretically higher
accuracy compared to the extrapolation procedure.

Weak reformulation of aerodynamic forces

The third possibility how to calculate the aerodynamic forces is to use their weak
reformulation. In this case boundary condition (3.17 b) is rather evaluated in the
weak form given by the second term of (4.7), i.e. by (qs,ψi)ΓWref

, see e.g. [62], [9].
Here for the sake of simplicity the same FE linear Lagrange basis functions ψi as
chosen in the practical implementation for the elasticity problem and moreover being
non-zero on ΓWref

are considered, i.e. ψi ∈ Vh with indices i from a set J which is
J ( {1, . . . , 2Nh}.

Let us consider fluid domain Ωf
t and structure domain Ωs at a fixed time instant

tn+1, see Figure 4.5. We denote one-layer strip of fluid elements around the interface
as Ωstrip = Atn+1(PΓW ), where the patch PΓW is given as PΓW =

⋃
{K ∈ T fh |K ∩

ΓWref
6= ∅}. Next we consider vector function ϕW ∈ H1(Ωf

tn+1
) which components

ϕW = (ϕ1
W , ϕ

2
W ) equal one on boundary ΓWtn+1

and outside domain Ωstrip are zero,
i.e. for j = 1, 2

ϕjW (x) = 1 for x ∈ ΓWtn+1
, ϕjW (x) = 0 for x ∈ Ωf

tn+1
\ Ωstrip. (4.40)

Further, the vector equation (3.26) is multiplied by the constant fluid density ρf0
and by the function ϕW , integrated over the domain Ωstrip leading to

ρf0

(
DAv

Dt
+ ((v −wD) · ∇)v,ϕW

)
Ωstrip

− (div σf ,ϕW )Ωstrip = 0. (4.41)

The application of the Green’s theorem on the term containing the fluid stress
tensor, using the BDF2 formula for the approximation of the ALE derivative and
the subsequent spatial discretization as described previously leads to

(σfhn
f ,ϕW )ΓWtn+1

.
= ρf0

(
3vn+1

h − 4vnh + vn−1
h

2∆t
,ϕW

)
Ωstrip

+ (4.42)

+
(
ρf0((vn+1

h −wn+1
D,h ) · ∇)vn+1

h ,ϕW

)
Ωstrip

+ µf (∇vn+1
h ,∇ϕW )Ωstrip− ρ

f
0(pn+1

h , divϕW )Ωstrip ,

where the last two terms are volume integrals obtained by the definition of fluid
stress tensor (3.21) (in the case of incompressible fluid flow) and particularly pn+1

h

is the approximation of the kinematic pressure at tn+1.

Then the function ϕW is written with the aid of the linear Lagrange FE basis
consisting of functions ϕW,k, i.e. the same basis functions as used for the velocity
discretization of the fluid flow problem on boundary ΓWt . Let us recall that the

components of these functions ϕW,k =

(
ϕW,k

0

)
, ϕW,k+NΓ

=

(
0

ϕW,k

)
satisfy

ϕW,k(xl) = δkl, (4.43)
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where xl is l-th one of NΓ vertices of the (fluid) triangulation of boundary ΓWtn+1
.1

Finally due to the assumed mesh conformity over the interface ΓW there exists for
each index i ∈ J an unique index ki ∈ {1, . . . , 2NΓ} for which holds ψi(X) =
ϕW,ki(x), where x = Atn+1(X), X ∈ ΓWref

. From the mesh conformity and equation
(3.31) already follows

(qs,ψi)ΓWref
= −(σfhn

f ,ϕW,ki)ΓWtn+1
. (4.44)

Equations (4.42) and (4.44) offer another variant how to compute the contributions
of the aerodynamic forces to right hand side vector (4.7).

Figure 4.5: Scheme of (gray) elastic body domain Ωs surrounded by (white) fluid
domain Ωf

t with subdomain Ωstrip ⊂ Ωf
t marked by green. The vertices of intersection

ΓWt ∩ΓsDir, where the Dirichlet boundary condition for the elastic body has priority
over the dynamic boundary condition, are highlighted by red dots.

4.3.3 Solution of FSI coupled problem

For the solution of the FSI problem the strongly coupled partitioned algorithm is
implemented, see Figure 4.6. It means that the fluid flow and the structure subprob-
lem is iteratively solved until the convergence test at the end of each cycle is passed,
see e.g. [57] or [89].
Let us consider a fixed time instant tn at which the values vn, pn,un, (qs)n, Atn and
Ωf
tn were determined. Further

0. Extrapolate the effect of the aerodynamic forces from the previous time level
qsn+1,0 = qsn.

Then for l = 0, 1, . . . we proceed the computation in the following steps:

1The two functions ϕW,k associated with the vertices at intersection ΓWtn+1
∩Γs

Dir are in imple-

mentation excluded because the Dirichlet boundary condition has higher priority (no aerodynamic
forces act here) for the elastic body at these vertices, see Figure 4.5.
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1. Solve elastodynamic problem (4.6) with qsn+1,l in order to approximate dis-

placement un+1,l at time tn+1.

2. Determine Ωf
tn+1,l

and construct ALE mapping Atn+1,l
based on found defor-

mation un+1,l of interface ΓfWtn+1,l
. Approximate domain velocity wn+1,l

D,h based

on Atn+1,l
according to (4.39).

3. Solve the fluid flow problem represented by system (4.32) to acquire vn+1,l, pn+1,l

defined on Ωf
tn+1,l

.

4. Determine aerodynamic forces qsn+1,l+1 on interface ΓfWtn+1,l
given by (3.31)

from known values vn+1,l, pn+1,l according to one of described procedures in
paragraph 4.3.2.

5. Check if condition ||qsn+1,l+1 − qsn+1,l||L∞(ΓsWt
) < εfsi is satisfied.

• If yes, denote all quantities fn+1 := fn+1,l, increase the time index n :=
n+ 1, set l := 0 and continue with step 0.

• If no, increase the iteration index l := l + 1 and continue with step 1.

In practical implementation the algorithm performs usually 3 − 8 inner loops for
chosen εfsi = 10−3 until the convergence criterion is met.

Figure 4.6: Diagram shows consequent steps of strongly coupled FSI algorithm with
inner cycles marked by gray arrows.
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Chapter 5

Numerical results of FSI problem

In the beginning of this chapter the settings of numerical simulations including the
description of FSI computational domains are given. Next three sections contain the
following numerical results: First, the results for a prescribed vocal folds motion and
for different inlet boundary conditions are presented. The sensitivity analysis of flow
characteristics in the dependence on the penalization parameter ε is shown. Second,
the full FSI interaction system is approximated for hemi-larynx configuration and the
critical flutter velocity is determined. Third, the flow-induced vocal folds vibrations
for the full configuration of the glottal channel are computed. The presented results
are detailed version of published results in [4, 7, 6, 11].

5.1 Description of FSI problem

The following choice of physical quantities is made: The constant time step ∆t is
chosen as 2.5 · 10−5 s. The structure density ρs is set to ρs = 1000 kg/m3, the fluid
density ρf0 = 1.185 kg/m3 and the kinematic fluid viscosity νf = 1.47 · 10−5 m2/s.
The Young modulus and the Poisson ratio are chosen as Es = 8 kPa and σs = 0.4,
respectively. The damping parameters for vocal folds are chosen as εs1 = 5 s−1, εs2 =
2.0 · 10−5 s as described in following paragraph 5.1.1. The pseudo-elastic parameters
used for mesh deformation are set to λale = 10, µale = 2.5.

First, the presented numerical results have been obtained with the symmetric glottal
channel model labeled as MALE-SYM, shown in Figure 5.1. The shape of vocal fold
is taken from the article [148], where a simplified model of the human vocal fold is
used in a generic glottal channel, see [75, 76, 77]. The vocal fold shape is additionally
very slightly rounded at the top sharp corner, see Figure 5.1 – in order to increase
the stability of the FSI approximation for the case of almost closed channel. The
FSI configuration is for the sake of simplicity considered as axially symmetric with
symmetry axis y = 0. Here, the half-gap g0(t), which denotes the distance between
the top of the vocal fold and the symmetry axis of the channel, is initially set as
g0,init = 0.4 mm. The MALE-SYM vocal fold model is considered to be composed
of one uniform tissue with Young modulus Es = 8 kPa and Poisson ratio σs = 0.4.
At the top of the elastic body the sensor S having coordinates [4.99;−0.505] mm in
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the reference domain is located and used for postprocessing of the results.

Figure 5.1: Left: The meshed VF with a detail of rounded top of originally sharp
VF corner. Right: The FSI domains with marked boundaries, half-gap distance
g0(t) and point S, where the VF vibrations are analyzed. The considered dimensions
are: H1 = 5.8 mm, H2 = 5.4 mm, g0(0) = 0.4mm, L1 = 6.8 mm, L2 = 6.8 mm and
L3 = 23.8 mm.

The other considered configuration of the vocal fold model labeled as MALE arises
by removing the symmetry assumption, i.e. when the full channel with two identical
VFs is considered (i.e. the boundary ΓfSym = ∅), see Figure 5.23.

The modal analysis of the VF model MALE-SYM is performed, for details see
Appendix A. The first four eigenmodes and eigenfrequencies of the VF model are
shown in Figures 5.2 and 5.3. The two lowest eigenfrequencies are f1 = 76.8 Hz and
f2 = 156.7 Hz, which are similar to frequencies considered in article [147] (100 Hz
and 160 Hz) and they are practically1 in interval of male VF vibration fundamental
frequency 85− 155 Hz as published by [156].

Figure 5.2: First two eigenmodes of vocal fold model MALE-SYM with related eigen-
frequencies f1 = 76.8 Hz and f2 = 156.7 Hz.

1The VF vibration fundamental frequency is usually somewhere between the first two eigenfre-
quencies, see e.g. [153].
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Figure 5.3: Third and fourth eigenmode of vocal fold model MALE-SYM with related
eigenfrequencies f3 = 181.3 Hz and f4 = 278.2 Hz obtained by modal analysis.

5.1.1 Model of proportional damping

Proportional damping or Rayleigh damping, see e.g. [31], is commonly used linear
model of damping. The damping model is described by matrix D, see equation
(4.6), which is proportional to the FE mass and stiffness matrices M and K with
the proportionality (damping) parameters εs1 and εs2, respectively. Further it can
be shown that for a solution of ODE system (4.6), which is composed of modes
superposition, the i-th modal damping factor ξi is

ξi =
εs1

2ωi
+
ωiε

s
2

2
, (5.1)

where ωi = 2πfi is the angular eigenfrequency of the i-th eigenmode of the undamped
system (4.6), see e.g. [90]. It is obvious that parameter εs1 controls low-frequency
damping, see Figure 5.4, while εs2 steers the high-frequency damping.

Figure 5.4: The typical behaviour of modal damping factor ξ as a function of fre-
quency f . The graph is plotted with values εs1 = 5 s−1 and εs2 = 2 · 10−5s. The
damping modal factors of the first two eigenfrequencies f1 and f2 of MALE-SYM
model can be read to be ξ(f1)

.
= 0.2 and ξ(f2)

.
= 0.1.

The application of proportional damping model usually leads to weakly damped a
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relatively narrow frequency range and the damping outside this frequency range de-
scribed by the modal damping factor substantially grows. In order to adjust damping
parameters for the given frequency range of interest, the parameters are selected by
the following process:
The damping parameters εs1, ε

s
2 are usually sought as the solution of algebraic system

of two equations arising from equation (5.1)

εs1 + εs2 ω
2
1 = 2ω1 ξ(ω1), (5.2)

εs1 + εs2 ω
2
2 = 2ω2 ξ(ω2),

where ξ(ω1) and ξ(ω2) are given (e.g. measured damping factors at boundaries of
the frequency range given by ω1 and by ω2, respectively), see e.g. [172].
Alternatively, the system of two equations (5.2) can be extended by additional mea-
surements of modal damping factors at different frequencies and the resulting overde-
termined system can be solved by the least square method in order to obtain better
damping characteristic over the chosen frequency interval, see e.g. [76].

For the considered choice of εs1 = 5 s−1 and εs2 = 2 · 10−5s the damping of first two
eigenmodes lies in the interval ξ ≈ 0.1− 0.3 as reported by the measurements of the
excised human larynges [37]. The determination of damping characteristics is highly
difficult due to the small dimensions of VF tissue, which is composed of more layers,
and the frequency dependent character of damping with high frequency of interest
f > 100 Hz, see [37].

Static force supporting vocal folds

In order to ensure that the gap (or the half-gap) between the channel walls at the
glottis agrees with the prescribed values in references [148] or [77] the static part of
the aerodynamic force loading the elastic structure is eliminated from the dynamic
response of the structure. The static force qsstat is computed from the numerical
solution of the flow field at the chosen time instant trelease > 0 using the fixed channel
configuration, i.e. qsstat(X) := qs(X, trelease), X ∈ ΓWref

. Here, trelease is chosen to be
such high time instant at which the fluid flow transitional effects almost completely
disappeared. Then for t > trelease the interaction is modified by subtracting this
static part, i.e. the modified aerodynamic force qsmod is prescribed by

qsmod(X, t) = qs(X, t)− qsstat(X). (5.3)

The modified aerodynamic force has actually a meaning of force fluctuations around
the new equilibrium position equal to the original initial (half-) gap position.

5.2 Prescribed motion of structure

This section presents the results of numerical simulations for a prescribed motion
of vocal folds, see [4]. These results are organized in three paragraphs. In the first
paragraph the results for three previously considered inlet boundary conditions are
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shown. In the second paragraph the sensitivity of the FSI process in dependence on
the choice of penalization parameter ε is investigated, and in the last paragraph the
numerical results are related to the available experimental data.

In all cases the periodical motion of vocal fold represented by the model MALE-SYM,
see Figure 5.1, is prescribed. The displacement of the structure at point [x, y] ∈ Ωs

and at time t ∈ [0,T] is prescribed by

u1(x, y, t) = 0, u2(x, y, t) =
Cdriven

100
· (y + g0,init +H2) · sin(2πfdrivent), (5.4)

where H2 is the VF height, Cdriven is a free parameter and the parameters fdriven =
100 Hz and g0,init = g0(0) = 0.4 mm are fixed.

5.2.1 Effect of the inlet boundary conditions on flow
characteristics

The performance of considered boundary conditions (3.29) is tested for the case of
prescribed VF motion of form (5.4) with choice Cdriven = 7.2, further referred as the
reference prescribed motion. This prescribed motion of the VF enables nearly full
closing of the channel up to the minimal half-gap gref0,min = 0.0114 mm.

Three inlet boundary conditions are considered:

1) case “vel”: Dirichlet boundary condition (3.29 a) with the given inlet airflow
velocity vDir = (1.7, 0) m/s,

2) case “pres”: the prescribed pressure drop ∆p = 400 Pa by condition (3.29 b). The
pressure drop choice is such that airflow rate of cases “pres” and “vel” is comparable;

3) case “pen”: penalization boundary condition (3.29 c) with the given velocity vDir

and with the penalization parameter ε = 5 · 10−4 s/m.

The results in terms of the inlet quantities are shown in Figure 5.5. The time be-
haviour of the inlet flow velocity (averaged over boundary ΓfIn) reveals the different
behaviour in all three studied cases. The inlet velocity is constant for the case “vel”
and oscillating for the case “pres” around its mean value (approximately the same as
for “vel”). In the case “pen” the inlet velocity for maximally open channel is almost
the same as for the case “vel”, but during the channel closing it rapidly drops near
to zero (similarly as in case “pres”).

In the case “pres” the pressure drop, i.e. the difference between pressure values mon-
itored at boundaries ΓfIn and ΓfOut

2, is almost constant, while for the case “vel” the
pressure grows fast to unphysically high albeit expected values during the channel
closing. For the limit case of the completely closed channel the theoretical value
of pressure drop would reach infinity. In the case “pen” the pressure drop remains
bounded with a reasonable amplitude comparable with experiments, see [73]. The
maximal value of the pressure drop is therein after also referenced as the pressure
peak.

2More precisely the pressure drop is often labeled as the transglottal pressure, see e.g. [74].
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Figure 5.5: Comparison of flow characteristics for three different inlet boundary
conditions. The top panel shows the half-gap in dependence on time for the reference
prescribed VF motion in form (5.4). The middle panel shows the inlet velocity
(averaged over ΓfIn) in the dependence on time. The bottom figure presents detail
of the pressure drop during two periods of the reference prescribed motion. The
pressure drop in the case “vel” has unrealistic high maximum of circa 472 kPa.
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For the case “pen” the flow velocity magnitude distribution in the channel is shown in
Figure 5.6. It can be noticed that during the channel closing the velocity magnitude
is decreasing what is on the contrary to the behaviour for case “vel”, where based on
the continuity equation the local velocity theoretically tends to infinity. In the case
“pen” the maximal velocity at the narrowest part of the channel for the time instant
of minimal half-gap gref0,min = 0.0114 mm (numerically practically closed) equals 25.0
m/s that is comparable with the maximal velocity 28.9 m/s for the time instant,
when the half-gap g0(t) equals the initial half-gap g0,init = 0.4 mm. On the other
hand for the case “vel” the maximal velocity in the narrowest part of the channel
at time of gref0,min exceeds an unrealistic high value of cca 300 m/s.

Figure 5.6: The magnitude of flow velocity distribution around vibrating structure
at three time instants for the case “pen”. The picture on the left shows the time
instant for which minimal half-gap occurs, the middle one has half-gap equal to the
initial one and the picture on the right depicts the time instant with the maximally
open channel. The scale of velocity contours is common for all three pictures. The
detail of the glottis in the moment of minimal half-gap is shown bottom left.

5.2.2 Parametric study of an optimal value of the penalty
parameter

The sensitivity of the flow field characteristics to the changes of the penalization
parameter were tested for the reference prescribed motion of the structure similarly
as in paragraph 5.2.1. The dependence of the (maximal) pressure drop between inlet
ΓfIn and outlet ΓfOut on the penalization parameter ε is shown in Figure 5.7, which
presents also the dependence of the maximal, the average and the minimal flow rate
Q3 on the parameter ε. The maximal and the minimal flow rate or pressure drop
means that the maximal and the minimal instant value of quantity over the whole
simulation time interval is considered, respectively. The most rapid changes occur for
the penalization parameter in the range 10−7 − 10−4 s/m, where the pressure peaks
demonstrate a steep decrease from its maximum (circa 500 kPa) close to minimal
values (< 20 kPa) and the average flow rate is still close to its maximum.

3The flow rate is multiplied by 2 and by width such as if the full channel configuration with
width 0.91 cm (third dimension) would be used.
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Figure 5.7: The dependence of the maximal pressure drop and the inlet flow rate on
the penalization parameter ε is plotted at the top and at the bottom, respectively.

Figure 5.8: Computed isolines of ε for cases, where the inlet velocity is prescribed
by the penalty approach or by the Dirichlet inlet boundary condition (case “vel”) or
where the prescribed pressure drop (case “pres”) is given. The top and the bottom
graph shows the dependence of the maximal pressure drop ∆p and the average flow
rate Qavg on the minimal half-gap g0 of the prescribed VF motion, respectively.
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The flow characteristics are quite sensitive to the prescribed minimal half-gap, as
expected. The sensitivity of the flow field in the channel was tested on series of
simulations with the prescribed motion of the structure given by formula (5.4) with
the values of Cdriven ∈ {6.0, 7.0, 7.2, 7.28}. The top graph in Figure 5.8 shows the
dependence of the maximal pressure drop (compare with Figure 5.5) on the gradually
decreasing minimal value of half-gap up to g0,min = 0.0071 mm corresponding to
Cdriven = 7.28. The bottom graph reports the dependence of the average flow rate
evaluated in the channel inlet on the minimal half-gap. In both graphs, the results
obtained for the same value of the penalization parameter ε are connected with a
line representing actually ε-isocurve. An interesting part is near g0 approaching zero,
where the line of the maximal pressure differences (between the inlet and the outlet)
changes gradually slope, i.e. the pressure drops grow faster (as g0 → 0) for values
of ε < 10−6, imitating the Dirichlet boundary condition, while the average flow rate
does not depend on the minimal half-gap in this range of the parameter ε.

The graphs shown in Figures 5.7 and 5.8 allow to estimate a suitable value of the
penalization parameter according to measured or expected pressure drop and flow
rate values relevant to similar FSI problems. For the simulation of flow-induced
vocal fold vibrations the typical range of transglottal pressures and flow rates are
approximately 0.1− 2.0 kPa and 0.05− 0.5 l/s, resp., see [156]. Then for the current
setting (with the given periodically changing gap and the given inlet velocity) is
reasonable to choose the penalization parameter in range 2 · 10−4 < ε < 5 · 10−3 (i.e.

1
5000

< ε < 1
200

) according to the results summarized in Table 5.1, compare it with
Figures 5.7 and 5.8. The described technique how to choose penalization parameter
ε is applicable also for a more general case not only restricted to the simulation of
vocal folds vibrations.

ε [s/m] max ∆p(t) [Pa] Qavg [l/s]

2 · 10−4 7827.5 0.145
5 · 10−4 3305.1 0.135
1 · 10−3 1670.7 0.124
5 · 10−3 345.16 0.092

Table 5.1: Table summarizing the maximal pressure drops and the average flow rates
in the dependence on the recommended range of penalization parameter 2 · 10−4 <
ε < 5 · 10−3. The listed values are obtained for the reference prescribed VF motion
and given inlet velocity vDir = (1.7, 0) m/s.

5.2.3 Choice of the parameters according to experimental
data

Here we show the dependence of the pressure drop on the gap area4 during one reg-
ular VF oscillation cycle as it was measured in laboratory experiment, see [74]. This

4The dependence of the pressure drop on the gap can be obtained e.g. from the first and the
third graph of Figure 5.5 by elimination of time, see e.g. [74].
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dependence, see Figure 5.9, allows to estimate the (averaged mechanical) transferred
energy from airflow to VF vibration Etransf during one oscillation cycle by means
of the (oriented) area A closed inside the pressure-gap curve as

Etransf ≈ A =

∮
∂∆A

Feq dGOeq =

T0∫
0

Feq(t)
d GOeq(t)

dt
dt = T

T0∫
0

ptrans(t)
d GA(t)

dt
dt,

(5.5)

where Feq(t) = T l ptrans(t) is a roughly estimated force loading the VF surface
approximated by the area T l given by the VFs’ thickness T and length l; fur-
ther GOeq(t) = GA(t)/l is an equivalent glottal width, GA(t) and ptrans(t) are the
measured glottal area and transglottal pressure (in our simulations denoted as the
pressure drop), respectively; finally T0 denotes oscillation period, see [74].

Figure 5.9 shows the accumulated energy Etransf in the case of self-induced vibration
of VFs as measured by [74] on the VF model5, here with included the vocal tract
model of vowel [u:] and driven by constant flow rate Q = 0.2 l/s. The accumulated
energy Etransf in this case is positive due to clockwise orientation of the pressure-gap
area curve what means that the energy is transferred from airflow to the vibration
of VFs.

Figure 5.9: Typical behaviour of the transglottal pressure in the dependence on the
glottal gap area (GA) during one oscillation cycle, see original paper [74].

The pressure-gap dependence is constructed based on the previously presented FSI
simulations with the prescribed vibration given by formula (5.4) with Cdriven = 7.28
and fdriven = 100 Hz and shown in Figure 5.10. As expected, in the case when
the inlet velocity is prescribed by the Dirichlet boundary condition (vDir = (1.7, 0)
m/s) the pressure (drop) maximum is unrealistically big (∼ 1.6 MPa). Similarly if
the same inlet velocity is prescribed by the penalization approach with parameter
ε = 10−6 s/m the behaviour resembles previous one with lower, nevertheless still
unphysical pressure maximum (∼ 0.6 MPa). For the prescribed pressure drop of
value ∆p = 400 Pa the pressure remains almost constant. Finally choice of the
penalization approach with parameter ε = 10−3 s/m demonstrates the qualitative

5The model is 1:1 scaled three-layered VF model partly filled by water with fundamental fre-
quency F0 of approx. 80 Hz. The VF model dimensions were: length 10.3 mm, height 8 mm and
width 20 mm.
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agreement with results published in [74] concerning similar difference between the
maximal and the minimal transglottal pressure. The sum of transferred energy is
negative in all cases due to an anticlockwise curve orientation as explained later.

Figure 5.10: Dependence of the transglottal pressure on the gap for simulation cases
with prescribed Dirichlet boundary condition (vel), pressure drop (pres) and two
penalization boundary conditions (pen 1e-6 and pen 1e-3). The pressure maxima
for cases vel and pen 1e-6 are approximately 1.6 MPa and 0.6 MPa, resp. The
arrows show the (time) direction of curve circulation.

In order to obtain the pressure-gap area dependence as in Figure 5.9 the gap, i.e.
x-axis of graph 5.10, is rescaled. The gap is multiplied by such constant width
(third dimension), that the average of flow rate over one simulation period is equal
Q = 0.2 l/s, see Figure 5.11 for three simulations with different penalization pa-
rameters. This width for case pen 2e-3 is chosen 1.65 cm, for case pen 1e-3 is
1.48 cm and case pen 5e-4 is scaled by the width of 1.37 cm.6. The theoretical glot-
tis reference dimension would be then two-times width times half-gap, which is in
all cases equal g0 = 0.4 mm. The most similar working pressure range as the labora-
tory experiment has the simulation with penalization parameter ε = 10−3 s/m (case
pen 1e-3) although also cases with ε = 5 ·10−4 s/m (pen 5e-4) and ε = 2 ·10−3 s/m
(pen 2e-3) show reasonable behaviour.

Nevertheless we have to note that the curves orientation in Figures 5.10, 5.11 is re-
verse related to the results in [74]. It signalizes that the energy is transferred from VF
vibration to the airflow, what is typical for the prescribed harmonic motion of VF
(numerical simulation) contrary to the natural flow-induced VF vibration (labora-
tory measurement), see e.g. [155] and also paragraph 5.3.3 for further investigation.
The pressure-gap dependence for the full FSI simulations with apriori unknown VF
motion, where the curve is oriented in agreement with results [74], i.e. the energy
transfer to VFs is positive, is shown in Figure C.3 in Appendix C.

6The calculated flow rate is doubled because of the considered hemi-larynx simulation configu-
ration.
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The conclusions of this qualitative comparison have to be done very carefully be-
cause the both graphs (Figs. 5.10 and 5.11) are obtained in highly different configu-
rations. Namely we compare the numerical simulations with the prescribed motion
versus the FSI phenomenon neglecting differences in the VF shapes, materials and
possible nonlinear behaviour of real silicone model and neglecting further physical
phenomena naturally present in measurement like air compressibility and acoustical
couplings. However the numerical simulation with the penalization approach seems
to be able to describe important physical characteristics during the FSI simulation
if the penalization parameter is chosen appropriately.

Figure 5.11: Dependence of the transglottal pressure on the gap area (GA) simulated
for inlet velocity prescribed by three different penalization parameters, particularly
case pen 2e-3 with ε = 2 · 10−3 s/m, case pen 1e-3 (ε = 10−3 s/m) and case
pen 5e-4 (ε = 5 · 10−4 s/m). The cases were rescaled by a the third dimension
(width) to have the average flow rate Q = 0.2 l/s. Arrows show the curve orientation,
the colored lines on the x-axis denotes the maximal GA for each case.
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5.3 Fluid-structure interaction of the hemi-larynx

configuration

This section contains numerical simulations of full FSI problem in the hemi-larynx
configuration with the VF model MALE-SYM, i.e. particularly ΓfSym 6= ∅. The
prephonatory half-gap is chosen 0.4 mm as described in Section 5.1. In the first
paragraph the differences caused by the choice of the inlet boundary conditions are
discussed, the second paragraph concentrates on the determination of the critical
flutter velocity. In this case also the sensitivity of the flutter airflow velocity with
respect to the choice of the penalization parameter ε is investigated, see author’s
publication [7]. The last paragraph of this section describes the energy exchange
between the airflow and the vibrating vocal fold.

The FSI problem is numerically solved with trelease > 0 and the unstable behaviour
of the FSI system can appear. The stability boundary is given by the critical inlet
flow velocity 7 vflutter of the flutter type aeroelastic instability, see e.g. [40]. After
exceeding the critical flow velocity the amplitudes of the structure vibrations start
to exponentially grow. In phonation the maximal amplitude is restricted by contact
of VFs, see e.g. [156]. In dynamics of nonlinear systems is this regime called limit
cycle oscillation. The critical flow velocity depends on an interplay of many factors
– besides physical parameters and the geometric configuration8, in the case of nu-
merical simulation also on the choice of boundary conditions at the glottal channel
inlet and outlet can influence the value of vflutter, see e.g. [148].

5.3.1 Influence of the inlet boundary conditions on the flow-
induced vibrations

Similarly as in the previous section the influence of inlet boundary conditions (3.29)
is here studied on the examples of four numerical simulations. The inlet velocity
vDir,1 = 1.9 m/s is prescribed by condition (3.29 a) (case “Vel”) and by (3.29 c) with
two different choices of penalization parameter ε = 10−5 s/m and ε = 5 · 10−4 s/m.
These two cases are denoted as “Pen-S” (strong) and “Pen-W” (weak) case, respec-
tively. The case of the applied condition (3.29 b) is labeled as “Pres”with chosen
pressure drop ∆p = pin − 0 = 450 Pa, which slightly overestimates the computed
pressure drop in case “Vel”.

The simulation of full interaction starts at time trelease = 0.035 s when the flow field
is already fully developed and the static force qsstat is determined, see Figure 5.12.
Then the VF is released for interaction. The series of illustrative snapshots for case
“Pen-W” are shown in Figure C.1 in Appendix C.

The averaged airflow velocity over inlet boundary ΓfIn for the different boundary con-
ditions is shown in Figure 5.13. Classic Dirichlet boundary condition (3.29 a) keeps

7The occurrence of self-sustained VF oscillations, i.e. appearance of flutter regime, is usually
reported in voice studies instead of the critical velocity in terms of the phonation onset threshold
pressure (PTP) or the phonation onset threshold flow (PTF), see e.g. [73].

8Especially, the value of vflutter grows with increasing initial glottal gap, see e.g. [77], [147].
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Figure 5.12: Left: The detail of static aerodynamic force qsstat determined at trelease =
0.035 s in simulation “Pen-W”. Right: The hypothetic deformation under the load
of static force qsstat.

the inlet velocity constant, while the prescribed pressure drop – condition (3.29c),
leads to oscillating inlet velocity with a fast growing amplitude, i.e. to the flutter in-
stability of the system. The inlet velocity in the both cases of penalization approach
given by (3.29 b) has an oscillating character with a slightly increasing amplitude
around a little lower average value than in the case with the Dirichlet condition.
These oscillations are larger in case “Pen-W” than in case “Pen-S”, fully in agree-
ment with the previous results of paragraph 5.2.2 with prescribed VF vibrations.

Figure 5.13: The inlet airflow velocity for cases “Vel”, “Pen-S”, “Pen-W” and “Pres”,
plotted values are averaged over boundary ΓfIn.

The corresponding results computed for waveform of the pressure drop between the
inlet ΓfIn and the outlet ΓfOut and for the half-gap g0(t) are displayed in Figures
5.14 and 5.15, respectively. The pressure drop in case “Pres” is almost constant.
For the prescribed inlet velocity in cases “Vel”, “Pen-S” and “Pen-W” the pressure
drop shows significant oscillating behaviour connected with the increasing VFs vi-
bration amplitude monitored in Figure 5.15. In the case of penalization approach
the pressure drop oscillation is delayed analogously as the VF vibration is delayed,
see Figure 5.15, case “Pen-W” is delayed more than case “Pen-S”.

Neither boundary condition (3.29 a) nor boundary condition (3.29 c) corresponds to
reality because both the inlet flow velocity and the inlet pressure should fluctuate
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as it was observed e.g. in measurements [73]. This behaviour is recovered using the
penalization approach, see Figures 5.13 and 5.14.

Figure 5.14: Pressure drop between the inlet and the outlet part of boundary in
cases “Vel”, “Pen-S”, “Pen-W” and “Pres”.

Figure 5.15: Time development of the half-gap plotted for cases “Vel”, “Pen-S”,
“Pen-W” and “Pres”.

Figures 5.13 –5.15 document that the penalization approach is a generalization of
the Dirichlet boundary condition and the prescribed pressure drop (directional do-
nothing boundary condition). As penalization parameter ε goes from 0+ to +∞
the characteristic fluid flow behaviour tends to switch between these two types of
boundary conditions.

In all four cases the inlet flow velocity exceeds the stability limit given by the critical
flutter velocity vflutter ≈ 1.86 m/s (or by the phonation onset threshold pressure) as
will be determined in the next paragraph. Consequently, the magnitude of structural
vibration amplitudes is exponentially increasing and the simulations in all four cases
end by the fluid flow solver failure. This is caused by too distorted fluid computa-
tional mesh near the top of the elastic body although the considered half-gap is still
quite large (g0(t) > 0.1 mm). This is partly due to the fact that during the VF oscil-
lations a more general 2D motion in both directions x and y is observed compared
to the prescribed vibrations, see the phase portrait of point S in Figure 5.19.

66



5.3.2 Determining the boundary of the flutter instability

Here, the self-induced vibrations of the vocal folds model MALE-SYM are studied
for the different inlet velocity prescribed by penalization inflow boundary condition
(3.29 c) with the choice of one penalization parameter ε = 5 · 10−4 s/m (compare
it with previous case “Pen-W”). The displacement of point S from the top of the
vocal fold surface (see Figure 5.1) is plotted in Figure 5.16 for three different inlet
flow velocities leading to three different behaviour of the FSI system.

Figure 5.16: The time development of u1 (x-component of displacement) at point S
is shown in the case of three different inlet velocities: A) 1.87 m/s, B) 1.85 m/s, and
C) 1.8 m/s, all prescribed by penalization approach with ε = 5 · 10−4 s/m. Note the
different scaling of axes for the top and the bottom figure.

For inlet velocity vDir,1 = 1.8 m/s (case C) the vibrations are damped and after
a short transition regime the vibration amplitude decreases to a very low level of
stationary vibrations. For the inlet velocity equal vDir,1 = 1.85 m/s (case B) the
displacements of point S remain bounded. For inlet velocity vDir,1 = 1.87 m/s (case
A) the magnitude of the vibrations is exponentially growing. We note that the
vibration amplitudes in y-direction are of about five times smaller than in x-direction
but with the same behaviour in the time domain as in Figure 5.16. Therefore the
critical flutter velocity is determined as vflutter ≈ 1.86 m/s for this model setting.

Remark. The determination of the critical velocity for original VF model of type
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MALE-SYM without top rounded corner (see e.g. [77]) is reported in [147], where
the flutter velocity was determined vflutter ≈ 1.85 m/s by using a simplified 2-DOF
VF model with the Dirichlet inlet boundary condition.

Sensitivity of stability boundary to the penalization parameter

By the procedure described in the previous paragraph the dependence of critical
velocity vflutter on the penalization parameter ε is investigated and summarized in
Figure 5.17. The simulation with the Dirichlet boundary condition is here plotted
as point ε = 10−10 and it gives vflutter ≈ 1.68 m/s, i.e. the lowest value. The influence
of penalization parameter is proven to be negligible for values ε < 10−4, while for
ε > 10−4 the influence is quickly increasing. For values ε > 2 · 10−3 the critical
velocity differs by more than 50%. This can be explained by substantial decreasing
of the average flow rate connected with the increased penalization parameter, what
is in accordance with findings of paragraph 5.2.2 – compare Figures 5.17 and 5.7.
Therefore we recommend to restrict the suitable range of penalization parameter ε
for the simulation of flow-induced VF vibrations to range 2 · 10−4 < ε < 1 · 10−3, i.e.

1
5000

< ε < 1
1000

. For the (similar) flutter dependence on the penalization parameter
for the full channel configuration of VF model MALE see publication [14].

Figure 5.17: Dependence of the critical flutter velocity for the hemi-larynx configu-
ration on the penalization parameter. The inner graph presents the detail of critical
velocity behaviour for lower values of ε.

5.3.3 Energetic considerations related to the VF flutter

Flutter phenomenon of the FSI system can in general emerge and can be maintained
if the total energy gained from airflow by structure exceeds the energy loss caused
by the structure damping and the damping due to the fluid viscosity. A positive flow
of energy from the airstream to the structure tissue occurs if the aerodynamic (VF
driving) force is in phase with the tissue velocity. According to analysis of [155], the
positive flow of energy to VF can be hypothetically achieved by two scenarios – either
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in the case of oppositely phased supraglottal and subglottal acoustic pressures during
one vibration period9 or by varying the glottal geometry during one vibration period
in such a way, that bigger aerodynamic force acts together with in-phase structure
motion and smaller aerodynamic force acts against structure motion. In normal
phonation both mechanisms may occur simultaneously however the experimental
and the numerical results support the second hypothesis to be more prominent, see
e.g. [153], [170]. The well-known changing of VF shape denoted as the switching
between the convergent and divergent shape connected with the VF opening and
closing phase is a typical example of the second described scenario. In this case the
airflow pressure (dominant component of aerodynamic force) is typically in phase
with VF motion during opening phase (convergent shape) and it reaches higher
values than during the VF closing phase (divergent shape), when airflow pressure is
smaller and acts oppositely to the VF motion, see [155], [153], [124].

In this paragraph, first the VF vibration energy is studied and then the energy
exchange between vibrating VF and airflow is quantified based on the previously
presented numerical simulations. These results are extended version of publication
[11].

Vocal folds energy

The total energy Es of the VF represented by domain Ωs at time t can be approxi-
mated as

Es = Es
kin + Es

pot =
1

2

∫
Ωs

ρsu̇2 dx+
1

2

∫
Ωs

(
λs div u δij + 2µsesij(u)

)
esij(u) dx

≈ 1

2
u̇TMu̇ +

1

2
uTKu. (5.6)

For the simulation from the previous paragraph labeled as case A (inlet velocity
vDir,1 = 1.87 m/s > vflutter) VF energy Es rapidly increases in the time domain, see
Figure 5.18. The energy rise has an exponential character, typical for the flutter
phenomena, [40], and vice versa the total energy Es is not increasing in cases B and
C (not plotted).

The flutter vibration has dominant frequency at about 171 Hz as seen from the
Fourier transform of x- and y-displacement of point S, see Figure 5.19. The domi-
nant frequency corresponds to a frequency between the second and the third eigen-
frequency of the elastic body (see Figures 5.2 and 5.3), what is in agreement with
theoretical analysis [170].

Energy transfer from airflow to vocal folds

In general, the rate of energy transfer (power) is the product of force and velocity.
For the case of fluid flow and a moving surface, the rate of energy transfer Ėtransf at
time instant t done by fluid stress on the (structure) surface is given by, see [153],

9Titze deduced that the oppositely phased acoustic pressures are caused by the time delay
needed for acceleration of air column at glottis, see [155].
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Figure 5.18: Time evolution of the total energy of elastic body Ωs for the flutter
instability given by inlet flow velocity 1.87 m/s (case A).

Figure 5.19: Left: Trajectory of point S in the X–Y plane. The black dot represents
the starting point of the trajectory. Right: The (normalized) Fourier transform of
point S displacement in x and y direction shown top and bottom, resp. The all
graphs are related to prescribed inlet flow velocity vDir,1 = 1.87 m/s (case A).

Ėtransf =

∫
ΓWt

vi σ
f
ij (−nfj ) dS =

∫
ΓWt

∂ui
∂t

σfij n
s
j dS, (5.7)

where the equality v = ∂u
∂t

at ΓWt follows from condition (3.28 b) and the sign is
changed due to nf = −ns for points on ΓWt . The dominant component of tensor σf

is the pressure (normal component), i.e. the major of power is done by the pressure.
The total transferred energy (work) during a certain time interval can be calculated
by integrating power Ėtransf over time. The cumulative energy transfer function can
be introduced as, see [153],

Ecumul(t) =

t∫
0

Ėtransf (τ) dτ. (5.8)

The computed energy transfer function Ėtransf and the cumulative energy transfer
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function Ecumul are shown in Figure 5.20 for the previously presented numerical
results of paragraph 5.3.1, namely for the simulation of (full) FSI problem labeled
“Vel”, “Pen-S” and “Pres”. Moreover one simulation with the prescribed harmonic
VF motion labeled as case “pen” in paragraph 5.2.1 and here denoted as “Driven”
is included for an illustration. The dominant frequencies of VF vibrations are listed
in Table 5.2.

In all full FSI cases the energy transfer function oscillates around zero with grow-
ing amplitude, see Figure 5.20. The function Ėtransf develops in time the most
intensively for case “Vel” followed by case “Pen-S”, in case “Pres” the oscillation
magnitude of function Ėtransf grows slowly. The cumulative transfer function prac-
tically copies the behaviour of the energy transfer function with an exponentially
increasing average value, around which it oscillates. It is expected behaviour, be-
cause the prescribed inlet velocity or pressure drop is higher than the critical flutter
velocity or the phonation onset threshold pressure (∆pcrit ≈ 450 Pa was determined
for g0 = 0.4 mm in paper [147]) and the energy growth confirms previously observed
flutter instability.

In case “Driven” the function Ecumul is linearly decreasing, see Figure 5.20, as it
was already noticed in paragraph 5.2.3. More detailed graph of functions Ecumul –
Figure 5.21, shows the total transferred energy to VF per one oscillation period is
negative because external force (given by prescribed VF motion pattern) removes
a fluid flow volume and also the pressure and displacement u2 are in phase. That
the total transferred energy per one vibration period is negative can be noticed also
from behaviour of the function Ėtransf , having more negative peak value during VF
closing (t ≤ 0.097 s) than the positive peak during VF opening phase (t ≥ 0.098 s),
see Figure 5.21. We note that in the prescribed motion of the VF given by formula
(5.7) the VF is not allowed to change the convergent-divergent shape of the glottis
having a consequence of the impossibility to achieve the phase shift between the
airflow pressure and the VF motion. For detail of the aerodynamic forces action
during one oscillation period, see Figure C.2 in Appendix C.

The detailed behaviour of functions Ėtransf and Ecumul for cases “Vel”, “Pen-S”,
“Pres” during one period of VF motion10 is shown in Figure 5.21 together with the
details of the pressure drop and displacement u2 of point S11. The displacement u2 is
slightly phase delayed in relation to the pressure for all FSI cases, see top graphs of
Figure 5.21. Together with the details of VF deformation evolution, see Figure 5.22,
it suggests us to be a manifestation of so called mucosal wave, an inherent property
of healthy VF vibration, see e.g. [156]. The appearance of mucosal wave can be
also viewed as one of characteristics of previously described convergent-divergent
VF changing shape.

In all simulated cases the energy transfer function changes the sign from positive to
negative during transition from the channel opening to the channel closing phase,
compare it with the details of vocal fold deformations in Figure 5.22. In the cases
of the flutter behaviour, i.e. in cases “Vel”, “Pen-S” and “Pres”, the asymmetry

10One period of VF motion is here determined by the crossing of function Ėtransf through zero.
11It is better to plot displacement u2 at point S than the time development of half-gap g0,

because the half-gap is almost perfectly correlated with the pressure (drop).
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Figure 5.20: Energy transfer function (top) and energy cumulative function (bottom)
for cases “Vel”, “Pen-S”, “Pres” and “Driven”. The top graph contains the detail
of cases “Pres” and “Driven” inside. Labels are common for both graphs.

of function Ėtransf appears and the total energy transferred from airflow to vocal
fold during one period is positive, see values of the cumulative function at the end
of period in Figure 5.21. The energy gain differs, it is quite high for cases “Vel”
and “Pen-S” (the next-to-last periods before the fall of simulation were chosen in
Figure 5.21) compared to case “Pres”(the sixth period before the fall of simulation
is plotted), where the asymmetry of Ėtransf is not so obvious. The behaviour of
functions Ėtransf , Ecumul (at least for cases “Vel” and “Pen-S”) is very similar to the
results [153]12 or [124]13, where also the clear asymmetry of Ėtransf and therefore a
noticeable increase of Ecumul per one oscillation period was reported.

Figure 5.22 shows the aerodynamic forces superposed on the deformed vocal fold
during one oscillation period (the same period as in Figure 5.21 is chosen). In case
“Pres” the energy exchange takes dominantly place at the top of leading edge of the
vocal folds (the aerodynamic forces are there the highest), see Figure 5.22, while
for cases “Vel” and “Pen-S” the whole surface of VF leading edge participates in
the energy exchange. The most different behaviour connected with the significantly

12The results of [153] were achieved with the prescribed periodically changing pressure drop.
13The simulations of [124] were performed with a complicated prescribed changes of convergent-

divergent VF position and the given constant pressure drop.
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increased transglottal pressure of cases “Vel” and “Pen-S” contrary to case “Pres”
(see also Figure 5.14) occurs shortly before and during vocal folds opening phase,
i.e. compare graphs a3) and b3) with c3) of Figure 5.22. The increased pressure as
dominant aerodynamic force component results also afterwards in a higher intensity
of VF power loading given by Ėtransf (during VF opening).

Case “Vel” “Pen-S” “Pres” “Driven”
F0 176 Hz 172 Hz 177 Hz 100 Hz
Tend 0.12 s 0.14 s 0.54 s F0 apriori known

Table 5.2: Dominant frequencies of VF vibrations for the presented flutter simula-
tions with the exception of case “Driven”, when the VF motion was prescribed. The
time interval length used for the Fourier transform is denoted by Tend.

a) “Vel” b) “Pen-S”

c) “Pres” d) “Driven”

Figure 5.21: Details of the FSI system behaviour during one oscillation period for
considered cases: a) “Vel”, b) “Pen-S”, c) “Pres” and d) “Driven”. The top graph of
each figure pair shows the y-displacement of point S and the pressure drop (labeled
as pres. diff ) (on the right axis), while all bottom graphs display the detail behaviour
of functions Ėtransf and Ecumul (on the right axis).
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A) “Vel” B) “Pen-S” C) “Pres”

a1) 0.145 s b1) 0.164 s c1) 0.540 s

a2) 0.146 s b2) 0.165 s c2) 0.541 s

a3) 0.147 s b3) 0.166 s c3) 0.542 s

a4) 0.148 s b4) 0.167 s c4) 0.543 s

a5) 0.149 s b5) 0.168 s c5) 0.544 s

a6) 0.150 s b6) 0.169 s c6) 0.545 s

a7) 0.151 s b7) 0.170 s c7) 0.546 s

Figure 5.22: Details of the VF deformation and the acting aerodynamic forces during
one oscillation period for cases: A) “Vel”, B) “Pen-S” and C) “Pres”. Colours and
vectors have a little different scale among cases.
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5.4 Fluid-structure interaction of the full-larynx

configuration

In this section the FSI problem is solved in the full channel with vocal fold model
MALE, i.e. the assumption of the flow symmetry along x-axis is removed and more-
over the computational fluid domain at the outlet is prolonged to L3 = 44.2 mm, see
Figure 5.1. The all material parameters remain the same as described in Section 5.1.
The starting time of the interaction is now set to trelease = 0.03 s, i.e. at the time in-
stant before attachment of the glottal jet to one channel wall, see static aerodynamic
force qsstat in Figure C.4. The computational time (approx. 15 days on notebook with
processor Intel i7-5600U and RAM 8GB) for the non-symmetrical arrangement is
approximately three times longer than for the symmetrical configuration due to a
more complex fluid field and much higher number of DOFs.

First, the illustrative snapshots of simulation conducted with airflow inlet veloc-
ity vdir = (2.1, 0.0) m/s prescribed with the aid of penalization parameter ε =
5 · 10−4 s/m are depicted in Figures 5.23 and 5.24. This simulation is further re-
ferred as the case PEN-W. The more complicated flow pattern during a typical
vibration cycle occurred when compared to the case with the prescribed symmetry
of airflow, compare Figures 5.23 and C.1, respectively. In Figure 5.23 the change of
VFs position between convergent to divergent and back can be seen. Further, the
intensity of glottal jet during opening phase is increasing up to the maximum, then it
starts to fade for fully open glottis and it reaches minimum at the time instant prior
to maximally closed VFs. The large vortices formed downstream from the glottis
(visible only first one in the snapshots) are slowly decaying into smaller ones. The
very similar character of the flow field was obtained e.g. in [93] and [29].

Comparison of numerical simulations for different inlet boundary condi-
tions

Similarly as in Section 5.3 and for numerical settings as described above the simula-
tions of flow-induced vibrations of VFs with four different inlet boundary conditions
are compared, for more details see publication [6]. Namely, the cases labeled as VEL
(Dirichlet BC (3.29 a) with vdir), PEN-S (velocity vdir prescribed with the aid of
penalization parameter ε = 10−5 s/m, see condition (3.29 b) ), PEN-W and PRES
(prescribed pressure ∆pnonsym = 400 Pa by condition (3.29 c) ) were studied. The
inlet flow velocity, the pressure drop and the (whole) gap width are displayed in
time domain in Figures 5.25 – 5.27.

The numerical results are similar as for the symmetrical configuration (see Figures
5.13 – 5.15). All cases terminated by a solver failure due too large structure vibration
amplitudes. The case PRES needed more time to reach this limit of the gap width.
The explanation can be found in smaller prescribed pressure drop ∆pnonsym = 400 Pa
laying obviously very close to the stability boundary contrary to previously pre-
scribed ∆p = 450 Pa (in symmetric case “Pres”), which evidently exceeded the sta-
bility boundary. Additionally, the phase portraits of point S for all four considered
simulations are shown in Figure C.5 in Appendix C.
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Figure 5.23: Airflow pattern showing the velocity magnitude in case PEN-W for
seven time instants during one vibration cycle of VFs with duration of approx. 7 ms.
The domain Ωf

t is in figures truncated.
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Figure 5.24: Airflow pressure and magnitude of the VF displacement in mm shown
for seven time instants during one vibration cycle of VFs with duration of approx.
7 ms. Simulation of case PEN-W. Only the selection of the CFD domain is plotted.
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Figure 5.25: The numerically simulated inlet airflow velocity plotted for cases VEL,
PEN-S, PEN-W and PRES, the values are averaged over boundary ΓfIn.

Figure 5.26: The numerically simulated pressure difference between the inlet and
the outlet of the channel for cases VEL, PEN-S, PEN-W and PRES.

Figure 5.27: Time development of the (whole) gap numerically simulated for cases
VEL, PEN-S, PEN-W and PRES. (The graph envelope of case PRES is undulated
due to too low sampling rate of the data saving for drawings.)
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Chapter 6

Mathematical models of acoustic
and aeroacoustic problems

This chapter is devoted to the mathematical modelling of acoustic problems with
focus on aeroacoustics. The first section introduces the aeroacoustics and the hybrid
approach established by acoustic analogies or perturbation equations. In the second
section the coupling of acoustics with structural or flow problems are given. We start
now with the description of computational domain Ωa for solution of the acoustic
problem in a vocal tract model.

Acoustic domain

Let us consider simplified 2D acoustical domain Ωa composed of two subdomains
Ωa

prop,Ω
a
pml, i.e. Ωa = Ωa

prop∪Ωa
pml. The domain of acoustic propagation Ωa

prop consists

of three parts Ωa
src,Ω

a
tract and Ωa

free, i.e. Ωa
prop = Ωa

src ∪ Ωa
tract ∪ Ωa

free, see Figure 6.1.
Here, Ωa

src is the domain, where the acoustic sources are evaluated from the simu-
lated flow field. The deformation of acoustic domain Ωa

src is neglected and it equals
to the reference fluid domain, i.e. Ωa

src = Ωf
ref . Domain Ωa

tract represents the vocal
tract geometry and domain Ωa

free models outer space, i.e. a free field region (of acous-
tic propagation). Finally, the perfectly matched layer (PML) domain Ωa

pml encloses
domain Ωa

free in order to absorb the outgoing sound waves at the free boundaries of
the acoustic domain, i.e. at boundaries of the free field region. The acoustic problem
is described in the Lagrangian coordinates although coordinates notation x instead
of previously introduced X is used.

The problem of sound propagation is solved in the whole domain Ωa with boundary
∂Ωa, which is assumed to be Lipschitz continuous. Boundary ∂Ωa is divided in two
parts ∂Ωa = Γahard ∪ Γasoft, where sound hard and sound soft boundary conditions
are considered (in what follows Γasoft = ∅). Further, the sound propagation is always
solved without the previously used symmetry assumption, thus the boundary part
ΓfSym ⊂ Γahard is considered to be empty.
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Figure 6.1: Scheme of acoustic domain. The propagation domain consists of the
sound source region, the vocal tract and the free field. The propagation region is
enclosed by the PML region. By LFSI is denoted the length of fluid part of the FSI
domain.

6.1 Aeroacoustics

Acoustics studies mechanical (acoustic) waves in various media (liquids, gases, solids
or structures) while aeroacoustics is interested in aerodynamically produced sound
in air. Typical situation is the sound generated by flow around obstacles, turbulent
flows or mixing shear layers, see e.g. [90], [78].

The flow-induced sound propagation can be described by the compressible Navier–Stokes
equations (NSE) which in general describes all aspects of fluid flow including acous-
tics. However the acoustic part is only a very tiny component of the overall NSE
solution, see e.g. [79], and thus it is very difficult to approximate it numerically.
The solution of compressible NSE, where the acoustic and the flow fields are solved
together, restricts usually the simulations only to simple scenarios, see e.g. [65].
Consequently in the technical applications hybrid methodologies have been estab-
lished as the most practical methods for aeroacoustic computations, see [90]. They
separate the description of the fluid flow and the acoustic problem. This allows to
use different numerical schemes for the flow and for the acoustic computations with
benefits. Nevertheless by utilizing the hybrid approach the influence of the acoustic
field on the flow field is neglected.

There are two families of hybrid methods based on either acoustic analogies or
perturbation equations, [128]. The difference between the acoustic analogies and the
perturbation equations is such that in the case of acoustic analogies the NSE are
first reformulated to wave equation shifting the nonlinear parts to the right hand
side and then these parts are linearized. For the perturbation equations approach
the NSE are first decomposed in acoustic and hydrodynamic1 components and then
linearized into an equation similar to the wave equation. The linearization in both

1By the hydrodynamic components we mean generally the (flow) components, which perturba-
tions are not connected with the change of density as a primary physical quantity describing the
propagation of acoustic waves, see e.g. [70]. An example of the hydrodynamic quantity could be a
change of the pressure caused by creation of a vortex in the incompressible fluid flow regime.

80



cases has to be performed carefully in order to identify main sound mechanisms, see
[78].

Even though the hybrid approaches simplify the solution of the acoustic problems,
still there are a lot of difficulties connected with any numerical realization of aeroa-
coustic problem, which has to be overcome in order to get an effective and accurate
computation of the radiated sound, see [90, 41, 69]:

• Energy disparity and acoustic inefficiency. Only a very small part of the
overall energy of the fluid flow transforms into the radiated acoustic energy. As
formulated by Crighton: “ The total energy radiated as sound during take-off
roll of the ”terrifyingly loud”Boeing 707 is only about enough to cook one egg!”,
see [41]. For free turbulence (described by the quadrupole sound source) the
total radiated acoustic power scales with O(v

8

c5
) for c being the speed of sound

and v magnitude of the characteristic flow velocity, see [96]. The presence
of a reflecting boundary in the acoustic domain can significantly change the
amount of radiated sound, e.g. typical case of flow impinging on the solid
wall (described by dipole source structure) produces sound with the radiated
acoustic power scaling O(v

6

c3
), see [79].

• Length scale disparity: Large disparity also occurs between the size of an
eddy in turbulent flow and the wavelength of the generated acoustic noise, see
[41]. Let a turbulent eddy have a characteristic length scale l and a frequency f
in a flow with low Mach number defined as Ma = v

c
. This eddy radiates acoustic

waves of the same characteristic frequency, but with much larger wavelength
λ given as

λ =
c

f
≈ l

v

f l

c

v
=

l

Ma St
. (6.1)

where St = f l
v

is the Strouhal number with f denoting characteristic frequency
of flow disturbances, i.e. flow-induced sound, [90]. Estimation (6.1) underlines
the fact that a turbulent eddy can radiate sound of one or more magnitude
larger wavelength than its length scale l, see [53]. For example a turbulent
eddy with l = 1 mm in the larynx with the flow characteristics Ma = 0.05
and St = 0.2 produces approximately sound waves of hundred times larger
wavelength λ = 10 cm.

• Preservation of multipole character: The numerical computation must
preserve the multipole structure of acoustic sources (see definition in Section
2.4) in order to correctly simulate acoustic radiation characteristics, see [41].
The acoustic power radiated by each multipole component scales differently,
see e.g. the first point of this list.

• Dispersion and dissipation: The discrete form of the wave equation intro-
duces the dispersion of acoustic waves while the original continuous solution
of the wave equation is non-dispersive. The numerical approximation of the
wave equation must minimize the (numerical) dissipative errors, as the wave
equation itself has a non-dissipative behaviour and both the amplitude as well
as the phase of acoustic wave are of crucial importance, see [69].
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• Simulation in unbounded domains: Since numerical methods are usually
based on domain discretization, the simulations in unbounded domains must
rely on truncating of the computational domain by an artificial boundary.
The application of boundary conditions at the artificial boundary avoiding a
reflection of outgoing waves remains an open problem, see [103].

• Other issues: Problems like numerical simulation of high Reynolds number
flows, influence of acoustic nonlinearity, etc. needs to be adressed, see [90, 69].

The recent aeroacoustic methods can overcome only some of these numerical and
physical issues, see [90]. Nevertheless the hybrid methods has a great advantage of
possible application of solver tailored for acoustic problems. Thus the energy and
the length scale disparities (and other points of the list) do not pose so difficult
problem as in the case of full NSE solution.

In next paragraph the Lighthill acoustic analogy, as a representant of acoustic analo-
gies class, is described. Further, two approaches based on the perturbations equations
are presented, see [91]. In the end the acoustic boundary conditions are discussed
and the PML approach is described.

6.1.1 Lighthill analogy

The Lighthill analogy was introduced by sir Lighthill in [96]. In this section the
Lighthill analogy is presented as described in [79].

The sound propagation, i.e. density fluctuations, in uniform medium is governed
by the classical wave equation, see [103]. Similarly the acoustic propagation in the
fluid flow domain should be described by the same equation while keeping valid the
description by the compressible NSE. How are these two descriptions compatible and
how is the (aero)acoustics driven? According to sir Lighthill, [96]: “The difference
between the two sets of equations will be considered as if it were the effect of a
fluctuating external force field, known if the flow is known, acting on the said uniform
acoustic medium at rest, and hence radiating sound in it according to the ordinary
laws of acoustics.” In what follows it is described how to determine this hypothetical
external force field.

Let us assume a small domain Ωf
t with flow described by velocity v and fluctuating

pressure p′ = p− p0 and fluctuating density ρ′ = ρ− ρ0 inside a large fluid volume
Ωa

prop at rest with the mean density ρ0, the mean pressure p0 and the speed of sound
c0, see Figure 6.2.

We start with equation of momentum conservation (3.19) written as

∂ρvi
∂t

+
∂πij
∂xj

= 0, (6.2)

where π = (πij) denotes the tensor of momentum flux given by

πij = ρvivj + (p− p0)δij − τ fij, (6.3)
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Figure 6.2: Scheme of a large acoustic domain Ωa
prop with small region Ωf

t inside it,
where a fluid flow appears and generates sound waves.

and tensor τ f = τ fij denotes components of the viscous fluid stress tensor, see its
definition (3.22).

First, we derive the equations describing the fluid motion (waves) outside the fluid
flow domain. For the fluid in rest the momentum flux (πij) simplifies to (π0

ij) as

π0
ij = (p− p0)δij

.
= c2

0(ρ− ρ0)δij, (6.4)

where relation (p−p0)
.
= c2

0(ρ−ρ0) valid for isentropic flow was used, see [79]. Using
equation (6.4) in (6.2) we get the conservation of momentum written as

∂(ρvi)

∂t
+

∂

∂xi

(
c2

0(ρ− ρ0)
)

= 0, (6.5)

and similarly we write the mass conservation law (3.18) in the form

∂

∂t
(ρ− ρ0) +

∂ρvi
∂xi

= 0. (6.6)

By differentiating equation (6.5) with respect to xi, equation (6.6) with respect to t
and by subtracting of the differentiated equations we get(

1

c2
0

∂2

∂t2
−∆

)
(p− p0) = 0, (6.7)

where the replacement of c2
0(ρ− ρ0) by p− p0 was used again. Equation (6.7) is the

wave equation for the unknown pressure fluctuation p′ = p − p0 describing sound
propagation in the domain Ωa

prop \ Ωf
t .

Let us consider now the sound propagation inside Ωf
t , where the fluid flow needs

to be taken into an account. Particularly we shall consider the full version of the

momentum flux tensor π. Consider again π0
ij = (ρ− ρ0)δij and add the term

∂π0
ij

∂xj
to

both sides of equation (6.2), which yields

∂ρvi
∂t

+
∂π0

ij

∂xj
= −

∂(πij − π0
ij)

∂xj
, (6.8)

83



where on the right hand side the so-called Lighthill tensor T = (Tij) arises2 given
by

Tij = πij − π0
ij = ρvivj +

(
(p− p0)− c2

0(ρ− ρ0)
)
δij − τ fij. (6.9)

Using the same trick as above with the mass conservation equation yields the inho-
mogeneous wave equation for the unknown pressure fluctuation p′ = p− p0(

1

c2
0

∂2

∂t2
−∆

)
(p− p0) =

∂2Tij
∂xi∂xj

, (6.10)

where on the right hand side the sound sources are given by the divergence of the
divergence of the Lighthill tensor. Let us emphasize that equation (6.10) is nonlinear
equation as its right hand also depends on the pressure fluctuation p′, see equation
(6.9). As solution of the Lighthill analogy in formulation (6.10) is difficult, the sound
sources on the right hand side are in practice simplified.

Sound source structure

In order to approximate the Lighthill tensor we start with a description of the sound
sources structure. The full Lighthill tensor can be written as sum of three terms

Tij = ρvivj︸ ︷︷ ︸
I

+
(
(p− p0)− c2

0(ρ− ρ0)
)
δij︸ ︷︷ ︸

II

− τ fij︸︷︷︸
III

, (6.11)

where the term denoted by I corresponds to the fluid motion, the second term II is
generally associated with non-isentropic processes and the third term III is linked
with the viscous stresses, see e.g. [96], [91]. For low Mach number flows usually the
approximation

Tij ≈ ρ0vivj (6.12)

is used, which was already suggested in the original paper [96]. Then the formulation
of Lighthill analogy (6.10) with (6.12) already presents linear problem:(

1

c2
0

∂2

∂t2
−∆

)
p′ = ρ0

∂2vivj
∂xi∂xj

. (6.13)

An alternative way how to approximate Lighthill tensor (6.9) in the case of the
incompressible flow is to rewrite momentum conservation (3.20) and neglect the
viscous terms (assuming zero volume forces) what yields

ρ0∇ ·
(
vic ⊗ vic

) .
= −ρ0

∂vic

∂t
−∇pic, (6.14)

2The divergence of the Lighthill tensor – see the right hand side of equation (6.8), is actually
the sought hypothetical external force field, see [96].
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where by the top index ic are denoted the quantities obtained from the incompress-
ible flow simulation, where the (fluid) density ρ is assumed to be constant ρ = ρ0.
Then applying the divergence operator on equation (6.14) gives the sound sources
of the form

div div T
.
= ρ0∇ ·

(
∇ ·
(
vic ⊗ vic

))
= −∆pic, (6.15)

because for the incompressible case is ∇·vic = 0 as well as ∇·
(
∂vic

∂t

)
= 0. Expression

(6.15) presents another possibility how to express sound sources, here purely from
the pressure field, see [117], [90].

Properties of Lighthill analogy

The advantage of the Lighthill analogy given by (6.10) is that it was derived without
any additional assumptions or approximations. Thus it is also called exact equa-
tion (in physical sense), because its (possible) exact solution would contain acoustic
nonlinear effects as the convection of sound waves by the mean flow velocity, the
refraction or the sound attenuation, see [78]. In order to model the concrete sound
generation mechanism the general formulation can be further adapted by the choice
of proper approximation of Lighthill tensor (6.11).

The drawback of the Lighthill analogy is, that the pressure fluctuation p′ is in general
not equal to the acoustic pressure pa and they coincide only outside the flow domain.
It is because the pressure fluctuation p′ must be regarded as a superposition of the
acoustic and the hydrodynamic pressure inside the source region, see e.g. [79]. In this
context by the hydrodynamic pressure is meant the pressure of the incompressible
flow solution, i.e. one fluctuating component of the overall pressure solution of the
compressible fluid flow problem, see [90]. The demonstrative examples of difference
between p′ and pa can be found in [90].

6.1.2 Hybrid methods based on perturbation equations

Here, the perturbed convective wave equation (PCWE) and the aeroacoustic wave
equation (AWE) approaches are presented, which are based on the acoustic/hydrody-
namic splitting of the flow variables as introduced in works of [82] and [172]. The
splitting according to these works is motivated by three properties of the acoustic
field: a) it is fluctuating, b) it is irrotational3 and c) the acoustic pressure pa does
not coincide in general with pressure fluctuations p′, see [82], [91].
The proposed splitting decomposes physical quantities into time mean v, p, ρ and
fluctuating parts v′, p′, ρ′. The fluctuating parts v′, p′, ρ′ are further split into vor-
tical (non-acoustic) components vv, pv and compressible (acoustic) parts va, pa, ρa.

3More precisely the (linear) acoustic field in an uniform acoustic medium is irrotational, see
[119].
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This splitting reads

v = v + v′(t) = v + vv(t) + va(t), (6.16)

p = p+ p′(t) = p+ pv(t) + pa(t),

ρ = ρ+ ρ′(t) = ρ+ ρ1(t) + ρa(t),

where ρ1 represents the density change due to the hydrodynamic pressure pertur-

bation estimated as ρ1 ≈ pic−pic

c20
= pv

c20
, see page 82 in [82]. The splitting of velocities

is based on the Helmholtz decomposition of velocity field, see e.g. [106], (or more
generally the Helmholtz-Hodge decomposition, see [129, 92, 128]), i.e. the velocity
field can be expressed as the sum of an irrotational, a solenoidal and a harmonic
field. The solenoidal field vv is divergence-free (∇ · vv = 0), the irrotational field va

is curl-free (∇× va = 0) and the harmonic field being divergence-free and curl-free.
The splitting approach is problematic in regard of the interpretation of the pressure
and the density components because it is unclear how to separate (explicitly) the
hydrodynamic pressure fluctuations from the acoustic ones, see [82] and [127].

Derivation of perturbation equations

First, we start with the momentum conservation equation. Subtracting incompress-
ible momentum equation (3.25) from equation (3.20), where the incompressible
quantities are taken as vic = v + vv, pic = p + pv, using splitting (6.16) in mo-
mentum conservation (3.20), and neglecting the nonlinear term (va · ∇)va and the
(first) volume viscosity λf term in the fluid stress tensor σf results in

∂va

∂t
+ (va · ∇)(v + vv) + ((v + vv) · ∇)va +

∇p
ρ
− 1

ρ
∇pic = 0. (6.17)

In equation (6.17) we use the approximation

∇p
ρ
− ∇p

ic

ρ
≈ ∇p

a

ρ
(6.18)

valid for adiabatic processes, see e.g. [53]. We neglect the coupling of vortical and
acoustic quantities, see analysis [135]4, and we apply the approximation

(v · ∇)va + (va · ∇)v = ∇(v · va) +∇× v × va +∇× va × v︸ ︷︷ ︸
=0

≈ ∇(v · va),

(6.19)

where the last term is zero due to the assumption of irrotational acoustic field and the
second term is neglected as the unwanted coupling between the mean flow vorticity
and the acoustic velocity. This finally leads to the first perturbation equation for
the acoustic velocity and the acoustic pressure

∂va

∂t
+∇(v · va) +

1

ρ
∇pa = 0. (6.20)

4For low Mach number flows the coupling of the vortical and other quantities does not contribute
to acoustics and it presents only a possible source of simulation instability.
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The second perturbation equation is based on mass conservation equation (3.18).
First, using decomposition (6.16) in mass conservation (3.18) provides us

∂ρa

∂t
+∇ ·

(
ρva + ρav + ρava

)
= (6.21)

= −∂ρ
1

∂t
−∇ ·

(
ρ1v
)
− vv · ∇ (ρ+ ρ′)−∇ ·

(
ρ1va

)
−∇ · (ρv) .

Further, the time average of equation (3.18) yields

0 =
∂ρ

∂t
+∇ · (ρv) = vv · ∇ρ′ +∇ · (ρ1va) +∇ · (v ρ), (6.22)

see also [82], page 84. Suming up equations (6.21) and (6.22) together leads to

∂ρa

∂t
+∇ · (ρva) +∇ · (ρav) = −∂ρ

1

∂t
−∇ ·

(
ρ1v
)
− (vv · ∇ρ′)′−∇ ·

(
ρ1va

)′− vv · ∇ρ,
(6.23)

where the nonlinear term ∇· (ρava) was neglected and by (·)′ the fluctuating part of
the term in bracket is denoted. In this work we are mostly interested in the sound
generated for low Mach number regime, where the fluid flow can be considered
incompressible. Thus the mean density is constant ρ = ρ0 = const, further ∇·v = 0
holds and equation (6.23) turns into

∂ρa

∂t
+ ρ0∇ · va + v · ∇ρa = −∂ρ

1

∂t
− v · ∇ρ1, (6.24)

where the terms ∇·(ρ1va)
′
and (vv · ∇ρ′)′ were neglected as insignificant, for details

see [82] page 92.

Equation (6.24) can be rewritten for the unknown acoustic pressure instead of the
acoustic density by assuming isentropic process p′−c2

0ρ
′ = const and by introducing

the notation for incompressible quantities as earlier vic = v + vv, pic = p+ pv to the
final form

∂pa

∂t
+ c2

0ρ0(∇ · va) + v · ∇pa = −∂p
ic

∂t
− v · ∇pic. (6.25)

The perturbation equations (6.20) and (6.25) represents system of one scalar and
one vector PDE for unknown pa and va.

Perturbed convective wave equation

The formulation given by equations (6.20) and (6.25) can be rewritten in one scalar
equation with the help of the substantial derivative D

Dt
= ∂

∂t
+v ·∇ and the introduc-

tion of acoustic potential5 ψa related to acoustic velocity va by relation va = −∇ψa.
Then replacing va by acoustic potential in equation (6.20) leads to the expression

5The possibility to introduce the acoustic potential is based on initial assumption of the irro-
tational acoustic velocity. Then there exists a scalar potential associated to it.
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for pa = ρ0
∂ψa

∂t
+ ρ0v · ∇ψa = ρ0

Dψa

Dt
. Equation (6.25) after the substitution for pa

can be transformed to

1

c2
0

D2ψa

Dt2
−∆ψa = − 1

ρ0c2
0

Dpic

Dt
. (6.26)

This equation is according to [91] called perturbed convective wave equation (PCWE).

Remark. In numerical simulations we further simplify PCWE equation by disre-
garding the convection effects on the left-hand side of equation (6.26). On the other
hand in order to incorporate sound sources arising in the glottis connected with
steady pressure gradient the full version of the right hand side is used, see [2]6.
Therefore the sound sources given by right hand side of (6.26) will be referred as
PCWE sources but the acoustic pressure obtained as the solution of (6.26) will be
referred as the simplified PCWE (sPCWE ).

Aeroacoustic wave equation

Aeroacoustic wave equation (AWE) is further simplification of the PCWE formula-
tion given by equations (6.20) and (6.25). In this simplification the influence of the
mean flow velocity is completely omitted, i.e. small Mach number flows are supposed
and the supposedly small convection effects are completely disregarded v = 0. By
differentiation (6.20) with respect to xi and by differentiation (6.25) with respect
to t and subtracting both the modified equations we obtain the final formulation of
AWE

1

c2
0

∂2pa

∂t2
−∆pa = − 1

c2
0

∂2pic

∂t2
, (6.27)

where pa is the acoustic pressure and pic is the pressure obtained by incompressible
simulation, see [91] or [117].

Remark. Equation (6.27) can be also obtained from Lighthill analogy (6.10) by
substituting the second spatial derivative of the Lighthill tensor by the Laplacian
of the flow pressure – see equation (6.15) (assuming incompressible fluid flow sim-
ulation). Using the decomposition of the fluctuating pressure p′ = pv + pa in (6.10)
then yields (6.27), see [91]. It shows the connection of both theories under additional
assumptions, see e.g. [128].

Properties of perturbation equations

The advantage of the PCWE and the AWE approach is that these are direct for-
mulations for the acoustic pressure (or the acoustic potential) what allows to obtain
also the acoustic field inside sound source domain Ωa

src, see examples in [90]. However
both PCWE and AWE are designed to model only sound production for low Mach

6In the published version of [2] is unfortunately a mistake in the wrong replacement of D2

Dt2 by
∂2

∂t2 in the full version of PCWE equation, see equation (16) in [2].
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number flows. In other cases the so called Acoustic Perturbation Equations (APEs)
needs to be used, see [53], [128].

Another advantage of PCWE approach is its stability contrary to linearized Eu-
ler equations (LEE), see e.g. [28]. The LEE approach, where the decomposition
only into the mean and the fluctuating components is used, has no guaranty that
the perturbation quantities are purely acoustic quantities, e.g. ∇ × v′ 6= 0. There-
fore LEE approach describes also the transport of vortical components, which can
cause numerical instability, see [135]. The stability of PCWE follows from proposed
splitting (6.16) and the derivation procedure, where the convection of the vorticity
perturbations is prevented, see [53]7.

6.1.3 Initial and boundary conditions of acoustics

The acoustic problem needs to be equipped by the initial and the boundary condi-
tions. For simplicity zero initial conditions are used.

At boundary of the acoustic domain Γahard the sound hard boundary condition is
applied

∂ψ

∂na
(x, t) = 0 for x ∈ Γahard, t ∈ (0,T), (6.28)

where na denotes the outward unit normal and by ψ(x, t) the relevant acoustic
quantity is understood, i.e. either ψ = p′ in the case of Eq. (6.10) or ψ = ψa in
the case of Eq. (6.26) or ψ = pa in the case of Eq. (6.27) or ψ = pva in the case of
vibroacoustic problem described later. The sound hard BC means that the sound
waves are fully reflected at Γahard back to acoustic domain Ωa. A real-life example of
boundary with such ideal behaviour is a smooth concrete wall, while other materials
evince much complex behaviour, usually with nonperfect reflection and frequency
dependent characteristics. In order to treat such phenomena see dissertations [23,
144] or book [90].

Another frequently used BC is the sound soft boundary condition which reads

ψ(x, t) = 0, for x ∈ Γasoft, t ∈ (0,T). (6.29)

This BC prescribes zero value of the incident acoustic wave at boundary Γasoft, which
is fully reflected back to the acoustic domain with the opposite phase, see e.g. [33].
However this BC is sometimes used to model open boundary, typically in the case
of open end of a resonator, see e.g. [115], where it can be understood as a rough, low
frequency approximation, see [33]. In this thesis the boundaries of acoustic domain
Ωa are chosen as Γasoft = ∅,Γahard = ∂Ωa 8.

7The PCWE formulation is numerically equivalent to APEs, for which the stability is proven.
8A part of boundary ∂Ωa is the boundary of the PML layer, where the choice of the boundary

condition does not play any role, see e.g. [90]
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6.1.4 Perfectly matched layer

Let us mention that the simulation of acoustic problems in unbounded domains,
practically realized by truncating of the computational domain with an artificial
boundary (see example in Figure 6.3 left) is still an open question. For the overview
of various techniques dealing with these problems see e.g. book [103], and approaches
like infinite elements, characteristics-based techniques, absorbing boundary condi-
tions (ABC), exact non-local ABC, ETA method ([50]), etc. Here, the technique
called perfectly matched layer is chosen, see [87].

Figure 6.3: Left: Example of artificial domain truncation, where no unwanted reflec-
tions of acoustic waves occur at artificial boundaries. The picture is overtaken from
[134] and it depicts the non-dimensionalized pressure fluctuations. Right:
Schematic figure of acoustic domain enclosed by PML domain (gray area). As an
incident wave pi impinges on the PML interface, it is (fully) absorbed (pa) inside
the PML and no reflected wave pr occurs, [23].

The perfectly matched layer (PML) is a technique for simulation of open-boundary
problems introduced by Berenger in 1994, see [32]. PML consists of a few additional
layers of elements with artificial damping of the sound waves. The most important
property is that there is no reflection at the interface between the propagation
domain and the PML domain as sketched in Figure 6.3 right.

The modified wave equation for unknown (acoustic) pressure p inside PML domain
Ωa

pml according to [90] reads

1

c2

∂2p

∂t2
−∆p−∇ · u + α

∂p

∂t
+ βp+ γv = 0,

∂u

∂t
+ Au− B∇p− C∇v = 0, (6.30)

∂v

∂t
= p,
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where α, β, γ are positive coefficients, A,B,C are diagonal matrices depending on the
chosen damping profiles σx, σy, σz (see details e.g. in [23], [66]) acting in coordinate
directions x, y, z – see Figure 6.4, resp., and the vector u and the scalar v are new
auxiliary variables (needed for 3D PML formulation9). A more elegant formulation of
PML given by the modified wave equation can be obtained in the frequency domain,
see [90]. The time domain formulation10 of PML given by (6.30), which requires in
general four auxiliary scalar variables inside PML and no high order derivatives,
is easy and efficient to implement in comparison with other possible formulations,
see [66]. The proper choice of the damping profiles σx, σy, σz is of great importance,
especially in order to obtain a stable and efficient PML method, see analysis in
paper [87]. In this thesis the inverse damping profile was chosen, see [90]. The PML
implementation is a part of the CFS++ solver.

Remark. The direct derivation of PML formulation in the time domain, i.e. without
transformation from the frequency domain, can be found e.g. in [32] or [94].

Figure 6.4: Sketch showing choice of 2D damping profiles, overtaken from [90]. The
acoustic propagation domain is denoted by white and the PML layers representing
enviroment behind open boundaries are depicted in gray. The setting e.g. σx = 0
means that the x-component of acoustic wave is not damped at given box. The
damping profiles are not typically constants but coordinates dependent functions,
see [90].

6.2 Coupled FSAI problems

In the FSAI problem the acoustic field is coupled with the FSI problem by the
structure-acoustic and by the flow-acoustic couplings. For the sake of clarity these
two subproblems are further considered as two different acoustic problems.

9In the 2D case of PML only the additional vector variable u with two components is needed.
10The transformation from the frequency domain to the time domain is performed by inverse

Fourier transform. This is the reason why is the time domain PML formulation so demanding, [66].
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6.2.1 Structure-acoustic coupling

The problem of the coupled elastic deformation and the sound propagation sub-
problems is also called vibroacoustics, see e.g. [68]. The vibroacoustic quantities are
denoted by the upper index va. In the considered settings the vibroacoustic problem
is given by elasticity equations (3.10) and by homogenous wave equation (2.13). The
coupling has the form of boundary conditions on the common interface ΓWref

, where
from a nature of the problem the continuity of velocities and stresses in the normal
direction is preserved.

From condition
(
∂u

∂t
− vva) · na = 0 (6.31)

together with linearized momentum conservation of acoustics in the form ∂vva

∂t
=

− 1
ρf
∇pva (see [90]) follows the boundary condition prescribed to the acoustic sub-

problem, see e.g. [90],

∂pva

∂na
(x, t) = −ρf ∂

2u

∂t2
· na, x ∈ ΓWref

, t ∈ (0,T). (6.32)

This boundary condition expresses the acoustic emission from a vibrating surface
represented by interface ΓWref

in the form of normal wall acceleration, see e.g. [90].

For the elastic problem the coupling is given by

τ sij n
s
j = pvansi =: qva

i (X, t), (6.33)

because there are no shear forces in the acoustic medium. Since the acoustic pressure
is usually of a very tiny magnitude (high sound intensity of 100 dB corresponds to
value of pa = 2 Pa), the acting acoustic forces on the body surface are very small.
Under additional assumption of different eigenfrequencies of the acoustic resonator
(vocal tract) and the structure (VFs) this coupling can be omitted, see [90].

Remark. The time evolution of the VF interface represents another, geometric
coupling which is usually disregarded due to negligible impact on the acoustic results,
see e.g. [23]. An open and still unanswered questions remain how to approximate
the dynamic process of glottis complete closure, how much does this process change
resonant acoustic frequencies of vocal tract and how much it can potentially influence
resulting acoustic spectra.

6.2.2 Flow-acoustic coupling

The acoustic waves are a part of the solution of the compressible NSE. However if
the aeroacoustic problem is modelled by hybrid methods, acoustics and the fluid flow
problem are solved separately, the sound sources from the fluid flow are used in the
acoustics whereas the influence of acoustics onto the fluid flow is usually omitted.

Remark. There are special cases, when the hybrid approach is not suitable. This
is for instance the case of the acoustically induced instability of the boundary layer
known as Rossita modes, see e.g. [120]. Another example is the rare and atypical case
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of self-sustained VF vibrations with the dominant frequency of VF oscillation close
to the acoustic resonant frequency of the vocal tract, see [157]. Then the phenomena
like various chaotic VF vibrations or abrupt frequency jumps of VF vibration were
observed, see [157], [154], [167]. Further especially in the case of phonation into tubes
the phonation onset threshold pressure can be significantly reduced due to complex
flow-structure-acoustic coupling, see [74], [104].

6.2.3 FSAI formulations

Since for the aeroacoustic problem the hybrid approach is utilized here, the FSI
problem can be solved first and the aeroacoustic simulation gets the form of post-
processing of the FSI results. The sound sources are computed either according to
the chosen acoustic analogy or based on the interface acceleration in the case of
vibroacoustic problem. Further we assume uniform acoustic medium, i.e. c0, ρ0 are
constants. The PML layer is applied in all considered cases inside the domain Ωa

pml.

As solution of Lighthill analogy it is considered a such function p′ ∈ C2(Ωa
prop ×

[0,T]), that satisfies equation (6.13), i.e.(
1

c2
0

∂2

∂t2
−∆

)
p′ = ρ0

∂2vivj
∂xi∂xj

, in Ωa
prop × (0,T),

together with zero initial conditions and boundary condition (6.28).

The formulation of simplified PCWE approach is very similar: Find a such func-
tion ψa ∈ C2(Ωa

prop× [0,T]) satisfying zero initial conditions and boundary condition
(6.28) together with equation (6.26)

1

c2
0

∂2ψa

∂t2
−∆ψa = − 1

ρ0c2
0

Dpic

Dt
, in Ωa

prop × (0,T), (6.34)

where the substantial derivative is D
Dt

= ∂
∂t

+ v · ∇ and v(x) means time averaged
velocity.

Further, the formulation of AWE approach is following: Find such a function
pa ∈ C2(Ωa

prop × [0,T]) satisfying zero initial conditions and boundary condition
(6.28) together with equation (6.27)

1

c2
0

∂2pa

∂t2
−∆pa = − 1

c2
0

∂2pic

∂t2
in Ωa

prop × (0,T).

In the case of purely vibroacoustic problem we seek such a function pva ∈
C2(Ωa

prop × [0,T]), that equation (2.13)(
1

c2
0

∂2

∂t2
−∆

)
pva = 0, in Ωa

prop × (0,T),

is fulfilled together with zero initial conditions and boundary condition (6.28) on
∂Ωa with exception of boundary ΓWref

, where condition (6.32) is prescribed, i.e.

∂pva

∂na
(x, t) = −ρf ∂

2u

∂t2
· na, x ∈ ΓWref

, t ∈ (0,T).
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Chapter 7

Numerical approximations of
acoustic problems

•This chapter describes the numerical realization of aeroacoustic and vibroacoustic
problems introduced in the previous chapter. Further, the individual steps of the
FSAI approximation algorithm are presented.
As already mentioned the full larynx configuration is used for the aeroacoustic as
well as for the vibroacoustic simulation.

7.1 Aeroacoustic problems

The aeroacoustic problem is given either by Lighthill analogy (6.10) or by (simplified)
PCWE equation (6.34) or by AWE equation (6.27). In all cases the problem is
described by the wave equation with the same boundary conditions, where only the
sound source terms on the right hand side differ according to the chosen formulation.
Therefore the numerical scheme is in detail derived only for the case of the Lighthill
analogy whereas for the other approaches only the differences are accentuated.

Sound hard boundary condition (6.28) is prescribed at the whole boundary ∂Ωa and
the PML technique is used at the boundary with outer space (see Figure 6.1). The
finite element method is utilized for numerical solution of the presented aeroacoustic
problems. For the sake of clarity the FE discretization is described only in the domain
Ωa

prop and the discretization of the governing equations for the PML layer is omitted,
see [82], [87].

Lighthill analogy

In order to approximate the solution of problem (6.10) by the FEM, we start with
its weak reformulation. Equation (6.10) is multiplied by a test function η ∈ Y =
H1(Ωa

prop) and integrated over the propagation part of the acoustic domain Ωa
prop,
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which leads to(
1

c2
0

∂2p′

∂t2
, η

)
Ωaprop

− (∆p′, η)Ωaprop
= (∇ · (∇ ·T), η)Ωaprop

. (7.1)

The application of the Green’s theorem and sound hard BC (6.28) gives(
1

c2
0

∂2p′

∂t2
, η

)
Ωaprop

+ (∇p′,∇η)Ωaprop
= − ((∇ ·T),∇η)Ωasrc

+ ((∇ ·T), η na)∂Ωaprop
, (7.2)

where for the first integral on the right hand side only the integration domain
Ωa

src = Ωf
ref is used as the Lighthill tensor T is calculated from the fluid flow quanti-

ties (and T := 0 elsewhere). The boundary integral containing the Lighthill tensor
T can be in general nonzero, see e.g. [98].

In what follows let us discuss only the case when the Lighthill tensor is approximated
by Tij ≈ ρ0vivj, see Eq. (6.12), i.e. only the less general formulation of the Lighthill
analogy for low Mach number flow given by (6.13) is considered here. In that case
the boundary integral in Eq. (7.2) is set equal to zero, i.e.(

ρ0
∂(vivj)

∂xj
, η naj

)
∂Ωaprop

= 0, (7.3)

because on the boundary ∂Ωf
ref ∩ ∂Ωa

prop = ΓfDir ∪ ΓfW ∪ ΓfIn (compare with Figure
6.1) it holds:

• on boundary ΓfDir is v = 0 and then the term ρ0
∂(vivj)

∂xj
equals zero,

• for the purpose of aeroacoustic simulation the motion of ΓfW is neglected,
ΓfW := ΓfWref

, and it holds there v = 0.

On the remaining part of the boundary ΓfIn the velocity v is nonzero v 6= 0, regardless

which boundary condition (3.29 a,b,c) is used and therefore term ρ0
∂(vivj)

∂xj
could be

nonzero. Nevertheless it is physically obvious that this artificial boundary ΓfIn does

not emit any sound and therefore the contribution of term ρ0
∂(vivj)

∂xj
at this boundary

is neglected1.

Additionally, in order to eliminate potential jumps of ρ0vivj between the domains
Ωa

src and Ωa
air caused by the numerical approximation, the sound sources are smoothed

near boundary ΓfOut = ∂Ωa
src ∩ ∂Ωa

air.

1For the simulation settings considered in this thesis it is valid: v1 6= 0, v2 = 0 and ∂v1
∂x1
≈ 0

(for steady fluid flow holds ∂v1

∂x1
= 0) at boundary Γf

In, which has unit outward normal equal

na = nf = (−1, 0), i.e. the fluid flow is oriented there purely along axis x1 and its variation along

this axis is negligible, see e.g. Figure 8.10. Therefore also term ρ0
∂(vivj)
∂xj

≈ 0 at this boundary.
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The weak formulation for fixed time instant t ∈ (0,T) reads: Find a function p′ :
(0,T) 7→ Y such, that(

1

c2
0

∂2p′

∂t2
, η

)
Ωaprop

+ (∇p′,∇η)Ωaprop
= − (∇ · (ρ0v ⊗ v),∇η)Ωasrc

(7.4)

is satisfied for any test function η ∈ Y . It is moreover assumed that ∂2p′

∂t2
∈ L2(Ωa).

The solution p′ ∈ Y at time t is then approximated by p′h using the finite element
subspace Yh of Y with the dimension Na

h . The solution p′ ∈ Y is approximated by
p′h ∈ Yh written as a time dependent linear combination of coefficients γaj (t) and
basis functions ηj(x) ∈ Yh, i.e.

p′h(t, x) =

Na
h∑

j=1

γaj (t)ηj(x). (7.5)

Using (7.5) in (7.4) with η = ηi for i = 1, .., Na
h leads to the second order system of

ODEs for unknown vector γa(t) = (γaj ) in the form

1

c2
0

Maγ̈a + Kaγa = ba(t), (7.6)

where the mass and the stiffness matrices Ma = (ma
ij) and Ka = (kaij) are given as

ma
ij = (ηi, ηj)Ωaprop

, kaij =

(
∂ηi
∂xl

,
∂ηj
∂xl

)
Ωaprop

, (7.7)

respectively. The vector ba(t) is for the Lighthill analogy taken as ba = bLH = (bLHi ),
where

bLHi (t) = −
(
ρ0
∂(vjvl)

∂xl
,
∂ηi
∂xj

)
Ωasrc

(7.8)

and the Einstein summing convection is applied, here specially for indices j and l.

For practical computation the quadratic Lagrange finite elements are chosen. It
provides formally third order accuracy of spatial approximation in L2 norm. The
system of ODEs (7.6) is numerically discretized in time by the Hilber-Hughes-Taylor-
α (HHT-α) method, which is an interesting generalization of the classical Newmark
method, see [31]. This method addresses the question of algorithmic damping of the
(unresolved) high-frequency modes, [80]. The HHT-α scheme is controlled by the
choice of three parameters – α, β, γ. For the recommended choice 0 ≤ α ≤ 1/3,
β = 2(1 + α)/4, γ = 1/2 + α the scheme is unconditionally stable and second-order
accurate, see [80]. This method is implemented in the program CFS++ .

In order to compute sound sources in the Lighthill analogy given by (7.8) or (7.1) the
spatial differentiation has to be performed numerically once or twice, respectively.
The (spatial) numerical differentiation of flow results has a predisposition to large
numerical error. This can be understood as a disadvantage of the Lighthill analogy.
Nevertheless in Section 7.2 several methods are proposed to decrease this numerical
error of the aeroacoustic source calculation.

96



PCWE approach

Let us consider now numerical discretization of the PCWE approach. The discretiza-
tion of the right hand side is only described since this is the sole difference against
the previous approach. The simplified version of the PCWE approach given by (6.34)
reads

1

c2
0

∂2ψa

∂t2
−∆ψa = − 1

ρ0c2
0

(
∂pic

∂t
+ v · pic

)
, (7.9)

where pic means the pressure obtained by the solution of the incompressible fluid
flow model.

Using the same FE discretization procedure as for (7.4) we arrive to the system of
ODEs (7.6), where the right hand side vector ba(t) is now equal to bPCWE(t) with
components bPCWE

i computed according to

bPCWE
i = −

(
1

ρ0c2
0

(
∂pic

∂t
+ v · ∇pic

)
, ηi

)
Ωasrc

. (7.10)

In practical computation the time derivation in formula (7.10) is realized by the
BDF2 approach, while the pressure gradient is computed with the aid of the local
reconstruction technique as described in paragraph 4.3.2.

The numerical solution provides in this case the acoustic potential ψah. The approx-
imate acoustic pressure pah can be obtained from equation

pah = ρ0

(
∂ψah
∂t

+ v · ∇ψah
)

(7.11)

using the numerical differentiation (e.g. BDF2 formula) and applying gradient op-
erator on the FE approximation ψah.

AWE approach

The numerical discretization of the AWE approach is now being discussed. The
discretization is performed as described in the previous paragraph with the only
exception of the right hand side vector, described here in detail. The AWE approach
given by (6.27) reads

1

c2
0

∂2pa

∂t2
−∆pa = − 1

c2
0

∂2pic

∂t2
. (7.12)

Similarly as before, the FE discretization procedure for (7.4) results into system
(7.6), where the right hand side vector ba(t) is now replaced by bAWE(t) with
components bAWE

i given as

bAWE
i = − 1

c2
0

(
∂2pic

∂t2
, ηi

)
Ωasrc

. (7.13)

The second order time derivative is approximated by the central difference formula.
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7.2 Aeroacoustic source evaluation

In next paragraphs the realized procedures of the sound sources computation and
the interpolation between the acoustic and the fluid flow mesh are described.

First we start with modification of the sound sources formulation in the case of the
Lighthill analogy. With the assumption of the incompressible flow the Lighthill
tensor approximation given by relation (6.12), i.e. div (div T) ≈ div (div (ρ0v ⊗ v))
can be rewritten to

∂2(vici v
ic
j )

∂xi∂xj
=

∂

∂xj

(
vicj

∂vici
∂xi︸︷︷︸
=0

+vici
∂vicj
∂xi

)
=

(
vici

∂

∂xi

∂vicj
∂xj︸︷︷︸
=0

+
∂vici
∂xj

∂vicj
∂xi

)
=
∂vici
∂xj

∂vicj
∂xi

,

(7.14)

where continuity equation (3.23) was used twice, see also [151]. Using (7.14) in
equation (7.1) or more precisely in (7.8) yields the following formula for the sound
sources evaluation

bLHi =

(
ρ0
∂vicl
∂xj

∂vicj
∂xl

, ηi

)
Ωasrc

. (7.15)

Gradient reconstruction techniques

In equation (7.15) the local reconstruction of velocity gradients is used based on
the ideas described in paragraph 4.3.2. This reconstructed gradient at (fluid) mesh
vertices can be understand as piecewise linear function. The local patch for a chosen
vertex xi is selected as described in paragraph 4.3.2, i.e. the local patch consists
of all such triangles K ∈ T fh having the point xi as their vertex, see Figure 7.1.
Formula (7.15) together with the local recontruction technique is the default option
of the sound source calculation for the Lighthill analogy in the program FSIFEM .

Figure 7.1: Example of two local patches. The patch of point A consists of eight
triangles, while the patch of point B is constituted by five triangles.
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Weak formulation of acoustic forces

An alternative approach is based on the weak formulation of (6.13). Let us denote
the sound sources given by the substitution of (6.12) into (7.1) as

S = ρ0
∂2

∂xi∂xj
(vivj) . (7.16)

These sources can be approximated by a FE function Sh ≈ S as

Sh =

Nsrc
h∑
k=1

skηk(x), (7.17)

where ηk are basis functions of FE space Y src
h = {f ∈ C(Ωa

src)|f |K∈ P1(K) ∀K∈ T srch }
with triangulation of acoustic domain Ωa

src denoted by T srch , and s = (sk) is the
unknown vector of linear combination coefficients.

Using equation (7.17), multiplying (7.16) by a basis function ηl and using the Green’s
theorem leads to

(Sh, ηl)Ωasrc
=

(
ρ0
∂ (vivj)

∂xj
,
∂ηl
∂xi

)
Ωasrc

, (7.18)

where the boundary term vanishes or is neglected on ΓfIn as discussed in previous
Section 7.1. In the case of incompressible fluid flow the right hand side can be
equivalently rewritten leading to

(Sh, ηl)Ωasrc
=

(
ρ0
∂vici
∂xj

vicj ,
∂ηl
∂xi

)
Ωasrc

. (7.19)

Equation (7.19) leads to the system of linear equations

Msrc s = bsrc, (7.20)

where Msrc is the mass matrix and the l-th component of vector bsrc is given by the
right hand side of equation (7.19).

Remark. Another alternative of the Lighthill sound source computation would be
to use formula (6.15), i.e. the sound sources given by the Laplacian of pressure.
Both aforementioned techniques can be used also in this case, namely the removing
one spatial derivative from the pressure field with the help of the Green’s theorem
or the local reconstruction of the pressure gradient.

Interpolation of sound sources

In practical computations different computational meshes are used for the fluid flow
approximation (CFD) and for the acoustic problem solution. This is due to the fact
that the fluid mesh has to primarily resolve thin boundary layers around walls, while
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the acoustic mesh from a nature of the problem is ideally approximately everywhere
uniform. Therefore the interpolation of evaluated sound sources from the CFD to
the acoustic mesh is performed in order to reduce computation cost. We use the
interpolation procedure implemented in the program CFS++ and designed such,
that it preserves the overall acoustic energy between meshes, see [88].

This interpolation is performed from elements Kf of fluid mesh T fh onto elements
Ka of acoustic mesh T ah with Na vertices2. For simplicity let us suppose both meshes
to be composed of triangles. We further assume that acoustic sources Sh are known
at any vertex of the triangulation T fh (as these sources are piecewise linear functions,

they are uniquely determined by the values at vertices of T fh ).

In the begging we set vector of acoustic sources Fa ∈ RNa
to zero, i.e. Fa = 0. Then

for every triangle Kf ∈ T fh we perform the following steps, see [131]:

1. Find the intersection of triangle Kf with triangles Ka ∈ T ah from the acoustic
mesh. Denote these intersections by PKa = Kf ∩Ka, see Figure 7.2.

2. For each non-empty intersection PKa compute the area |PKa |. Find the center
of mass XKa of the polygon PKa . Denote the vertices of the element Ka by
j1, j2 and j3.

3. Compute contributions fCFDl to the global vector Fa = (F a) given by

fCFDl = |PKa| η jl(XKa) Sh(XKa), l = 1, 2, 3, (7.21)

where η jl is the linear FE basis function associated with the vertex jl of the
acoustic mesh. By Sh(XKa) the aeroacoustic source computed on the CFD
mesh and evaluated at point XKa is denoted, see Figure 7.2 right.

4. Add these contributions to the global vector

F a
jl

:= F a
jl

+ fCFDl , (7.22)

where jl here denotes the index of the vertex jl in the acoustic mesh.

7.3 Vibroacoustics

Let us consider the vibroacoustic problem now. Since the influence of the acoustic
field on the structure deformation is for simplicity disregarded, the coupled vibroa-
coustic problem simplifies to the acoustic problem with a given sound source at
boundary. This problem is described by homogeneous wave equation (2.13) (the un-
known denoted by pva) with sound hard boundary condition (6.28) prescribed at
boundary ∂Ωa \ ΓWref

and with prescribed boundary condition (6.32) on boundary
ΓWref

, representing the sound source.

2More precisely the interpolation procedure maps the sound sources from CFD mesh T f
h onto

a part of the whole acoustic domain – onto the sound source domain Ωa
src, since Ωa

src = Ωf
ref .
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Figure 7.2: Left: Polygon PKa (highlighted by red colour) denoting the intersection
of an element Kf of the CFD mesh (blue) with an element of the acoustic mesh
(green). Point XKa represents the center of mass of polygon PKa . Right: Illustration
of the assembly of the interpolated vector Fa. The value of sound sources at point
Xj is distributed to the positions of the vector Fa corresponding to the vertices
A,B,C of the acoustic mesh triangle (green) according to formula (7.22).

For the purpose of the FEM the problem is now weakly reformulated. Equation (2.13)
is multiplied by test function η ∈ Y va = Y and integrated over the whole domain
Ωa

prop. The application of the Green’s theorem together with boundary conditions
(6.32) and (6.28) yields the final weak formulation seeking a such function pva ∈ Y va,
that (

1

c2
0

∂2pva

∂t2
, η

)
Ωaprop

+ (∇pva,∇η)Ωaprop
=

(
ρf0
∂2(u · ns)

∂t2
, η

)
ΓWref

, (7.23)

is satisfied for any η ∈ Y va.

Similarly as before, the space Y = Y va is approximated by a finite element subspace
Yh and the approximate solution pva

h is sought in the form given by (7.5). This leads
to the system of ODEs, see e.g. [90],

Maγ̈va + Kaγva = bva(t), (7.24)

where elements of matrices Ma = (ma
ij),Ka = (kaij) are given by formula (7.7) and

the components of right hand side vector bva(t) = (bva
i ) are given by

bva
i =

(
ρf0
∂2(u · ns)

∂t2
, ηi

)
ΓWref

. (7.25)

The second time derivative of structure displacement u is approximated as ∂2u
∂t2

(tn)
.
=

un+1−2un+un−1

∆t2
. For practical computation the quadratic Lagrange finite elements are

used and system (7.24) is numerically discretized in time by the HHT-α method.

7.4 Solution of FSAI coupled problem

In order to couple FSI to acoustics one needs to carefully choose not only the spa-
tial resolution but also the time resolution of both FSI and acoustic problems. The
time resolution of the fluid flow results, i.e. v, p in Ωf

t , is recommended to be ap-
proximately ∆t = 1

20fmax
, where fmax is the highest relevant frequency of simulated

phenomena. In our case with considered fmax ≈ 3000 Hz it means ∆t ≈ 2 · 10−5 s.
The acoustic steps of the FSAI algorithm are following, see also Figure 7.3:
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• Compute the sound sources based on the chosen aeroacoustic approach on the
CFD mesh according to formula (7.15) for Lighthill analogy or according to
formula (7.10) for PCWE approach or according to formula (7.13) for AWE
approach.

• Interpolate the sound sources from the CFD mesh on the acoustic computa-
tional mesh as described in Section 7.2.

• Solve the sound propagation problem given by system (7.6) with the interpo-
lated sound sources on the whole acoustic domain Ωa, i.e. including the vocal
tract model, the free field region and the PML layer, whereas the sound sources
are located purely in the sound source region Ωa

src.

In order to obtain the overall sound produced by the vocal folds vibration the sound
sources of vibroacoustic origin has to be added to the aeroacoustic sound sources.
Then the presented FSAI algorithm would differ only in the first step, where the
additional vibroacoustic sound sources would be computed and would be added to
the aeroacoustic sound sources.

Nevertheless the vibroacoustic problem is in the FSAI problem by default omitted
due to assumed negligible contribution to the total sound pressure level of the sound
with aeroacoustic origin. This assumption was verified by a separate analysis – see
Section 8.3, which is composed of these steps:

• Calculate the vibroacoustic sound sources having the form of interface normal
acceleration given by (7.25) according to the description in Section 7.3.

• No sound sources interpolation is needed due to the mesh conformity of the
boundary ΓWref

between the CFD and the (vibro-)acoustic mesh.

• Solve the sound propagation problem described by equation (7.24) on the
whole acoustic domain Ωa, i.e. with the included vocal tract model, the free
field region and the PML layer and the sound source region Ωa

src , where the
sound sources are located purely at boundary ΓWref

.

Figure 7.3: Scheme of FSAI workflow. Here the aeroacoustic and the vibroacoustic
problem is considered as two separate independent problems.
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Chapter 8

Numerical results of FSAI
problem

This chapter presents the numerical results of acoustic problems. First the results
of the FSI simulation are presented. Based on these results the acoustic sources
are evaluated and used for acoustic computations. The acoustic computations start
with the determination of the resonant frequencies of the vocal tract models (i.e.
the acoustic domain). These resonancies, called formants, have a crucial influence
on the produced sound. Further, the results of the vibroacoustic problem are shown.
Finally the sources of aerodynamically produced sound are analyzed and the results
of the sound propagation problem simulating human phonation are presented.

If not mentioned otherwise all acoustic simulations were performed with the solver
CFS++ .

8.1 FSI numerical results

Here the geometry of the considered vocal fold model is described (including the
structural parameters) and the results of modal analysis is presented. Further, the
FSI simulations of VFs vibration in the pre-phonatory regime obtained by the
FSIFEM solver are shown.

Vocal fold model

The used vocal fold model is based on the VF shape published in article [174] , see
also publication [2]. The VF model (denoted as ZORNER in what follows) is divided
into four parts with different material parameters, see Figure 8.1 and corresponding
Table 8.1. The geometric details of the model is given in Appendix B. The model
with the initial (full) glottal gap equal to 2.0 mm is placed in the fluid flow domain
Ωf

0 , dimensions of which are displayed in Figure 8.1 right. Point A at the top of the
bottom VF with coordinates [11.57,−1.50] mm is used for analysis of numerically
simulated VF vibrations. The first four eigenmodes of VF model ZORNER obtained
by modal analysis (as explained in Appendix A) are shown in Figures 8.2 and 8.3.
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Figure 8.1: Left: Computational mesh for the (bottom half) structure domain with
marked different layers of materials and with dimensions shown in mm. Point A
used for analysis of VF vibration is located on the top of the (bottom) VF. Right:
Computational fluid domain with dimensions in mm is marked by blue colour.

Layer Elastic modulus [kPa] Poisson ratio

Epithelium 50 0.45
Lamina propria 20 0.45
Ligament 25 0.45
Muscle 30 0.45

Table 8.1: The elastic modulus and the Poisson ratio of four layers of VF model
ZORNER.

Figure 8.2: Modal analysis of VF model ZORNER. The first and the second eigen-
mode with the corresponding eigenfrequencies 121.2 Hz and 216.7 Hz are shown,
respectively.

8.1.1 Analysis of FSI results with vocal fold model ZORNER
The numerical results of FSI achieved with VF model ZORNER are here presented
with very similar numerical settings as described in Chapter 5. The constant time
step ∆t is chosen as 2.5 · 10−5 s. The structure density ρs is set to ρs = 1000 kg/m3,
the fluid density ρf0 = 1.185 kg/m3 and the kinematic fluid viscosity νf = 1.545 ·
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Figure 8.3: Modal analysis of VF model ZORNER. The third and the fourth eigen-
mode with the corresponding eigenfrequencies 275.3 Hz and 388.1 Hz are shown,
respectively.

10−5 m2/s. The damping parameters for vocal folds are given as εs1 = 5 s−1, εs2 =
2.0 · 10−5 s. The static force described in paragraph 5.1.1 is omitted, i.e. qsstat = 0.

The FSI problem is solved with prescribed pressure drop ∆p between the inlet and
the outlet ∆p = pin − 0 = 1500 Pa. Vocal folds are released for the interaction after
0.01 s of the computation. Figure 8.4 illustrates a typical behaviour of flow-induced
vibration at selected point A (see its location in Figure 8.1). After a short time
VF oscillations with bounded amplitude appear. The spectrum of VF displacement
computed by the Fourier transform shows two dominant frequencies f1 = 121 and
f2 = 211 Hz. The frequencies f1 and f2 agree relatively well with the first two VF
eigenfrequencies what is in a good correspondence with the results of [174].

The trajectories of point A as well as of the VF center of mass in the X–Y plane
are depicted in Figure 8.5, compare with previous results in Figure C.5. Further the
pressure difference between the inlet and the outlet and the flow rate are presented
in Figure 8.6. The oscillations of pressure difference can be explained by its weak
prescription. The flow rate is quite high compared to results of previous Chapter 5
and literature, see [156], however the initial gap is substantially larger (2.0 vs. 0.8
mm) and therefore the critical flutter velocity and the phonation onset threshold
pressure are higher. The pressure difference and the gap have similar oscillating
character as the VF displacement, cf. Figure 8.4, and they do not rise (exponentially)
as seen earlier in Chapter 5, where the simulations captured the phonation onset.
The gap time variation is plotted in Figure 8.7 and the time averaged airflow velocity
field is depicted in Figure 8.8. Figure 8.9 shows the typical distribution of the airflow
vorticity.

Finally, Figure 8.10 shows the airflow velocity and the pressure field during one
VF oscillation cycle. Large and intensive vortices created at the boundaries of the
glottal jet are convected downstream, where they interacts with flow structures in the
supraglottal region, cf. with previous results shown in Figure 5.23. Similar character
of the complex flow field was reported in [89].
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Figure 8.4: Left: Time evolution of the displacement of chosen point A in x- and
y-directions (top and bottom, respectively). Right: Normalized Fourier transform
of the time signal of the displacements u1 (top) and u2 (bottom) at point A.

Figure 8.5: Left: Trajectory of point A in the X–Y plane. Right: Trajectory of the
center of mass computed for the both parts of VFs as one elastic body in the X–Y
plane. The center of mass in the reference configuration is located at [7.35, 0.0] mm.
Several last periods are displayed.

Figure 8.6: Left: The pressure difference between the inlet and the outlet. Right:
The computed inlet flow rate using the channel depth of 1 cm (third dimension).
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Figure 8.7: Time variation of the channel gap between VFs.

Figure 8.8: Time average of the computed airflow velocity field v obtained by the
FSI simulation.

Figure 8.9: Snapshot of the flow field vorticity at time instant 0.6 s computed with
the aid of the visualization program Paraview.
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Figure 8.10: Magnitude of the airflow velocity (left) and the pressure and the vocal
fold displacement in mm (right) shown for seven time instants during (almost) one
vibration cycle of VFs with duration of approx. 6 ms.
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8.2 Vocal tract resonances

The sound created by the flow-induced vibration of VFs at the larynx propagates
by the vocal tract (VT) to the mouth and further exterior. The VT geometry co-
determines the characteristics of propagated sound, where the VT resonances have
one of the most important influences. That is why the several VT models are ana-
lyzed in order to find their acoustic resonant frequencies, in the human phonation
context usually called formants1. According to the source-filter theory (see e.g. [156])
the function of the vocal tract (in a rough approximation) is to filter acoustic pres-
sure waves generated in the larynx without considering their possible feedback onto
the source mechanism (oscillating VFs modulating the airflow jet through glottis).
The source-filter theory is valid for a wide range of physiological settings, except the
cases when the VF vibration frequency is very close to the VT formant, for details
see [157].

With this simplified approach each vowel corresponds to a characteristic shape of
the vocal tract (and consequently to characteristic formants). The first two formants
(denoted F1, F2, etc.) are usually decisive for a recognition of different vowels, see
[156]. The averaged F1-F2 map of statistically representative samples for English
and Czech vowels can be found e.g. in [142] and [161], respectively. Nevertheless,
each speaker has the vowels formants located individually within the concrete F1-
F2 map for a given language and the typical sound of his voice is formed also by a
combination of higher frequencies above simulation limit of 3 kHz considered here.

The goal of this section is to determine the formants of the considered VT model
variants with the numerical settings used further in Sections 8.3 and 8.4. The results
are based on the publication [10].

8.2.1 Vocal tract models

The part of acoustic domain Ωa
tract representing a VT model for the vowel [u:] is

shown in Figure 8.11. It is based on the data of Story’s study [143], where the vocal
tract cross-section areas were carefully segmented and computed from MRI measure-
ments. Here due to 2D computations the diameters ri of cross-sections perpendicular
to x-axis of the domain Ωa

tract (i.e. the cross-section ri represents the y-dimension)
are determined from the cross-section area Ai of [143] in chosen equidistant cut
positions xi as

ri =

√
Ai
π
, (8.1)

see Table D.1 in Appendix D. The distance between two cross-section measurements
is equal to d = 3.96825 mm. Thus the total length of the VT model of the vowel [u:],
which is described by 46 cross-section areas, is L = 45× d .

= 17.86 cm.

Further, four variants of acoustic domain Ωa are analyzed. In all cases the same
shape of domains Ωa

free and Ωa
pml are considered and only the shapes of domains

Ωa
src and Ωa

tract differ, see Figure 6.1. The first variant labeled as M1 (model 1) is

1Formants are usually characterized not only by the resonant frequency peak but also by the
formants bandwidth, see [156], [23].
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Figure 8.11: Geometry of the vocal tract model (for the vowel [u:]) used as the part
Ωa

tract (shown here) of the acoustic domain Ωa.

shown in Figure 8.12 together with its dimensions. It consists of the domains: sound
source domain Ωa

src, vocal tract model Ωa
tract, the free field region Ωa

free and PML
domain Ωa

pml. Domain Ωa
src (with x coordinates in the range x ∈ [−4.0, 42.2] mm) is

the domain, where the fluid flow of FSI problem was solved, see Figure 8.1 (right).
Domain Ωa

tract (x ∈ [42.2, 232.7] mm) is constituted by VT model (x ∈ [54.2, 232.7]
mm), which is preceded by (an artificial) prolongation region (x ∈ [42.2, 54.2] mm)
realizing a smooth connection of domains Ωa

src and Ωa
tract.

The modifications of the VT model are performed with the goal to quantify an influ-
ence of additional acoustic volume represented by domain Ωa

src and the prolongation
region, which are (artificially) included for the reason of inclusion the CFD domain
with the sound sources. The following four variants of acoustic domain geometry
Ωa are considered representing the subglottal and the supraglottal airways spaces
together with the vocal tract model, see Figure 8.13:

M1: Model M1 consists of all parts (Ωa
src,Ω

a
tract,Ω

a
free,Ω

a
pml) as described above, see

Figure 8.12.

M2: Model M2 is equal to model M1 with the exception of the subglottal and
the glottal regions, i.e. x-coordinates of model M2 are in the range x ∈
[10.9, 277]mm, see Figure 8.13 b).

M3: Model M3 is the same as model M1 with no artificial prolongation region
and no subglottal region, i.e. parts of model M1 with x ∈ [−4.0, 10.9] and
x ∈ [42.2, 54.2]mm are omitted, and the narrower sound source domain Ωa

src is
used (y ∈ [−8, 8]mm instead of y ∈ [−13, 13]mm). The total x-dimension of
model M3 is x ∈ [10.9, 265]mm, see Figure 8.13 c).

M4: Model M4 is based on model M3 with no sound source domain Ωa
src (part of

base model M1 with x ∈ [−4.0, 42.2]mm is omitted), see Figure 8.13 d). This
2D model resembles best the original shape of 3D propagation domain as it
was measured by MRI in [143] for vowel [u:].

8.2.2 Analysis of vocal tract resonances

There are well-established methods of VT formant determination like e.g. the method
of 1D transfer matrices, see e.g. [115], or the modal analysis, see e.g. [85] or Appendix
A. The transfer matrices method (TMM) models the VT as a sequence of cylinders
and calculates the propagation of planar waves through them. However this method
is not suitable to be used together with PML approach and it prevents its appli-
cation here. The modal analysis is a natural choice in the FEM framework. It is
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Figure 8.12: Computational acoustic domain Ωa of model M1 with shown triangu-
lation and described dimensions. Microphone is placed in the mouth opening.

based on the solution of a generalized eigenvalue problem and provides more details
about VT eigenmodes and eigenfrequencies than TMM, see e.g. [162]. Nevertheless
the linear original generalized eigenvalue problem would turn to a nonlinear problem
with the employed PML approach, therefore a different method based on a transfer
function approach is adopted here.

Transfer function approach

The (inhomogeneous) wave equation (6.10) transformed into frequency domain is
called the Helmholtz equation, see e.g. [78], and it reads

−
(
ω2

c2
0

+ ∆

)
p̂ = F̂ , (8.2)

where ω denotes the angular frequency and the variables with caret denote the
Fourier transforms of variables without caret, i.e. p̂ = p̂(x, ω) : Ωa → C is the
Fourier transform of p = p(x, t) : Ωa → R. Assuming a unit harmonic excitation
given by right hand sources F̂ (ω) at a given frequency ω let us seek for the system
answer at the same frequency.

Problem (8.2) is equipped with the boundary conditions used for the simulation
of sound propagation in Sections 8.3 and 8.4, i.e. sound hard boundary condition
(6.28) is considered on ∂Ωa (especially the inlet boundary of the subglottal channel
is treated as sound hard, which means it is acoustically closed) and the PML layer is
applied on the boundary of the free field region in order to model the open boundary.

Transfer functions are usually functions providing the ratio of the output to the
input signal, see e.g. [85]. Similarly to this approach here the transfer function H(ω)
denotes the ratio of the amplitude of the (complex) acoustic pressure p̂ monitored at
a microphone position xM to the harmonic acoustic forcing F̂ at a chosen excitation
location (point or boundary) Γexc, i.e.

H(ω) =
|p̂(xM , ω)|
|F̂ (Γexc, ω)|

. (8.3)
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The evaluation of the transfer function H(ω) over a frequency interval can be used
to detect the resonant frequencies as the absolute value of the transfer function at
the corresponding value of ω should go to infinity if no damping of acoustic waves
is included in the model.

Transfer function results for different vocal tract models

Problem (8.2) is numerically solved in the frequency range 50 − 3000 Hz. The log-
arithmic sampling fi+1 = q · fi with q equal 1.008 is applied in the academic solver
CFS++ resulting in 460 separate solutions of system (8.2). Location Γexc of the unit
harmonic acoustic excitation F̂ is chosen as a point on the symmetry axis in the nar-
rowest part of the glottis and the microphone position xM is at the mouth opening,
see Figure 8.12. The speed of sound is chosen as 343.2 m/s.

The transfer functions computed for vocal tract models M1-M4 are shown in Figure
8.13 (right column). The found formants, see Table 8.2, are compared with the first
three formants of vowel [u:] from paper [143]. The behaviour of transfer functions
for both models M1 and M2 is very similar, both show four formants in the range
50 − 2500 Hz, M1 having an additional formant F5 at 2638 Hz (i.e. under 3 kHz).
This resonance belongs to the subglottal part of the VT model, see Figure D.2 in
Appendix D. The match of formants F1 and F2 is in the case M2 closer to the
measured formants by Story than for the model M1. The third formant F3 has
for both cases the same frequency 1432 Hz and the behaviour of transfer functions
suggests that it is more damped than the others, for detailed discussion see Appendix
D. The occurrence of F3 at this frequency contrary to results of [143] could be
probably caused by the longer acoustic domain (the length of M1 and M2 domains
are approximately 23 cm compared to Story’s length of acoustic domain 18.25 cm).
The M1 and M2 frequency of F4 lies in the vicinity of Story’s reference F3.

All formants of model M3 are shifted up in the comparison with models M1 and
M2, what can be explained by a shortening of the resonator length (i.e. Ωa). Further
formant F2 of M3 is approximately 200 Hz higher than in cases M1 or M2 and it
is rather close to the third resonant frequency. Finally model M4, the 2D version of
published 3D vocal tract shape ([143]) without any inserted sound source domain
(CFD domain) or prolongation region, has only three resonant frequencies in range
50− 2500 Hz as expected. The match of F1 is very good, F2 is significantly shifted
up and formant F3 is underestimated by circa 150 Hz.

It should be mentioned that the comparison to the results of article [143] measured
in humans during MRI examination is only inidicative due to multiple reasons.
First, the scaling from 3D VT model to 2D can lead to a change of the formants
location2. Second, the need to include the CFD domain significantly extends the VT
model length and can also modify formants location. Finally paper [143] contains
also numerical simulations of formants with completely different approach called
the wave-reflection analog method, where multiple accoustic dissipation mechanisms
and different boundary conditions were included, see [144]. Also his correspondence

2A different scaling from 3D model to 2D than used in the thesis was suggested e.g. by [23].
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between the measured and the simulated formants was only up to 12% and even in
a weaker agreement with the later reference3.

Based on the previous results the VT models M1 and M2 are used for computations
in Sections 8.3 and 8.4. For these models the match with Story’s reference first three
formants is acceptable and moreover both models M1 and M2 contrary to models M3
and M4 contain regions, where aeroacoustic or vibroacoustic sources were calculated.
Model M1 includes the whole interface with the VFs and therefore it is used for the
vibroacoustic calculations. Model M2, i.e. a wider version of the fluid flow domain
with the prolongation part and without the subglottal area, is further used for the
aeroacoustic computations.

Figure 8.13: Left: Vocal tract acoustic models for cases M1-M4. Right: Graph of
the computed transfer functions for given cases. The formants of the vowel [u:] are
highlighted by black vertical lines located at 389, 987, 2299 Hz (data from [143]).

3Story repeated his measumerents and simulations with the same patients again in 2008. The
VT shapes have changed and therefore also the formants, nevertheless his simulations showed much
weaker agreement (27% error) than in 1996, see [141] and [23]

113



F1 F2 F3 F4

M1 271 909 1432 2365
M2 280 952 1432 2440
M3 313 1168 1478 2518
M4 357 1388 2136 3313
Story-meas 389 987 2299 −
Story-sim 356 1108 2334 −

Table 8.2: Computed formant frequencies (in Hz) of the vocal tract models M1-M4.
The measured (Story-meas) and the simulated (Story-sim) results for vowel [u:] from
reference [143].

8.3 Vibroacoustic simulation

In this section the sound propagation is simulated, where the aeroacoustic sources
are omitted and just the sound emitted by the vibrating vocal fold is taken into
an account. Although the sound of vibroacoustic origin is usually considered to be
small, see [171, 21], recent laboratory measurements of VF replica combined with
numerical modelling [100] showed that the acoustic emission could be significant. It
motivates this vibroacoustic study. The presented results are an extended version of
results published in [15] and [5].

8.3.1 Acoustic domain

The acoustic problem as described in Chapter 6 is solved in acoustic domain Ωa, see
Figure 8.14, i.e. the vocal tract model M1 from the previous section is considered.
Two virtual microphones B and C are placed at positions [x = 0.05, y = 0] m and
[x = 0.25, y = 0] m, respectively. Microphone B is located inside the CFD domain
and microphone C is placed in the sound free field region, approximately 2 cm in
front of the (virtual) mouth.

Figure 8.14: Scheme of acoustic domain Ωa with boundaries. The blue boundary
∂Ωa \ ΓW0 is (sound) hard wall, the red boundary represents the interface of the
vibrating vocal folds ΓW0 and the pink part marks five layers of PML elements. The
positions of two virtual microphones B and C are shown.
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8.3.2 Vibroacoustic results

The vibroacoustic model is given by equation (2.13) for unknown acoustic pressure
pva with the sound sources given by boundary condition (6.32), which reads

∂pva

∂na
(x, t) = −ρf ∂

2u

∂t2
· na, x ∈ ΓW0 , t ∈ (0,T).

The right hand side represents the normal acceleration of the interface boundary,
and it is determined by the FSI simulations, see Section 8.1. The solution of wave
equation (2.13) by FEM follows as described in Section 7.3 with time step chosen
as ∆t = 0.05 ms and with the speed of sound c0 = 343 m/s. The propagation of
acoustic pressure is monitored at two virtual microphones, Figure 8.15 shows time
variations of the pressure at microphone C.

Figure 8.15: Acoustic pressure monitored at point C located in the free field region.

The Fourier transform of signals from both virtual microphones B and C are shown in
Figure 8.16. The frequency spectrum of acoustic pressure at point B shows that the
most dominant frequencies correspond approximately to the first two fundamental
frequencies of VF vibration (f1, f2) followed by the first two formants (F1, F2) of
VT model M1. The Fourier transform of the signal captured at point C exhibits the
relative weakening of the first frequency peak 131 Hz and the relative strengthening
of frequency 908 Hz perfectly matching the formant F2. Also frequencies 2265 and
2495 Hz are more prominent in the signal at point C than at point B nevertheless
these frequencies are shifted by approximately 100 Hz against the positions of M1
formants F4 and F5

4, see Table 8.2.

The sound induced by VF vibration is quite silent, the sound pressure level (SPL)
at point C reaches circa 30 dB, see Figure 8.17. It is significantly less than the value
obtained by the aeroacoustic simulation presented in the next section. The first two
VF eigenfrequencies are again the very dominant frequencies, similarly as in [100]
(pg. 161). Further the first two formants are also strongly represented in Figure 8.17,
while the frequency peaks 2265 and 2495 Hz are less significant but clearly visible.
The frequency of third formant F3 is present but it has smaller intensity compared
to the previously described ones.

4The formants are given by the location of the frequency peak plus not negligible bandwidth.
Therefore the match of F4 and F5 with frequency peaks 2265 and 2495 Hz is still acceptable.
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The presented vibroacoustic results show that the vibration-borne sound in the
considered case without the VFs contact does not significantly contribute to the
overall radiated SPL. These results of substantially lower SPL of the vibroacoustic
origin than the aeroacoustically produced one (shown later) agree well with the
simulations performed in [173]. On the other hand the combination of experimental
and numerical results in [100] shows that the vibroacoustics is important in the case
when a periodical contact of VFs occurs.

Figure 8.16: Normalised Fourier transform of pressure pva from microphones B and C.
Frequencies f1 = 121 Hz and f2 = 217 Hz highlighted by dot lines correspond to the
first two eigenfrequencies of VFs, the other frequencies marked by Fn, n ∈ {1, 2, 4, 5}
are of acoustic origin and correspond to the formants of vocal tract model M1 (top
axis notation). The missed frequency range 1050 − 2150 Hz does not contain any
clearly visible resonant frequency. The right part of the figure has different scaling.

Figure 8.17: Sound pressure level in frequency domain computed from the pressure
signal at point C. The black vertical lines demonstrate first five formants of vocal
tract model M1.
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8.4 Aeroacoustic simulation

This section presents the results of aeroacoustic simulations performed using the
numerical results of FSI problem from Section 8.1. The sound sources are calculated
as described in Section 7.2 and analyzed for all considered aeroacoustic approaches,
namely the Lighthill analogy (further abbreviated as LH), the (simplified) PCWE
as well as the AWE approach. This analysis is followed by the transient simulation
of the produced sound propagation through vocal tract model M2. The resulting
acoustic pressure measured in position C in front of the mouth is analyzed. The
presented (and extended) results are primarily based on author’s paper [2] and
other published results [12, 8, 13].

8.4.1 Sound sources

First, the computed sound sources from the FSI results are analyzed in order to
reveal the frequency content and its spatial distribution. Further, the computed
acoustic sources are compared to their interpolations on the acoustic mesh.

Comparison of sound sources calculation

First, three different numerical methods for the LH sound source computation im-
plemented in the program FSIFEM are confronted with the default LH sound source
calculation in the program CSF++. Second, the sound sources of three different
modelling approaches - LH, PCWE and AWE, are compared and discussed.

LH sources. The LH sound sources obtained by four different techniques are
displayed in Figure 8.18 (more precisely the sound source densities, i.e. the sound
sources scaled by the local triangle area). The first two pictures of Figure 8.18 capture
the sound sources given by (7.15) and obtained with the gradient reconstruction
technique described in Section 7.2 and without the reconstruction, here referred
as pointwise evaluation (i.e. obtained by the numerical evaluation of derivatives
at each triangle and the resulting vertex value averaged by the number of adjacent
triangles), respectively. The fourth picture shows the sound sources based on pressure
Laplacian (6.15), computed with the proposed gradient reconstruction technique
but not weakly reformulated. These three methods are implemented in the program
FSIFEM .

The third picture presents the LH sound sources based on formula (7.15) and ob-
tained by the program CFSDat specialized on the numerical postprocessing of CFD
data, a separate part of program CFS++ . The program CFSDat uses the framework
of radial basis functions (RBF), i.e. a function f is locally approximated by function

with Gaussian kernel f(x) ≈ C exp−
x2

α with shape parameter α. This approach has
the advantage of high accuracy, efficiency, robustness and optional inclusion of the
interpolation procedure into one process, see [127]. Although a very higher order
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of accuracy with increasing value of α (flattening of RBF shape) could be theo-
retically achieved, the increasing of the shape parameter above some optimal value
significantly worsens the condition number of the interpolation matrix. The need of
the shape parameter specification for optimal performance and accuracy could be
regarded as the disadvantage of this method. For details see recent publication [130].

The LH sound sources obtained by the gradient reconstruction technique and by
the pointwise evaluation are very similar, they differ only very slightly. The different
local extreme values in the glottis region can be observed only in a zoomed detail5

(not shown). The RBF approach provides the LH source evaluation with much more
numerical noise, although the global sound source structure is captured well. In the
end the pressure Laplacian represents an alternative formulation of the LH sound
sources with the similar global structure of sources, nevertheless the local structure
differs and a higher variability can be observed. A higher sensitivity of the pressure
Laplacian to numerical noise was also reported by paper [151], where additional LH
source formulations and comparisons can be found. By reason of minimizing numer-
ical errors the LH sound sources obtained by the gradient reconstruction technique,
which have the smallest local extremes, are used in further computations.

Sound sources of different governing aeroacoustic approaches. The sound
sources computed on the CFD mesh for three different approaches – the LH analogy,
the PCWE and the AWE approaches given by formulas (7.15), (7.10) and (7.13),
respectively, are displayed in Figure 8.19. In the LH case the sound sources are
primarily associated with the velocity gradients and in the current simulation they
are greatly distributed downstream of the glottis, where the glottal jet creates strong
shear layers as it enters the supraglottal spaces. There are also very significant
sources in the vinicity of the VF boundary, where the glottal jet separates from the
VF surface.

The dominant sound sources in the cases of the PCWE and the AWE approach are
connected with pressure time changes, which local extremes are located primarily
in the vortex centers. The vortices are formed by a complex decay of the glottal jet
downstream the glottis. The difference of the PCWE against the AWE approach is
that the sound sources are located more significantly inside the glottis due to in-
cluded term with convected pressure gradient 1

ρ0c20
v ·∇pic – compare formulas (7.10)

and (7.13). Particularly the large pressure gradient and the significant mean airflow
velocity is present inside the glottis, see Figures E.2 and 8.8. The details of contribu-
tions from the time derivative and the convected pressure gradient term are plotted
in Figure E.1 of Appendix E. The PCWE and the AWE sound sources are not so
locally distributed around the supraglottal jet borders as the LH sources with an
exception of the PCWE sound sources near the VF boundary, where the glottal jet
separates from the VF surface. The outcomes obtained by the numerical postpro-
cessing of the phase-locked PIV measurements, see pg. 136 of [100], or obtained by
the numerical simulation, see pg. 121 of [82], resemble our findings.

5The LH sources obtained by the gradient reconstruction technique are in general the smallest
compared to the other here presented evaluation approaches.
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a)

b)

c)

d)

Figure 8.18: Comparison of (normalized) instant LH sound densities at time in-
stant 0.6 s computed by: a) the gradient reconstruction technique, b) the pointwise
evaluation, c) the RBF approach of program CFSDat (parameter α was chosen as
α = 5 · 10−7) and d) the pressure Laplacian.
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0)

a)

b)

c)

Figure 8.19: Comparison of (normalized) instant sound densities for different aeroa-
coustic approaches at time instant 0.6 s. 0) The magnitude of airflow velocity to-
gether with 25 pressure contours in range −2.5 kPa to 1.5 kPa is shown. Below
instant sound densities are shown for: a) the LH analogy, b) the PCWE and c) the
AWE approach.
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Frequency content

The frequency content of the sound sources can be investigated with the aid of the
Fourier transform applied on the time signal at each point of the sound sources6. The
power spectral densities (PSD) of the sound sources at two representative frequencies
for all three aeroacoustic approaches are shown in Figure 8.20. The frequencies
232 Hz and 2486 Hz are the local spectral maxima representing one of the dominant
VF vibration frequencies and an (higher) non-harmonic frequency, respectively. The
quantitative comparison of sound sources PSD values is here irrelevant as in all cases
a different acoustic quantity is depicted.

The location of main sound sources for frequency 232 Hz for all considered cases
is inside the glottis. The frequency 232 Hz roughly corresponds to the second fun-
damental frequency of VF vibration, see Figure 8.4. The local structure of sound
sources at 232 Hz matches the dipole source character (see Figure E.3 in Appendix
E). In the LH case the dipole is located before the tip of VFs and it is less prominent
than the quadrupole formed downstream from the narrowest part of the channel. In
the PCWE and the AWE case the dipole clearly dominates. These findings coincide
very well with the results of [139].

The higher frequency sources like e.g. at 2486 Hz (i.e. the frequency close to SPL
maximum at F4, see Figure 8.24) are mainly located in the supraglottal channel, see
Figure 8.20 right. These sound sources can be associated with the free jet pouring out
of an opening (glottis). They have quadrupole structure (see Figure E.3 in Appendix
E) what is typical for sound aeroacoustically produced by free turbulence, see [96].
The AWE sound sources at 2486 Hz are situated in supraglottal area forming periodic
series of vortices centers, while in the PCWE case such distinct points of PSD
maximum are not observable. The PCWE sound sources at 2486 Hz are rather given
by an union of two or three most dominants vortices centers. This can be caused by
additional influence of the mean airflow velocity – cf. sound source formula 7.10, or
possibly by the PSD calculation7. In the LH case the sound sources at 2486 Hz are
located along boundaries of the glottal jet.

Globally, the LH sound sources are located predominantly in the vicinity of VF
interface corresponding to high velocity gradients here, whereas the PCWE sources
connected with time and spatial pressure derivative are slightly less compact. The
AWE sound sources have a similar dipole character in the glottis and a larger spatial
distribution of higher frequency content than the PCWE case. The similar sound
sources frequency distributions were also reported by [139], [82] or by [100] on pg.
142.

Interpolation to the acoustic mesh

Since the acoustic problem does not need so fine mesh as in the case of the fluid flow
problem, the sound sources are projected onto a coarser acoustic mesh after their
evaluation on the original CFD mesh resulting in the reduction of total computa-
tional time of the aeroacoustic simulation. The detail of the CFD and the acoustic

6The Fourier transform is evaluated on the CFD mesh.
7During PSD calculation the relevant acoustic quantities are raised to the second power.
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Figure 8.20: Computed power spectral densities of sound source densities at 232 Hz
(left) and 2486 Hz (right). The LH results are shown in the top panel, the PCWE
results in the middle, and the AWE results bottom. Color scale (and also acoustic
quantities) is for each figure different and it has logarithmic scaling.

meshes in the narrowest part of the channel is depicted in Figure 8.21. The projec-
tion procedure, implemented in the program CFSDat and described in Section 7.2,
conserves the overall acoustic energy, see [88], [127].

Figure 8.22 compares structure of the sound sources for three considered approaches
before and after the interpolation. The sound sources structures are in all cases
conserved, only the sound sources in the glottis area lose its relative significance
(due to source weighting by elements area during the interpolation procedure, see
Eq. (7.21)). The CFD and acoustic mesh consists of 12320 and 5078 elements, resp.
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Figure 8.21: Detail of the CFD and the acoustic meshes inside the glottis region.
The dense CFD mesh is shown in red colour and the acoustic mesh is plotted with
black colour.

Figure 8.22: Sound source densities before (left) and after (right) interpolation on
the (coarser) acoustic domain of vocal tract model M1. The LH sound sources are
shown on the top, the PCWE sources in the middle panel and the AWE sources at
the bottom.
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8.4.2 Sound propagation in the vocal tract model

The interpolated sound sources are further employed for the LH, the simplified
PCWE (sPCWE) and the AWE aeroacoustic simulations as formulated in paragraph
6.2.3 and numerically discretized by the FEM as described in Chapter 7. The vocal
tract model M2 is chosen as acoustic domain Ωa. Consequently the subglottal sound
sources are omitted as the VT model M2 does not contain glottis, see Figure 8.13.
Further, the speed of sound is considered as c0 = 343 m/s and time step ∆t =
0.025 ms is kept constant. The acoustic pressure is monitored at the same microphone
positions as before, i.e. at point B = [0.05 m, 0 m] inside CFD domain and at point
C = [0.25 m, 0 m] in front of virtual mouth, see Figure 8.14.

The acoustic pressure (computed by all approaches) monitored at point B is shown
in terms of the Fourier transform in Figure 8.23. The most significant frequencies
are determined as 278 Hz and 942 Hz corresponding quite accurately to the first two
formants (F1, F2) of model M2, see Section 8.2. The results of the Lighthill analogy
have rather a single dominant frequency 278 Hz and the significance of the second
frequency 942 Hz is rather fractional. The frequency spectra of the sPCWE and the
AWE approaches are almost equal. They are dominated equally by both formant
frequencies F1 and F2 in contrast to the LH case. The frequency spectra over 1100 Hz
are practically negligible with a very little locally increased value around 2400 Hz in
the sPCWE and the AWE cases (not shown). Short series of snapshots illustrating
the aeroacoustic simulation is shown in Figure E.5 of Appendix E.

Figure 8.23: Normalized Fourier transform of acoustic pressure at point B obtained
by the LH analogy, the sPCWE and the AWE approaches. The results were averaged
by Welch method, see [165].

The sound pressure levels computed at point C using all three aeroacoustic ap-
proaches are shown in Figure 8.24. In the frequency range up to 3 kHz all three
approaches detect four frequency peaks matching very well the first four formants
of the vocal tract model M2, but there are substantial differences in the SPL max-
ima. For the LH case the first frequency of 278 Hz reaches the highest SPL of circa
135 dB followed by frequency peaks 942 Hz and 2421 Hz, each gradually lowered by
approximately 20 dB. The sPCWE and the AWE approaches provides almost mutu-
ally indistinguishable results which differ only by an increase of incomplete 2 dB in
the AWE case. Both of these approaches are able to predict all four formants with
more equal distribution of SPL, where the most significant peak with circa 110 dB
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is located at the frequency of F2 contrary to the LH case. This is in agreement with
[100] (see pg. 133), where the SPL of the LH simulation was also found to be clearly
dominated by the first frequency peak and for the PCWE and the AWE results a
very tiny SPL difference (< 1 dB) was observed. As there are only very little differ-
ences in the resulting spectra one can benefit from use of the AWE approach which
is computationally less expensive than the (s)PCWE, see also [100]. The same char-
acter of acoustic results for all three considered approaches were also achieved with
the VT model M1 (replacing the VT model M2), i.e. with the VT model with the
included sub- as well as supraglottal spaces, see Figure E.4 in Appendix E.

A similar SPL difference of approximately by 20 dB higher SPL of LH approach (total
SPL circa 90 dB) than in the PCWE case reaching approx. 70 dB was reached by the
3D numerical simulation, see [139]. Further, we regard in agreement with authors
of [139] the SPL results of LH analogy as overestimated due to not performed the
acoustic/hydrodynamic splitting resulting in the superimposition of hydrodynamic
quantities in the sound sources represented by Lighthill tensor.

On the other hand the presented SPL results show rather high pressure levels ex-
ceeding 130 dB and 110 dB for the LH and the sPCWE/AWE cases, respectively. It
is comparable to a loud singing/crying very close to listener’s ear. The high values
of SPL are probably caused first by a generally different 2D fluid flow dynamics con-
trary to more complex 3D fluid flow dynamics (having impact on the aerodynamical
sound sources). Second there are fundamental differences in wave propagation for
2D formulation compared to 3D setup8. Similar aeroacoustic studies of the 2D flow-
induced VF vibrations reached comparable high levels of SPL albeit the microphone
position was in the CFD domain, see [173], [89].

In the end comparing the presented vibroacoustic and aeroacoustic simulations,
where the aerodynamically generated sound is about 100 dB higher in SPL than the
sound of the vibroacoustic origin (see Fig. 8.17), it can be concluded that the aerody-
namically produced sound is a major sound source of human phonation mechanism
in the case without contact of VFs.

Figure 8.24: Sound pressure levels of acoustic pressure in frequency domain obtained
by the LH analogy, the sPCWE and the AWE approaches at point C. The black
vertical lines mark the formants of vocal tract model M2, see Table 8.2.

8Hence, some studies introduce SPL results correction from 2D to 3D sound radiation, see [100].
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Chapter 9

Conclusion

The first part of the thesis presents the FSI problem in a channel with deformable
walls conveying fluid. The mathematical formulation of FSI problem is based on
the linear elasticity model and the viscous incompressible Navier-Stokes equations
written in the ALE formulation in order to take into account the time-dependence
of the flow domain. The numerical approximation of the FSI problem is performed
with the finite element method in space and the finite difference method in time.
Particularly, the fluid flow stabilization, the computation of aerodynamic forces and
the construction of ALE mapping is described in detail. The strongly coupled par-
titioned algorithm is implemented for the solution of the FSI problem.

Further, a special attention is paid to the penalization inlet boundary condition
which allows to relax an exact value of the inlet velocity at the inlet boundary during
channel closing phase. The presented results contain the sensitivity test of flow
characteristics in dependence on the change of the penalization parameter. A such
suitable value of parameter ε can be found that the maximal pressure matches the
desired benchmark value. In the considered simulation of flow-induced VFs vibration
the recommended value lies in range 2 · 10−4 < ε < 1 · 10−3. Next, the influence of
the penalization parameter on the critical flutter velocity, i.e. the highest inflow
velocity before loss of FSI system stability, is also studied. It is demonstrated in
the presented FSI simulations that the flutter value changes very slowly up to value
ε < 10−4 and then the flutter velocity starts to grow significantly for bigger values
of ε. The applicability of penalization BC is documented on FSI problems with and
without the considered symmetry arrangement of the channel. The penalization BC
together with the described FSI numerical model based on the FEM is implemented
in the in-house program FSIFEM .

The FSI results modelling the human phonation are presented, which were achieved
with a 2D geometry model of vocal fold composed of isotropic elastic material with-
out consideration of detailed geometry of supraglottal spaces, e.g. without model
of ventricular folds. This setting of the FSI problem allow to determine the flutter
velocity, to compute flow rate through the glottis, to evaluate pressure distribution
along the whole channel, to investigate the VF vibration shapes, to analyze the en-
ergy transfer between vibrating vocal fold and flow as one of the important predictor
of stability of the aeroelastic system, etc.
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The second part of the thesis is devoted to the mathematical modelling of acoustic
problems connected with the human phonation. Two models of sound production
are described, namely the vibroacoustic problem studies sound produced solely by
vibrating boundary of an elastic body (e.g. vocal folds) and the aeroacoustic prob-
lem deals with generation and propagation of the sound with aerodynamic origin.
The aeroacoustic part is addressed using the hybrid approach. It allows to predict
sound based on the incompressible flow simulation, i.e. to use more appropriate and
computationally less demanding acoustic solver than the solver of compressible flow
and to simulate acoustic problem in larger domains, etc. On the other hand the hy-
brid methodology omits the influence of acoustics on the flow field. This is usually
acceptable for low acoustic intensities.

The main novelty of the presented aeroacoustic approach is given by the connection
between the FSI simulation with apriori unknown structure motion excited by the
airflow and the acoustics solved in the acoustic propagation domain with included
vocal tract model. This setting enables to obtain relevant aeroacoustic results. Nev-
ertheless, the inclusion of the vocal tract model into the acoustic domain implicitly
assumes the validity of source-filter theory, i.e. that the vocal tract model does not
influence the acoustic sources at the glottis region. This assumption is often satisfied
unless the formant frequencies of the vocal tract are very close to the fundamental
frequency of VF oscillations. The hybrid methodologies supposing low acoustic in-
tensities and validity of the source-filter theory can be applied in the simulations of
falsetto, whispering, breathy voice or a silent singing.

The FSI results, used in the vibroacoustic and the aeroacoustic models as input for
the sound source computation, were obtained with a four-layer VF model using the
reference pre-phonation glottal gap 2.0 mm and a prescribed value of the pressure
drop lying in the stable region.

The frequency characteristics of several vocal tract models were investigated in or-
der to identify first formants. The resonant frequencies of vocal tracts are highly
dependent on chosen boundary conditions (similarly as e.g. different frequencies of
open and closed organ tube). The lowest four formants were obtained by the nu-
merical solution of the Helmholtz equation in a 2D vocal tract with the considered
PML technique modelling the radiation outside mouth and with the sound hard BC
applied at boundaries of given vocal tract model. The determined formants match
the laboratory measured formants in an acceptable way. The locations of resonant
frequencies of the vocal tract models obtained by the presented approach agree very
well with the later results of the vibroacoustic and the aeroacoustic simulations.

The vibroacoustic simulation presents the results of the sound propagation excited
by the VF walls vibration. In the acoustic spectra monitored inside CFD domain it
is clearly visible the first two eigenfrequencies of VF model together with formants
of chosen vocal tract model. The higher harmonics of VF vibration are not present
(naturally, as the VF contact did not occur). The resulting SPL composed of relevant
acoustic frequency spectrum is considerably low in comparison with the SPL of
aerodynamically produced sound.

Finally, the aeroacoustic simulations comprise the sound sources evaluation, the
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sound sources interpolation on the acoustic mesh and the sound sources propaga-
tion through the vocal tract model. As the sound sources computation is of key
importance a special care is paid to the sound source numerical computation in-
cluding a few alternative sound source formulations. The computed sound sources
are qualitatively compared indicating that the LH sound sources calculated with the
local reconstruction technique are less noisy compared to the default sound source
computation used in the program CFS++ . The frequency content of sound sources
are also investigated showing the location of major sound sources at the VF har-
monic frequencies is directly at the glottis or nearby. The sound sources of higher
frequencies are rather located in the supraglottal areas.

The designed interpolation reduces the computational time while keeping the orig-
inal sound source structure unchanged. The advantage of interpolation is growing
mainly for 3D setup as the number of unknowns scales more unfavourably. The
sound propagation results compare three different approaches, namely the LH anal-
ogy, the simplified PCWE and the AWE approach. The sound signals outside the
mouth have frequency spectra consisting of all four formants of the used vocal tract
model. The resulting SPL of LH analogy obviously overestimates the lower frequen-
cies, especially the formants F1 and F2. The sPCWE and the AWE approaches
provide almost the same acoustic results having more uniform spectral distribution
compared to the LH results. Therefore the AWE approach is in considered human
phonation simulation the best choice in the perspective of ratio of the result rele-
vance to the computational cost.
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9.1 Achieved results

The objectives of the dissertation as they were formulated in Introduction are
achieved, namely:

• The behaviour of new penalization inlet boundary condition was studied for
the internal aerodynamics configurations when the channel is closing. The
comparison of the penalization inlet BC with the Dirichlet BC and the pre-
scribed pressure drop was extensively described. The closing channel up to the
half-gap value of 10µm with reasonable pressure values was demonstrated for
the VF prescribed motion in Chapter 5 indicating a promising way towards
the modelling of the complete channel closure.

• The methodology how to find the stability boundary of the modelled aeroe-
lastic system was developed for the classical Dirichlet BC and also for a wide
range of penalization parameters in the case of the penalization BC at the
inlet, see Section 5.3.

• The connection between the in-house solver FSIFEM and the academic solver
CFS++ of TU Vienna was established. The program FSIFEM now supports an
output in the file format HDF5, see [1].

• A special attention was paid to the sound sources computation. For the LH
analogy the numerical procedure based on the local reconstruction technique
was proposed and further its applicability was shown, see Chapters 7 and 8.
This procedure provides better results during numerical postprocessing of the
2D flow results obtained by the solver FSIFEM than the default procedure of
the subprogram CFSDat, based on the radial basis functions approach.

• The aeroacoustic simulations were performed by using the three different
aeroacoustic approaches. Their description and numerical realization as the
final step of the FSAI algorithm is given in Chapters 6 and 7. Further, the com-
puted sound sources are analyzed and finally the spectra of produced sound in
the point in front of the mouth are compared using the three approaches. The
capability of chosen hybrid approach for the aeroacoustic simulation of human
phonation was proven by several numerically solved examples, see Chapter 8.

• The simulated sound of the vibroacoustic origin, see Section 8.3, was found
quite low suggesting to be relatively insignificant sound source in human
phonation (at least for the presented FSI simulation without complete clo-
sure of the glottis and without VFs collision).
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9.2 Research outlook

The developed computational model of the FSAI problem has demonstrated the
capability to simulate the complex flow-induced VF vibrations and the produced
vibroacoustic and aeroacoustic sound. In the near future, I would like to extended
the work in several directions:

• Aeroacoustics based on the FSI simulation with penalization BC at the inlet.
In the first step the aeroacoustic simulation can be based on the simplified
FSI problem with given VF vibration. Nevertheless at least ten VF vibration
cycles are needed for basic resolution of simulated acoustic phenomena, see
e.g. [131]. Some very preliminary results were already presented at Workshop:
Strömungsschall in Luftfahrt, Fahrzeug- und Anlagentechnik, 2019.

• Implementation of glottal channel closure based on the presented FSI model
together with the penalty inlet boundary condition. Further model modifi-
cation probably including remeshing and/or changing governing equations to
incorporate some velocity attenuation in the glottis region will be necessary.

• Modelling of contact during vocal folds collisions. For a general VF shape it
can be quite difficult task due to need of finding contact points on the interface
represented by a general curve and further to calculate the contact force at
each relevant point of the VF tissue.

• Further, I would like to incorporate the following problems in the FSAI model:

– Consider the nonlinear elasticity in order to more precisely model the
large deformations of the VF tissue.

– Improve the larynx geometry to be more realistic, e.g. to include the
ventricular vocal folds.

Another, for human phonation highly important modelling challenges can be found
in the conclusion of papers [105] and [57].
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[3] J. Valášek, P. Sváček, and J. Horáček, Numerical solution of fluid-
structure interaction represented by human vocal folds in airflow, EFM15 –
Experimental Fluid Mechanics 2015 (V. M. and D. P., eds.), vol. 114, EPJ
Web of Conferences, mar 2016.
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T. Bodnár, eds.), Institute of Thermomechanics, AS CR, 2021, pp. 140–148.
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Appendix A

Modal analysis

Modal analysis is a method of determining the inherent characteristics of dynamic
system in the form of decomposition into (natural) modes of vibration (also called
eigenmodes) with associated (natural) frequencies also called eigenfrequencies and
the corresponding damping factors, see [85]. This decomposition is based on a sep-
aration of the frequency and the position dependence in the underlying governing
equations.

Here, for simplicity we consider a linear time-invariant dynamic system which dy-
namic behaviour can be expressed as a linear combination of simple harmonic mo-
tions called the natural modes of vibration. The natural modes of vibration are
inherent to the dynamic system and they are determined completely by its physical
properties, i.e. by mass, stiffness, damping, and their spatial distributions, [85], [31].

The starting point for modal analysis is the equation describing vibrating system,
i.e. equation (3.10) or its discretized version (4.6), here considered without damping
terms and without right hand side force

Mα̈+ Kα = 0, (A.1)

where M and K is mass and stiffness matrix given by formulas (4.8), respectively, and
vector α describes the time-dependent displacement at the points of computational
structure mesh, see paragraph 4.1.1. A general solution of this system is represented
by the superposition of vibration modes uj with individual (angular) frequencies ωj

α(t) =
N∑
j=1

ei ωjtuj, (A.2)

where i2 = −1, see e.g. [40].

Let us suppose for now the solution of (A.2) in the form α = ei ωjtuj, i.e. the system
would oscillate with only single frequency ωj. The substitution of this solution into
(A.1) yields

ei ωjt(−ω2
j Muj + Kuj) = 0, (A.3)

from which follows

(K− ω2
j M)uj = 0. (A.4)
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Equation (A.4) is a homogeneous system of linear algebraic equations for unknown
vector uj and it is the called generalized eigenvalue problem, see e.g. [31].

The values of ω2
j =: λj ∈ C, for which equation (A.4) has nontrivial solutions uj,

are called generalized eigenvalues. The nontrivial vector uj solving (A.4) for certain
λj(ωj) are called eigenvector corresponding to the eigenvalue λj. In the case of
positive and symmetric matrices K,M, the eigenvalues λj are real and non-negative,
allowing to write ωj =

√
λj, see e.g. [31]. In this context the eigenvectors represent

eigenmodes of structure vibration, i.e. the spatial pattern of vibration, and numbers
fj :=

ωj
2π

are called eigenfrequencies. For practical computation of the generalized
eigenvalue problem the export of sparse matrices K,M into program Octave and its
function eigs() is used.

Modal analysis of VF model MALE-SYM. The results of modal analysis
can be visualized as a plot of (discrete) vector fields represented by individual eiqen-
modes, see Figure A.1 motivated by paper [160]. This approach helps to better
imagine the VF motion represented by individual eiqenmodes at each point of VF,
compare Figure A.1 with (standard) visualization in Figures 5.2 and 5.3.

Figure A.1: First four eigenmodes of vocal fold model MALE-SYM with related
eigenfrequencies 76.8 Hz, 156.7 Hz, 181.1 Hz and 278.2 Hz.
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Appendix B

Geometry of vocal fold model
ZORNER

The geometry and the mesh of VF model ZORNER, see detail in Figure B.1, is
prepared in program GMSH, see https://gmsh.info/. This is a freeware FE mesh
generator with its own syntax very similar to C language. The list of points defining
VF model ZORNER is shown below. Figure B.2 facilitates the orientation in points
labels.

Figure B.1: Mesh of VF model ZORNER composed of four different layers distin-
guished by different colours, see also Figure 8.1.

// ZORNER VF model

mm = 1e-3; cl = 0.85*mm;

oA = newp; Point(oA) = { 0, -7.01186*mm, 0,cl};

oB = newp; Point(oB) = { 5.628350515*mm, -2.04381*mm, 0,cl};

L2[0] = newp; Point(L2[0]) = { 6.005670103*mm, -1.77655*mm, 0,cl};

L2[1] = newp; Point(L2[1]) = { 6.351546392*mm, -1.55267*mm, 0,cl};

L2[2] = newp; Point(L2[2]) = { 6.823195876*mm, -1.24673*mm, 0,cl};
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L2[3] = newp; Point(L2[3]) = { 7.263402062*mm, -0.99046*mm, 0,cl};

L2[4] = newp; Point(L2[4]) = { 7.860824742*mm, -0.66974*mm, 0,cl};

L2[5] = newp; Point(L2[5]) = { 8.363917526*mm, -0.42448*mm, 0,cl};

L2[6] = newp; Point(L2[6]) = { 8.772680412*mm, -0.25300*mm, 0,cl};

L2[7] = newp; Point(L2[7]) = { 9.244329897*mm, -0.12577*mm, 0,cl};

L2[8] = newp; Point(L2[8]) = { 9.731701031*mm, -0.04716*mm, 0,cl};

L2[9] = newp; Point(L2[9]) = { 10.03041237*mm, -0.01572*mm, 0,cl};

L2[10] = newp; Point(L2[10]) = { 10.47061856*mm, 0.00000*mm, 0,cl};

L2[11] = newp; Point(L2[11]) = { 10.97371134*mm, -0.00943*mm, 0,cl};

L2[12] = newp; Point(L2[12]) = { 11.25670103*mm, -0.03773*mm, 0,cl};

L2[13] = newp; Point(L2[13]) = { 11.41391753*mm, -0.12577*mm, 0,cl};

L2[14] = newp; Point(L2[14]) = { 11.50824742*mm, -0.25155*mm, 0,cl};

L2[15] = newp; Point(L2[15]) = { 11.55541237*mm, -0.37732*mm, 0,cl};

L2[16] = newp; Point(L2[16]) = { 11.57113402*mm, -0.50309*mm, 0,cl};

oD = newp; Point(oD) = { 11.58685567*mm, -2.01237*mm, 0,cl};

L4[0] = newp; Point(L4[0]) = { 11.47680412*mm, -2.26392*mm, 0,cl};

L4[1] = newp; Point(L4[1]) = { 11.28814433*mm, -2.67268*mm, 0,cl};

L4[2] = newp; Point(L4[2]) = { 11.02087629*mm, -3.30155*mm, 0,cl};

L4[3] = newp; Point(L4[3]) = { 10.94226804*mm, -3.77320*mm, 0,cl};

L4[4] = newp; Point(L4[4]) = { 11.03659794*mm, -4.24485*mm, 0,cl};

L4[5] = newp; Point(L4[5]) = { 11.25670103*mm, -4.90515*mm, 0,cl};

L4[6] = newp; Point(L4[6]) = { 11.47680412*mm, -5.43969*mm, 0,cl};

L4[7] = newp; Point(L4[7]) = { 11.69690722*mm, -5.94278*mm, 0,cl};

L4[8] = newp; Point(L4[8]) = { 12.01134021*mm, -6.57165*mm, 0,cl};

L4[9] = newp; Point(L4[9]) = { 12.20000000*mm, -7.01186*mm, 0,cl};

oF = newp; Point(oF) = { 11.00515464*mm, -7.01186*mm, 0,cl};

oG = newp; Point(oG) = { 1.22628866*mm, -7.01186*mm, 0,cl};

oH = newp; Point(oH) = { 4.119072165*mm, -4.27629*mm, 0,cl};

oI = newp; Point(oI) = { 6.1*mm, -2.51546*mm, 0,cl};

M2[0] = newp; Point(M2[0]) = { 6.886082474*mm, -1.93691*mm, 0,cl};

M2[1] = newp; Point(M2[1]) = { 7.483505155*mm, -1.52500*mm, 0,cl};

M2[2] = newp; Point(M2[2]) = { 7.986597938*mm, -1.21057*mm, 0,cl};

M2[3] = newp; Point(M2[3]) = { 8.458247423*mm, -0.97474*mm, 0,cl};

M2[4] = newp; Point(M2[4]) = { 8.867010309*mm, -0.81753*mm, 0,cl};

M2[5] = newp; Point(M2[5]) = { 9.401546392*mm, -0.69175*mm, 0,cl};

M2[6] = newp; Point(M2[6]) = { 9.998969072*mm, -0.62887*mm, 0,cl};

M2[7] = newp; Point(M2[7]) = { 10.50206186*mm, -0.59742*mm, 0,cl};

M2[8] = newp; Point(M2[8]) = { 10.75360825*mm, -0.59742*mm, 0,cl};

M2[9] = newp; Point(M2[9]) = { 10.91082474*mm, -0.66031*mm, 0,cl};

M2[10] = newp; Point(M2[10]) = { 11.00515464*mm, -0.78608*mm, 0,cl};

M2[11] = newp; Point(M2[11]) = { 11.05231959*mm, -0.97474*mm, 0,cl};

M2[12] = newp; Point(M2[12]) = { 11.06804124*mm, -1.19485*mm, 0,cl};

M2[13] = newp; Point(M2[13]) = { 11.04603093*mm, -1.47784*mm, 0,cl};

M2[14] = newp; Point(M2[14]) = { 11.01458763*mm, -1.79227*mm, 0,cl};

M2[15] = newp; Point(M2[15]) = { 10.97371134*mm, -2.04381*mm, 0,cl};

M3[0] = newp; Point(M3[0]) = { 10.87938144*mm, -2.26392*mm, 0,cl};

M3[1] = newp; Point(M3[1]) = { 10.75360825*mm, -2.57835*mm, 0,cl};

M3[2] = newp; Point(M3[2]) = { 10.62783505*mm, -2.89278*mm, 0,cl};

M3[3] = newp; Point(M3[3]) = { 10.50206186*mm, -3.27010*mm, 0,cl};

M3[4] = newp; Point(M3[4]) = { 10.40773196*mm, -3.71031*mm, 0,cl};

M3[5] = newp; Point(M3[5]) = { 10.37628866*mm, -4.21340*mm, 0,cl};

M3[6] = newp; Point(M3[6]) = { 10.43917526*mm, -4.68505*mm, 0,cl};

M3[7] = newp; Point(M3[7]) = { 10.56494845*mm, -5.18814*mm, 0,cl};
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M3[8] = newp; Point(M3[8]) = { 10.72216495*mm, -5.81701*mm, 0,cl};

M3[9] = newp; Point(M3[9]) = { 10.86365979*mm, -6.35155*mm, 0,cl};

M4[0] = newp; Point(M4[0]) = { 6.382989691*mm, -2.48402*mm, 0,cl};

M4[1] = newp; Point(M4[1]) = { 6.886082474*mm, -2.29536*mm, 0,cl};

M4[2] = newp; Point(M4[2]) = { 7.420618557*mm, -2.08469*mm, 0,cl};

M4[3] = newp; Point(M4[3]) = { 7.860824742*mm, -1.91804*mm, 0,cl};

M4[4] = newp; Point(M4[4]) = { 8.301030928*mm, -1.76082*mm, 0,cl};

M4[5] = newp; Point(M4[5]) = { 8.678350515*mm, -1.63505*mm, 0,cl};

M4[6] = newp; Point(M4[6]) = { 8.992783505*mm, -1.54072*mm, 0,cl};

M4[7] = newp; Point(M4[7]) = { 9.370103093*mm, -1.44639*mm, 0,cl};

M4[8] = newp; Point(M4[8]) = { 9.715979381*mm, -1.41495*mm, 0,cl};

M4[9] = newp; Point(M4[9]) = { 10.03041237*mm, -1.47784*mm, 0,cl};

M4[10] = newp; Point(M4[10]) = { 10.25051546*mm, -1.57216*mm, 0,cl};

M4[11] = newp; Point(M4[11]) = { 10.47061856*mm, -1.72938*mm, 0,cl};

M4[12] = newp; Point(M4[12]) = { 10.62783505*mm, -1.85515*mm, 0,cl};

M4[13] = newp; Point(M4[13]) = { 10.81649485*mm, -1.98093*mm, 0,cl};

// setting GLOTTIS WIDTH == move all point by WIDTH down

WIDTH = 0.5*mm;

A = Translate {0, -WIDTH, 0} { Point{oA}; };

B = Translate {0, -WIDTH, 0} { Point{oB}; };

Lp2[] = Translate {0, -WIDTH, 0} { Point{L2[]}; };

D = Translate {0, -WIDTH, 0} { Point{oD}; };

Lp4[] = Translate {0, -WIDTH, 0} { Point{L4[]}; };

F = Translate {0, -WIDTH, 0} { Point{oF}; };

G = Translate {0, -WIDTH, 0} { Point{oG}; };

H = Translate {0, -WIDTH, 0} { Point{oH}; };

I = Translate {0, -WIDTH, 0} { Point{oI}; };

Mp2[] = Translate {0, -WIDTH, 0} { Point{M2[]}; };

Mp3[] = Translate {0, -WIDTH, 0} { Point{M3[]}; };

Mp4[] = Translate {0, -WIDTH, 0} { Point{M4[]}; };

C = Lp2[16]; E = Lp4[9]; J = Mp2[15];

Figure B.2: Scheme of VF model ZORNER with denoted points. Lines Lp2, Lp4,
Mp2, Mp3 and Mp4 denote set of points.
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Appendix C

Additional results of FSI problem

In this appendix few additional figures extending results of Sections 5.3 and 5.4,
where numerical solution of the (full) FSI problem is described, can be found.

First, illustrative snapshots of the simulation with prescribed airflow symmetry at
the top boundary referred as “Pen-W” in paragraph 5.3.1 are shown in Figure C.1.
The simulation was conducted with airflow inlet velocity vDir = (1.9, 0.0) m/s pre-
scribed with the aid of penalization parameter ε = 5 · 10−4 s/m. These snapshots
are taken close before the end of the simulation caused by too distorted mesh. The
VF displacement is already quite large, observable clearly by an eye. The typical
convergent-divergent changing of VF position can be seen.

Figure C.2 supplements Figure 5.22 and paragraph 5.3.3 describing the energy trans-
fer from airflow to VFs. Here, the acting aerodynamic forces during one oscillation
period for case “Driven”(VF prescribed harmonic motion in y-direction) is shown,
see paragraph 5.3.3. The aerodynamic forces are dominantly acting downwards, the
highest values are reached at time instant 0.098 s (labeled d7), when the channel is
maximally narrowed. Up to this moment the energy is transferred from VF to air-
flow due to the acting of the aerodynamic forces against the direction of VF motion,
see Figure 5.21. Then the opening phase follows when the VF motion and the aero-
dynamic forces have the same direction (see Figure 5.21), however the cumulative
sum of power during opening phase (i.e. energy, which is described e.g. by func-
tion Ecumul) has lower absolute value than during closing phase (which is negative)
yielding negative total sum of the transferred energy from airflow to VF during each
oscillation period, see Figure 5.21. In other words the energy is transferred in sum
from the (prescribed) VF vibration to the airflow during each oscillation cycle. The
energy exchange takes place dominantly at the VF subglottal boundary (leading
edge) with relatively uniform participation.
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Figure C.1: Magnitude of the airflow velocity (left) and pressure together with the
vocal fold displacement in mm (right) shown for seven time instants during one
vibration cycle of VFs with duration of approx. 7 ms. Simulation of case “Pen-W”.
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d1) 0.092 s d2) 0.093 s

d3) 0.094 s d4) 0.095 s

d5) 0.096 s d6) 0.097 s

d7) 0.098 s d8) 0.099 s

d9) 0.100 s d10) 0.101 s

Figure C.2: Details of the VF deformation and the acting aerodynamic forces during
one oscillation period for case “Driven”(VF prescribed motion), see paragraph 5.3.3.
Between time instants d7) and d8) the VF reachs the maximal positive displacement
u2 and then it starts to open again the glottal channel.
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Further, the dependence of the transglottal pressure on the gap is plotted for three
reference solutions of the FSI problem similarly as in paragraph 5.2.3 (where the
pressure-gap dependence was discussed for prescribed VF motion). Here, the cases
“Vel” (inlet velocity vDir prescribed by Dirichlet BC), “Pen-W” (see above) and
“Pres”(pressure drop ∆p = pin−0 = 450 Pa) are compared, see paragraph 5.3.1. The
graph captures (a part of) the flutter regime of the VF flow induced vibrations since
prescribed inlet velocity vDir as well as pressure drop ∆p exceeds the critical value.
The simulations end in all cases by fluid flow solver failure due too distorted CFD
mesh – at vinicity of the VF points near half-gap value g0 = 0.1 mm. Therefore the
curves are not closed since the regular periodic VF vibration cycle has not emerged
as in the laboratory experiments with VF mutual contact, see [74]. Nevertheless it
is obvious from Figure C.3 that the value of transglottal pressure connected with
reaching of given minimal value of half-gap g0 is much lower for case “Pen-W” than
for case “Vel”. In both cases “Vel” and “Pen-W” the working pressure range is very
similar to the laboratory experiment, compare with Figure 5.9. The orientation of
curves in all cases is clockwise proposing the (positive) energy transfer from airflow
to VF what is in contradiction to results with prescribed motion of VF (compare
with Figure 5.10).

Figure C.3: Dependence of the transglottal pressure on the half-gap for three simu-
lations of the FSI problem: “Vel”, “Pen-W” and “Pres”. The graph depicts only last
three incomplete oscillation cycles. The symbols of dot (•) and square (�) denote
the starting point of the curve for cases “Vel” and “Pen-W”, resp. The arrows show
the (time) direction of curve circulation.

Next, static aerodynamic force qsstat for the full-larynx configuration, i.e. configu-
ration without prescribed symmetry of the airflow in the channel, is depicted in
Figure C.4 for case PEN-W as described in Section 5.4. The graph shows a slight
asymmetry of the static forces especially at the supraglottal boundary of bottom
VF. The asymmetry could be in future (if wanted) eliminated by averaging of the
forces acting on the top and the bottom VF.
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Figure C.4: Detail of static aerodynamic force qsstat determined at trelease = 0.03 s
for the simulation referred in previous text as PEN-W.

Finally, the phase portraits of point S (the same position as for VF model MALE-
SYM) for all four cases of paragraph 5.4 are shown in Figure C.5. The phase portraits
of cases VEL, PEN-S and PEN-W indicate a much faster development of the flutter
phenomenon than in case PRES as mentioned already in paragraph 5.4. The phase
portrait of case PRES moreover differs in the motion of point S, the different motion
pattern(s) is evidently excited, compare it with phase portraits in paper [160].

a) VEL b) PEN-S

c) PEN-W d) PRES

Figure C.5: Trajectory of point S in the X–Y plane for considered cases: a) VEL,
b) PEN-S, c) PEN-W and d) PRES, see paragraph 5.4.
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Appendix D

Analysis of vocal tract resonances

This appendix contains a detailed behaviour of the pressure distributions of the
formants as are determined in Section 8.2.

Vocal tract diameters

The diameters ri, i.e. y-dimensions of domain Ωa
tract, are given by formula (8.1) and

listed in Table D.1.

Cut ri

1 3.568
2 3.478
3 2.985
4 3.700
5 4.184
6 7.399
7 9.624
8 9.575
9 8.686
10 8.176
11 10.749
12 13.658
13 13.387
14 13.147
15 12.361

Cut ri

16 12.048
17 11.686
18 10.749
19 10.357
20 10.029
21 10.265
22 10.124
23 8.612
24 8.117
25 8.117
26 6.956
27 4.853
28 2.706
29 2.185
30 2.646

Cut ri

31 2.646
32 3.432
33 4.370
34 4.918
35 5.232
36 7.611
37 8.649
38 9.009
39 10.896
40 13.195
41 11.915
42 8.722
43 5.917
44 4.951
45 3.613
46 5.232

Table D.1: Diameters ri in mm of cross-sections (Cuts) of the domain Ωa
tract as

calculated by formula (8.1) using data of [143] for vowel [u:]. The distance between
two cross-sections is d = 3.96825 mm. The first cut was performed in the glottis.
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Simplified 1D model of vocal tract

From the theoretical viewpoint many aspects of vocal tract functions can be ex-
plained by a simple closed-open tube of length L. This configuration represents a
quartet-wave resonator, which resonances are located at frequencies

Fn = (2n− 1)
c

4L
, n ∈ N, (D.1)

with the speed of sound denoted by c, see e.g. [156], [33]. Subsequently the n-th
resonance pressure distribution has n− 1 cross-sections with zero (it changes n− 1
times the sign). The difference of the ‘tube model’ against the 2D VT model (as
presented in Section 8.2) is that the 1D model neglects the influence of y-dimension
of 2D model resulting into equidistant distribution of resonances predicted by the
quarter-wave formula D.1. On the other hand the 2D model can have location of
resonant frequencies shifted contrary to 1D model due to a non-uniform y-shape of
the domain and from certain frequency limit also non-planar waves occur1.

Table D.2 shows the resonances calculated by formula (D.1) for models M1-M4
with consideration of the domains Ωa

src and Ωa
tract only, compare it with Table 8.2 in

Section 8.2. It predicts the existence of four formants up to frequency 3 kHz for VT
models M1-M3 similarly as the 2D model for VT models M2 and M3. Nevertheless
the exact formant locations for cases M1-M3 substantially differ because of the
probable aforementioned influence of the y dimension of the 2D models. Further the
quarter-wave formula as applied in Table D.2 relates increasing values of resonant
frequencies with decreasing of tube length, what was also documented in (all) 2D
results (Table 8.2). The best match with the 1D tube model evinces the model M4
concerning the location of all first four formants. Model M4 does not have abrupt
change of domain shape with hard walls as e.g. models M1 (behind the glottis) and
M3 (at the end of the sound source region).

L[mm] F1 F2 F3 F4

M1 237 362.1 1086.4 1810.6 2534.8
M2 222 386.6 1159.8 1933.0 2706.3
M3 209 408.7 1226.2 2043.6 2861.1
M4 179 476.9 1430.8 2384.6 3338.4

Table D.2: Formants of vocal tract models M1-M4 predicted with the help of quarter-
wave formula (D.1). Results are in Hz and length L is the length of VT model after
an exclusion of the free field region and the PML layer.

Detailed acoustic pressure distributions at formant frequencies

This paragraph presents a detailed version of results from paragraph 8.2.2, i.e. the
solutions of Helmholtz equation (8.2) with different VT models with applied PML
at the outer boundary of free field region. The upper restriction of investigated
frequencies to 3 kHz allows to determine the formants of purely acoustic planar
waves ([115] roughly estimates this limit to 5 kHz), i.e. the solutions change only

1Non-planar wave in the 2D model is a wave with significant variation along the y-direction.
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along x-axis, not along y-axis. Therefore the pressure distributions along VT axis
of symmetry (y = 0) fully characterize the solution (at a chosen frequency) in the
whole domain, see Figure D.1.

Figure D.1: Left: The (real part of) solution of Helmholtz equation at frequency
271 Hz, the line y = 0 is highlighted by white colour. Right: Both (complex) com-
ponents of pressure distribution along line y = 0 of the solution from left.

The pressure distributions along x-axis for VT models M1-M4 are shown in Figures
D.2, D.3 and D.4. First, all pressure distributions at formants frequencies Fn have n−
1 changes of solution sign along x-axis (the graph of each pressure distribution crosses
n− 1 zero value), fully in agreement with the quarter-wave formula. Particularly, it
is valid also for the solutions in frequency range 1400− 1500 Hz for VT models M1-
M3, hence these resonance frequencies really represent formant F3 (albeit damped
– see Figure 8.13) and they are not numerical artifacts. The absence of formant at
range 1400−1600 Hz in the case of model M4 can be caused by a shorter VT length
compared to other models. This is also a final justification of additional formant
appearance of VT models M1-M3 in frequency range up to 3,kHz contrary to VT
model M4 and mainly contrary to results of paper [143].

The pressure distribution of VT model M1 at frequency 2638 Hz shown in Figure
D.2 has situated maximal amplitude at the subglottal part of the VT model and
the pressure amplitude inside the vocal tract model (highlighted by bold in graph)
reaches four times smaller values. It confirms that this fifth formant of VT model
M1 can be associated with the subglottal cavity of the chosen VT model.

Figure D.2: Pressure distribution along x-axis at frequency 2638 Hz for VT model
M1. The part of solution inside vocal tract region Ωa

tract is accentuated by bold curve.
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Model M1: Model M2:

Figure D.3: Pressure distributions along x-axis at resonant frequencies for vocal
tract models M1 and M2. The real component of generally complex solution of the
Helmholtz equation is shown and the part of solution inside vocal tract region Ωa

tract

is accentuated by bold curve.
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Model M3: Model M4:

Figure D.4: Pressure distributions along x-axis at resonant frequencies for vocal
tract models M3 and M4. The real component of generally complex solution of the
Helmholtz equation is shown and the part of solution inside vocal tract region Ωa

tract

is accentuated by bold curve.
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Appendix E

Additional aeroacoustic results

In this appendix few additional figures extending results of Sections 8.4, where the
numerical solution of aeroacoustic problem is described, can be found.

First, the sound sources of the PCWE approach is computed based on the FSI
simulation with the ZORNER VF model as described in Section 8.1. These sources
are composed of two components, see the right side of equation (6.26), the both of
them computed on the CFD mesh are displayed in Figure E.1. First one given by
the time derivative of the pressure obtained from the incompressible flow simulation
is connected with pressure time changes located primarily in the vortex centers and
negligibly present in the glottis. The second component of the PCWE source is the
product of the average velocity and the pressure gradient, see Figures 8.8 and E.2.
Therefore the contribution of these sound sources is restricted to the glottis area
and to the location of strong glottal jet1. The both PCWE source components are
of similar absolute strength and their frequency content is interestingly also similar
(not shown).

Next, an alternative visualization of the Fourier transform applied on the sound
sources is shown in Figure E.3, where only the real part of a complex number
(result of the Fourier transform) is shown, compare with the plotted complex number
amplitude in Figure 8.20. The graph of the real part allows to depict and notice
better the multipole structure of sound sources.

The dipole, prototypically two sound emitting (point) sources of the opposite phase
separated by a small distance – see Section 2.4, is obviously present for the frequency
of 232 Hz in all cases in the glottis, see the accentuation in Figure E.3 top. In
the case of the LH analogy an additional location of not negligible sound sources
is downstream from the tip of VFs, in the location of a probable boundary layer
separation.

On the other hand the quadrupole, a configuration of four (point) sound sources of
the opposite phase located very close to each other, can be observed to be dominant
for frequency 2486 Hz in all cases with location in the supraglottal region – see Figure
E.3, in the area of mixing glottal jet with a quiescent air behind the glottis – see
Figure 8.10.

1The moving average of 200 time step is here used instead of the mean airflow velocity computed
from the whole simulation time.
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0)

.

a)

b)

Figure E.1: Detail of sound sources structure of the PCWE approach.
0) Detail of (normalized) instant sound density of the PCWE approach. It is given
by the sum of components (see RHS of Eq. (6.26)): a) the time derivative of the
pressure obtained from the incompressible flow simulation, b) the product of the
average velocity and the pressure gradient. In all figures the normalized values are
depicted at time instant 0.6 s.
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Figure E.2: Detail of airflow pressure gradient magnitude at time instant 0.6 s.

Figure E.3: Computed and normalized real part of (complex) sound source densities
at 232 Hz (left) and 2486 Hz (right). The LH results are shown in the top panel,
the PCWE results in the middle, and the AWE results bottom. The dipole and the
quadrupole sound source structure is highlighted in the first line (LH results).
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Further, the simulation of sound propagation in the vocal tract model M1 (particu-
larly having the subglottal spaces – see Figure 8.13) with the same numerical settings
as in Section 8.4 using the Lighthill analogy (LH), the simplified PCWE (sPCWE)
and the AWE approaches is performed. The sound pressure levels computed at point
C in front of mouth for all three aeroacoustic simulations are shown in Figure E.4.
In the considered frequency range up to 3 kHz all three approaches have present
five frequency peaks matching very well first five formants of vocal tract model M1,
see Section 8.2. The conclusions of the aeroacoustic simulation of Section 8.4, i.e.
with the VT model M2, remain valid also here. Particularly the sPCWE and the
AWE approaches provides nearly identical SPL results, while the SPL in the LH
case (dominated by the first frequency peak representing F1 reaching cca 140 dB)
seem to be overestimated on the whole frequency range of the interest, see [139].

Since the sound sources located in the glottis and upstream in the case of VT model
M1 are taken into account it is a little unexpected that the results of the sPCWE and
the AWE approaches are practically the same. Also in the LH case the results do not
evince any qualitative difference against the case with VT model M2. The slightly
higher overall SPL of these aeroacoustic simulations compared to the performed
ones with the VT model M2 can be caused by two reasons. One explanation can
provide higher values of the transfer function of the VT model M1 than M2, see
Figure 8.13. Another, more probable reason could be the inclusion of glottis region
with significant sound sources, see Figure E.3, although during the interpolation the
absolute sound sources strength in the glottis is decreased due to triangle weighting
during the interpolation procedure, see Section 7.2.

Figure E.4: Sound pressure levels of acoustic pressure in frequency domain obtained
by the LH analogy, the sPCWE and the AWE approaches at point C. The black
vertical lines mark the formants of vocal tract model M1, see Table 8.2.

Finally the time development of aeroacoustic numerical solution is illustrated in
Figure E.5. A relatively short time interval of roughly one half of period of formant
F5 = 2638 Hz of the solution sPCWE in VT model M1 is shown. A high intensity
of the acoustic sources in the supraglottal cavity and a properly working damping
of PML layer (obviously without reflections) can be observed.
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Figure E.5: Spatial distributions of acoustic pressure (scale in Pa) obtained by the
sPCWE approach with the VT model M1 shown in time interval of 0.15 ms.
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