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State of the Art

The interaction of fluid flow and an elastic structure plays an important
role in many technical disciplines, such as aircraft industry (e. g. wing de-
formations), mechanical engineering (flows around turbomachinery blades,
compressor blades, in flexible pipes), civil engineering (stability of bridges),
nuclear engineering (flows about fuel elements, heat exchanger vanes), etc.
The impact of aeroelasticity on stability and control (flight mechanics) has
increased substantially in recent years. Most aeroelastic phenomena are of
an undesirable character, leading to loss of design effectiveness or even struc-
tural failure as in the case of aircraft wing flutter. The research in aeroe-
lasticity or hydroelasticity focuses on the interaction between moving fluids
and vibrating structures. Widely used commercial codes, e. g. NASTRAN,
FLUENT or ANSYS, can only solve particular problems of aeroelasticity and
hydroelasticity and are mainly limited to linearized models. The modelling of
post-flutter behaviour, limit-cycle oscillations and other nonlinear phenom-
ena for large amplitudes of vibration began to be more important. Flutter at
large deformations can be studied by analytical methods only in some spe-
cial cases. Thus, numerical simulations of nonlinear behaviour of dynamical
systems become more important, since they allow to consider changes of the
flow domain in time, nonlinear behaviour of the elastic structure, to solve
simultaneously the evolution system for the fluid flow and for the oscillating
structure, etc.

An up-to-date extensive book related to the aeroelasticity topics is, e. g.,
[1]. It provides insight into the fundamentals of classical linear aeroelasticity
and also describes recent results on the research dealing with nonlinear aeroe-
lasticity as well as major advances in the modelling of unsteady aerodynamic
flows using methods of computational fluid dynamics. Further modern books
concerning fluid-structure interactions are, e. g., [2, 3].

Research Goals

The main goal of this work is to develop and implement numerical methods for
solving incompressible flows with aeroelastic effects. The emphasis is placed
on numerical simulations of flow induced vibrations of a profile. The effort
is aimed for numerical solution of two-dimensional inviscid incompressible
flows and eventual extension of the developed methods for viscous laminar
flows. Further objectives are to validate the methods against experimental
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and theoretical data and to present numerical results of realistic engineering
problems demonstrating the implemented solver applicability.

Methods Used

Finite volume method is applied to the spatial discretization of the imple-
mented two-dimensional numerical model. Several standard explicit numer-
ical schemes, such as Lax-Wendroff scheme or Runge-Kutta scheme, are
used together with artificial compressibility method for numerical solution
of steady state flows. An artificial dissipation term is added for the sake of
stability. For simulations of unsteady flows, either the explicit Lax-Wendroff
scheme in conjunction with artificial compressibility approach or a dual-time
stepping scheme are employed. In the latter case, the physical time is treated
implicitly whereas explicit discretization is applied to the dual (also called
artificial, pseudo or iterative) time. Since aeroelastic effects are considered,
there is generally a change of a solution domain in time. Small disturbance
theory and arbitrary Lagrangian-Eulerian method are used to cope with this
issue. System of two ordinary differential equations representing governing
equations of the profile motion with two degrees of freedom is solved numer-
ically by the fourth-order Runge-Kutta method.

Research Results

In this thesis, numerical results of steady state flows over a profile and un-
steady flows concerning flow induced vibrations of the profile are presented.
The stress is laid on results of inviscid incompressible flows. In order to
validate developed techniques, numerical solutions are compared with ex-
perimental and theoretical data. Good agreement can be observed. For all
steady state calculations, two numerical schemes are used and their solutions
presented and compared respectively. In the case of unsteady flows, results of
two different approaches for solving unsteady governing equations are shown
and also mutually compared. Preliminary results of laminar viscous flows are
presented.
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Introduction

Aeroelasticity is the science which studies the interaction among inertial,
elastic, and aerodynamic forces. Aeroelastic phenomena play an important
role in many technical disciplines, such as aircraft industry (e. g. wing de-
formations), mechanical engineering (flows around turbomachinery blades,
compressor blades, in flexible pipes), civil engineering (stability of bridges),
nuclear engineering (flows about fuel elements, heat exchanger vanes), etc.
Most of them are of an undesirable character, leading to loss of design effec-
tiveness or even structural failure as in the case of aircraft wing flutter or the
Tacoma Narrows Bridge disaster.

The research in aeroelasticity or hydroelasticity focuses on the interaction
between moving fluids and vibrating structures. Problems involving a perma-
nent flow about a vibrating structure are referred to as flow induced vibration
problems. Recently, the attention has been focused on nonlinear behaviour
of such dynamical systems, for instance on the existence and stability of
limit-cycle motions or post-flutter behaviour.

Widely used commercial codes, e. g. NASTRAN, FLUENT or ANSYS,
can only solve particular problems of aeroelasticity and hydroelasticity and
are mainly limited to linearized models. However, the modelling of nonlinear
phenomena for large amplitudes of vibration and numerical simulations of
nonlinear behaviour of dynamical systems began to be more important.

This thesis deals with a numerical simulation of flow induced vibrations
of a profile with generally two degrees of freedom. The first part is devoted
to systems of Euler and Navier-Stokes equations representing mathematical
models of two-dimensional inviscid and viscous incompressible flows, and
boundary conditions employed at boundaries of solution domains considered
in this work. Since non-dimensional forms of the mentioned mathematical
models are used in numerical simulations performed, the transformation from
dimensional to non-dimensional form is also carried out in this part.

The second part deals with numerical methods applied to numerical simu-
lations. It briefly summarizes the finite volume method, introduces artificial
compressibility method used for solving steady state inviscid and viscous in-
compressible flows and presents explicit numerical schemes implemented by
the author. Stability analysis for scalar linear advection equation with con-
stant coefficients in two space dimensions is also carried out. It results in
a time step restriction exploited in a slightly changed form in implemented
algorithms. Further, two numerical methods for solving unsteady incom-
pressible flows are presented, namely artificial compressibility approach and
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dual-time stepping method. Two methods for treating domain deformations
due to the profile motion are introduced, particularly small disturbance the-
ory and arbitrary Lagrangian-Eulerian method. Numerical schemes employed
in unsteady numerical simulations are described in detail. All used boundary
conditions for both inviscid and viscous flow simulations are discussed. In
the case of slip wall boundary condition, four different ways of computing a
pressure at the wall are explained and their influence on a solution compared
respectively. Two cases of profile motion are considered, prescribed oscil-
lation around an elastic axis and flow induced profile vibrations with two
degrees of freedom. Governing equations of profile motion are derived and
their numerical realization is explained.

The third part presents numerical results achieved within this work. Re-
sults of inviscid flows and also rather preliminary results of laminar viscous
flows are presented. The emphasis is placed on inviscid flow simulations. Nu-
merical solutions of both steady state flows and unsteady flows are shown.
They are compared with experimental and theoretical data.

1 Mathematical Models

Formally speaking, incompressible flows are those for which the density is
constant on particle paths. If all the particles of interest originate in a region
of uniform density, then the density remains uniform. In this work, the
incompressibility assumption is related to a uniform constant density in a
domain of interest. Then, the equation of state is ρ = constant (at constant
temperature).

The behaviour of two-dimensional incompressible viscous flows with con-
stant viscosity is described by the system of Navier-Stokes equations written
in conservative non-dimensional vector form:

(DW)
t
+ Fc

x + Gc
y =

1

Re

(

Fv
x + Gv

y

)

, (1)

W =





p

u

v



 , Fc =





u

u2 + p

uv



 , Gc =





v

uv

v2 + p



 , (2)

Fv =





0
ux

vx



 , Gv =





0
uy

vy



 , (3)

2



with

D =





0 0 0
0 1 0
0 0 1



 . (4)

Instead of (3) it is sometimes preferred to use viscous fluxes in the form:

Fv =





0
2ux − 2

3 (ux + vy)
uy + vx



 , Gv =





0
uy + vx

2vy − 2
3 (ux + vy)



 . (5)

They are equivalent to (3), since the solution satisfies the continuity equation
ux + vy = 0.

Here, p is pressure, u, v are velocity vector components and Re designates
Reynolds number. Indices t, x, y denote partial derivatives of corresponding
variables with respect to time and spatial coordinates, respectively. The
vector W is called the vector of conservative variables, Fc ≡ Fc(W), Gc ≡
Gc(W) are convective fluxes and Fv, Gv are viscous fluxes.

If the viscosity is neglected (i. e. Re → ∞) in the Navier-Stokes equations
(1), the Euler equations for two-dimensional inviscid incompressible flows are
obtained. The non-dimensional vector form of this system is

(DW)
t
+ Fc

x + Gc
y = 0, (6)

W =





p

u

v



 , Fc =





u

u2 + p

uv



 , Gc =





v

uv

v2 + p



 , (7)

with

D =





0 0 0
0 1 0
0 0 1



 . (8)

When governing equations are the Navier-Stokes equations (1)-(4), the
inlet, outlet and non-slip wall boundary conditions are taken into account.
When the mathematical model is represented by the system of Euler equa-
tions (6)-(8), the inlet, outlet and slip wall boundary conditions are consid-
ered.
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2 Numerical Solution of Steady State Flows

The finite volume method is used as a discretization method. Let us consider
a system of conservation laws written in a vector form:

Wt + ∇ · F(W) = 0 . (9)

This system can be used for numerical simulations of both steady state
flows (time marching method) or unsteady flows. Here W : R

r → R
s,

W = (w1, . . . , ws) is an s-dimensional vector of conserved quantities and
F(W) = (F1(W), . . . , Fr(W)) is called flux. Symbol ∇· designates a divergence

operator, where ∇ =
(

∂
∂x1

, . . . , ∂
∂xr

)

and x1, . . . , xr are spatial coordinates of

R
r. A finite volume scheme can be defined as follows

(

Wn+1
i − Wn

i

)

|Ci| + ∆t
∑

j∈Ni

H∗

ij |Eij | = 0 . (10)

Here, ∆t = tn+1 − tn, the superscript n denotes a time level, Ni is an index
set involving indices of all neighbouring cells of the cell Ci, |Ci| stands for a
volume of the cell Ci, |Eij | is the length of the edge Eij between the cell Ci

and a neighbouring cell Cj and

H∗

ij ≈ 1

∆t|Eij |

∫ t
n+1

tn

∫

Eij

F (W(x1, . . . , xr, t)) · nij dl dt (11)

is called the ‘numerical flux’. The superscript ∗ stands for a time instant at
which the numerical flux is evaluated. For instance, ∗ ≡ n represents time tn

and (10) results in an explicit numerical scheme. The symbol nij denotes an
outward-pointing unit normal to the edge Eij (i. e. normal vector to the edge
Eij pointing out from the cell Ci and into the neighbouring cell Cj). In this
work, mathematical models of three equations for two-dimensional problems
are considered. Hence, s = 3 and r = 2. Spatial coordinates are usually
denoted x, y instead of x1, y2.

The method of artificial compressibility is employed for numerical solution
of steady state incompressible flows. The principle of the method consists in
modifying the governing equations by the introduction of the time derivative
of pressure to the continuity equation. It is represented by a corresponding
change of matrix D in (1) or (6) as follows:

Dβ =





1
β2 0 0

0 1 0
0 0 1



 , (12)
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where β ∈ R
+ is a coefficient. Since this method is used to obtain an asymp-

totic steady solution, the variable t acts for an auxiliary variable which allows
using marching procedures to solve (1)-(3) or (6)-(7) with (12). If the solu-
tion of (1)-(3), resp. (6)-(7) with (12) converges to a steady solution, i. e.
one independent of t, then this solution is a steady solution of (1)-(4), resp.
(6)-(8).

For numerical simulations of both viscous and inviscid steady state flows,
Lax-Wendroff scheme in Richtmyer form, MacCormack form or a multistage
Runge-Kutta scheme is employed. All schemes are implemented in a cell-
centered form, i. e. the average values of conservative variables are stored
in centres of gravity of finite volume cells. An artificial dissipation term is
added to the schemes to ensure their stability.

Since all numerical schemes used are explicit schemes, they are condition-
ally stable, i. e. the time step has to be limited. In this work, the expression

∆t = min
Ci, j

|Ci|CFL

ρ(A) |∆yij | + ρ(B) |∆xij |
, i ∈ I, j ∈ Ni (13)

is used for inviscid flow simulations. Here, I is an index set of indices of
all cells discretizing the computational domain, ρ(A) and ρ(B) are spectral
radii of Jacobi matrices of convective fluxes in x-direction and y-direction,
respectively and CFL is called Courant number. As far as Navier-Stokes
equations is concerned, the relation

∆t = min
Ci, j

|Ci|2 CFL

ρ(A)|Ci| |∆yij | + ρ(B)|Ci| |∆xij | + 2
Re

(

∆y2
ij + ∆x2

ij

) , . (14)

i ∈ I, j ∈ Ni is considered. For both the Lax-Wendroff scheme in Richtmyer
form and the Lax-Wendroff scheme in MacCormack form it holds CFL = 1.
For the four-stage Runge-Kutta scheme with coefficients α1 = 1

4 , α2 = 1
3 ,

α3 = 1
2 , α4 = 1 the value of this number is CFL = 2

√
2.

Ideally, the stationary residuum descends to the machine zero provided
that the numerical solution converges to the steady state one. The global
behaviour of the solution during the time-marching process is followed by
the L2 norm of the stationary residuum.

3 Numerical Solution of Unsteady Flows

This section deals with a numerical solution of incompressible flows over a
vibrating profile. Two degrees of freedom of the profile are generally consid-
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ered. It can oscillate around an elastic axis and in the vertical direction.

If the profile is only allowed to rotate around the elastic axis with small
amplitudes, the method called ’small disturbance theory’ can be used to
handle the profile motion. It allows to approximate the rotation of an inviscid
wall around a fixed point by the rotation of a normal vector to the wall. It
can only be used under the assumption of a sufficiently small angle of the
rotation. In this work, this method is employed to handle the rotation of
a profile around an elastic axis (one degree of freedom) with the maximal
admissible angle of attack |ϕ| ≤ 6◦. There is no real movement of the profile
with the use of this approach and therefore the grid is fixed, which saves
computational time.

On the other hand, when the motion of the profile is more complex (e. g.
two degrees of freedom) or with large amplitudes, consequently rising defor-
mations of the computational domain are treated using so called arbitrary
Lagrangian-Eulerian (ALE) method. It is based on an ALE mapping

At : Ωref → Ωt , ξ ∈ Ωref → X = X(ξ, t) = At(ξ) ∈ Ωt (15)

of the reference configuration Ωref ≡ Ω0 at time t = 0 onto the current
configuration Ωt at time t ∈ T (see Figure 1). The governing integral equation

tA
tΩ

(ξ)tA

Ω

ξ

ref

Figure 1: ALE mapping of the reference configuration Ωref ≡ Ω0 onto the
current configuration Ωt.

for inviscid flow is

d

dt

∫

Ci(t)

DW dΩX +

∮

∂Ci(t)

(

F̃c(W, w1) dy − G̃c(W, w2) dx
)

= 0 , (16)

where F̃c(W, w1) = Fc(W)−w1DW and G̃c(W, w2) = Gc(W)−w2DW, whereas

(w1, w2)
T

is the grid velocity vector. Similarly, for viscous flow the integral
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form of the Navier-Stokes equations in ALE formulation reads

d

dt

∫

Ci(t)

DW dΩX + (17)

+

∮

∂Ci(t)

[(

F̃c(W, w1) −
1

Re
Fv

)

dy −
(

G̃c(W, w2) −
1

Re
Gv

)

dx

]

= 0 .

When the artificial compressibility method is used, the matrix D is substi-
tuted by the matrix Dβ (see Eq. (12)). It is desirable that this solution
method predicts exactly a uniform flow because it is then mathematically
consistent. This requirement is satisfied only when the numerical scheme
chosen for solving the flow problem, and the algorithm constructed for up-
dating the dynamic mesh, satisfy a discrete Geometric Conservation Law
(GCL). It is defined by

|Ci(t
n+1)| − |Ci(t

n)| =

∫ t
n+1

tn

∮

∂Ci(X,t)

(w1 dy − w2 dx) dt, (18)

where ∂Ci(X, t) denotes a boundary of the cell Ci. It states that the change
in area of each cell between tn and tn+1 must be equal to the area swept by
the cell boundary during ∆t = tn+1 − tn.

Two approaches are used for numerical solution of unsteady governing
equations. First, an artificial compressibility approach is applied. The prin-
ciple of this method lies in changing the mathematical models of incompress-
ible flows in a way, which directly allows to use time-marching procedures.
Governing equations are modified by adding an unsteady term to the conti-
nuity equation in the same way as for the artificial compressibility method
used for steady state simulations. The parameter β has to be a big posi-
tive number. On the other hand, to keep a reasonable length of the time
step , β has to be bounded from above. Numerical calculations show, that
β = 10 is a proper choice. However, the unsteady numerical solution can be
altered by this change with respect to the numerical solution of the original
mathematical models.

Therefore, a dual-time stepping method is employed. Unlike the artificial
compressibility approach, it provides a possibility to develop a time-accurate
time-marching scheme for unsteady incompressible flows. This approach re-
quires the addition of derivatives of a fictious dual time τ to each of the three
equations to give

DβWτ + DWt + Fc
x + Gc

y =
1

Re

(

Fv
x + Gv

y

)

(19)
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for viscous flows and

DβWτ + DWt + Fc
x + Gc

y = 0 (20)

for inviscid flows. A steady state solution in dual time (∂p/∂τ, ∂u/∂τ,
∂v/∂τ → 0) corresponds to an instantaneous unsteady solution in real time
t. Both the equations (19) and (20) can be rewritten in a compact form as:

Wτ + DWt + R(W) = 0, (21)

where R(W) is the steady residuum comprising also the parameter β. If
derivatives with respect to the real time t are discretized using a three-point
backward formula, it results in an implicit scheme

Wτ = −3Wn+1 − 4Wn + Wn−1

2∆t
− R

(

Wn+1
)

≡ −R̃
(

Wn+1
)

, (22)

which is second-order accurate in time. Here, R̃
(

Wn+1
)

is called unsteady
residuum. The superscript n is associated with the real time. The required
real-time accurate solution at time level n+1 satisfies R̃

(

Wn+1
)

= 0 and this
is found by marching Eq. (22) to a steady state in dual time. The dual-time
derivative is treated explicitly using a four-stage Runge-Kutta scheme in this
work.

4 Numerical Realization of Boundary Conditions

The boundary of a computational domain is approximated by a piecewise lin-
ear curve. Its linear segments are represented by edges of finite volume cells
discretizing the computational domain and adjoining the boundary. There
are introduced ghost cells lying out of the computational domain and ad-
joining the boundary. They are constructed by reflection of an interior finite
volume cell adjacent to the boundary with respect to the edge on the bound-
ary as shown in Figure 2. These ghost cells are employed in the numerical
realization of boundary conditions. Having the vector of conservative vari-
ables in an interior cell adjacent to the boundary and in a corresponding ghost
cell, standard algorithms used for finite volume schemes can be applied to
boundary faces in the same manner as to interior faces of the computational
domain.
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true
boundary

piecewise linear

of the true boundary
approximation

computational domain

ghost cells

Figure 2: Ghost cells and piecewise linear approximation of the true bound-
ary.

5 Governing Equations of the Profile Motion

Two cases of a profile motion are considered. Note that the governing equa-
tions of motion will be considered in dimensional variables. First, the profile
can only rotate around a fixed point called the elastic axis with a prescribed
change of an angle of attack in time. The prescribed oscillation of the profile
is driven by the formula:

ϕ = ϕ0 sin (2πft + ϕinit) , (23)

where ϕ [rad] is the angle of rotation of the profile measured from the position
of equilibrium, ϕ0 [rad] is the amplitude of oscillations, f [Hz] is the frequency
of oscillations, ϕinit [rad] is an initial phase and t [s] is time. For a positive
angle of attack ϕ the profile is rotated in the clockwise direction.

Second, it is assumed that the profile is freely vibrating with two degrees of
freedom. It means, that it is taken as a solid body which can oscillate in the
vertical direction and in the angular direction around the elastic axis. After
including terms of proportional damping the governing equations of motion
have the form

mḧ + Sϕϕ̈ cosϕ − Sϕϕ̇2 sin ϕ + khhh + dhhḣ = −L(t),

Sϕḧ cosϕ + Iϕϕ̈ + kϕϕϕ + dϕϕϕ̇ = M(t). (24)

Here, m [kg] is the mass of the profile, Sϕ [kgm] is the static momentum
around the elastic axis, Iϕ [kgm2] is the inertia moment around the elas-
tic axis, khh [N m] denotes bending stiffness, kϕϕ [N m/rad] is the torsional
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khh

(u  ,v )T8 8

kϕϕ

EA
CG

L(t)M(t)

h

ϕ

Figure 3: The elastic support of the profile on translational and rotational
springs.

stiffness of the supporting springs, L(t) [N] stands for the lift force acting
in the vertical direction (upwards positive) and M(t) [Nm] is the torsional
moment (clockwise positive). The coefficients of the proportional damping
are considered in the form dhh = εkhh and dϕϕ = εkϕϕ, where ε ∈ R is
a small parameter. For small values of the angle ϕ and of its derivative ϕ̇
(i. e. sin ϕ ≈ ϕ, cosϕ ≈ 1, ϕ̇ϕ ≈ 0), Eqs. (24) transform to the well known
linearized system

mḧ + Sϕϕ̈ + khhh + dhhḣ = −L(t),

Sϕḧ + Iϕϕ̈ + kϕϕϕ + dϕϕϕ̇ = M(t). (25)

The system (24) or (25) is completed with the initial conditions prescribing
values h(0), ϕ(0), ḣ(0), ϕ̇(0). The governing equations are transformed to the
system of first-order ordinary differential equations and solved numerically
by the fourth-order Runge-Kutta method.

6 Mesh Generation and Mesh Movement

Description

Numerical simulations of flow past a profile in free space or placed in a chan-
nel are performed. Particularly, the profile NACA 0012 is used. It has a
blunt leading edge and a sharp trailing edge. Therefore, a quadrilateral C-
type mesh is the proper topology of boundary-conforming grid for considered
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Figure 4: C-type mesh in a channel with the profile NACA 0012, detail near
the profile, 135 points on the profile surface.

computational domain geometries. To this purpose, a Matlab script for gen-
erating these type of meshes for both the viscous and inviscid flow calculations
was developed by the author. The detail of the C-type mesh near the profile
is presented in Figure 4. When boundaries of a computational domain are
moving the mesh moves in a given corresponding manner.

7 Numerical Results

7.1 Steady State Solutions

Several numerical results of steady state solutions of inviscid incompressible
flow are presented and compared with experimental data. Numerical simula-
tions of the external flow field around the profile NACA 0012 were performed.
The geometry and dimensions of the computational domain are depicted in
Figure 5. The quadrilateral structured C-type mesh with 121 point on the
profile surface and 6720 cells in the solution domain was used.

Figure 6 presents the comparison of numerical data computed with the
use of the Lax-Wendroff scheme in Richtmyer form (LWR scheme) and four-
stage Runge-Kutta scheme (RK scheme) with experimental data. The profile
is fixed in the zero angle of attack. The non-dimensional upstream velocity
vector is (u∞, v∞)

T
= (1.0, 0.0)

T
and the prescribed non-dimensional down-

stream pressure is pout = 1.0. Figure 6(a) compares the distribution of the
non-dimensional velocity value squared Q2 = u2 +v2 along the profile surface

11



c15.6c 4.2c

9c

9c

flow
direction

Figure 5: Solution domain used for numerical simulations of external aerody-
namics.

in dependence on the length of the chord measured from the leading edge.
The computed data are compared with experimental data of Luchta [4]. Fig-
ure 6(b) shows the comparison of the pressure coefficient distribution cp along
the profile surface in dependence on the length of the chord measured from
the leading edge. Numerical data are compared with experimental data of
Benetka [5, 6]. The computed values of the pressure and velocity along the
profile surface are in a good agreement with the experimental values.

7.2 Prescribed Profile Oscillation

Results of numerical simulations of inviscid incompressible flow over the vi-
brating profile NACA 0012 in a channel are presented. The profile motion
is driven by the formula (23) with ϕ0 = 3◦, f = 30 Hz and ϕinit = 0. The
position of the elastic axis EA measured along the chord from the leading

edge of the profile is
(

xEA, yEA
)T

= (0.25c, 0.0)
T
, where the chord length is

c = 0.1322 m. The upstream velocity is (u∞, v∞)
T

= (136.0, 0.0)
T

m/s. The
geometry of the channel and its proportions are sketched out in Figure 7.
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computed values (LWR scheme); � , Luchta experiment; ◦, Benetka
experiment.
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Figure 7: Channel geometry and its proportions.
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In Figure 8, the distribution of the mean value of the pressure coefficient
cp, its real part c′p and imaginary part c′′p on the profile surface in dependence
on the length of the chord measured from the leading edge is presented. The
data are scaled to the pitching oscillation amplitude one radian and the up-
stream Mach number Ma = 0.4. The numerical results of the Lax-Wendroff
scheme in Richtmyer form (LWR) with the use of the small disturbance the-
ory (SDT) for the profile motion approximation, the LWR scheme in the
ALE formulation and the numerical scheme in the ALE formulation using
the dual-time stepping method (DTSM) are compared with the experimen-
tal and theoretical data of Triebstein [7] and experimental data of Benetka
[8]. Concerning the LWR scheme, the artificial compressibility approach is
applied. The parameter β considered in this approach was set to 10. All
the mathematical approaches give practically identical values of the cp co-
efficient. However, the computed values are somehow systematically shifted
in the leading part of the profile probably due to neglecting the fluid com-
pressibility. All computed results for real and imaginary part of the pressure
coefficient have similar trends comparing to the Triebstein [7] and Benetka [8]
data. The best fitting was obtained for the DTSM scheme and ALE method.
The LWR scheme with the SDT approach seems to be the worst variant of
the simulation.

Figure 9 shows isolines of pressure coefficient around the vibrating profile.
The data are computed using the DTSM scheme in the ALE formulation.
The isolines are plotted for the profile angles of attack ϕ = 0◦,±3◦ during
one period of oscillations. Note that when the profile moves opposite way
(see figures (c) and (e)) the pressure filed around the profile is reflected.

7.3 Two Degrees of Freedom System

Numerical results of flow induced vibrations of the profile NACA 0012 with
two degrees of freedom are presented. The flow is taken for inviscid in-
compressible. The solution domain is shown in Figure 5. The profile mo-
tion is described either by the system of two nonlinear ordinary differential
equations of second order (24) or its linearized form (25). The following
input quantities are used: m = 0.086622 kg, Sϕ = −0.000779673 kg m,
Iϕ = 0.000487291 kg m2, khh = 105.109 N/m, kϕϕ = 3.695582 N m/rad,
ε = 0.001, d = 0.05 m, c = 0.3 m, ρ = 1.225 kg/m3. The position of the
elastic axis EA measured along the chord from the leading edge of the profile

is
(

xEA, yEA
)T

= (0.4c, 0.0)
T
. The far-field flow velocity is considered in the

range 5 − 45 m/s.
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Figure 8: (a) The mean value of the pressure coefficient cp, (b) real part
c′p and (c) imaginary part c′′p for ϕ0 = 3◦: ——∆ , computed val-
ues (DTSM scheme, ALE method); ——◦ , computed values (LWR
scheme, ALE method); ——� , computed values (LWR scheme,
SDT); – – –, Triebstein theory; ···, Triebstein experiment [7]; − ·· −,
Benetka experiment [8].
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Figure 9: Pressure coefficient isolines around the vibrating profile NACA
0012, data computed using DTSM scheme.
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Figure 10: Angle of rotation ϕ and vertical displacement h, initial conditions
h(0) = −50 mm, ḣ(0) = 0, ϕ(0) = 6◦, ϕ̇(0) = 0, (u∞, v∞) =
(15, 0) m/s: ——, data computed using LWR scheme; – · –, data
computed using DTSM scheme. Linearized equations of profile
motion considered.

The simulation of fluid-structure interaction as a function of time is pre-
sented in Figure 10. The left, resp. right panel shows the angle of rotation ϕ,
resp. the vertical displacement h in dependence on time for inflow velocity
(u∞, v∞) = (15, 0) m/s. Results obtained using the LWR scheme (in ALE
formulation) and the DTSM scheme for initial conditions h(0) = −50 mm,
ḣ(0) = 0, ϕ(0) = 6◦, ϕ̇(0) = 0 are compared.

Figure 11 presents frequency spectrum analysis carried out using Fast
Fourier Transform applied to the history of angle of rotation ϕ and verti-
cal displacement h for far-field flow velocity vector (u∞, v∞) = (15, 0) m/s
computed with the use of LWR scheme in ALE formulation. One can see
two dominant frequencies. The lower one refers to the vertical translation of
the profile and the higher one to the rotation of the profile around the elastic
axis.

7.4 Viscous Flow Simulations

Rather preliminary numerical results of viscous flows over the profile NACA
0012 are presented. The computational domain is outlined in Figure 5. The
kinematic viscosity is ν = 1.5 × 10−5 m/s2. All simulations performed con-
sider the upstream velocity vector (u∞, v∞) = (10, 0) m/s, which corresponds
to the Reynolds number Re = 2×105. The C-type mesh is accordingly refined
at the viscous wall to be able to capture the viscous layer.

Figure 12 refers to numerical simulation of flow induced vibrations of the
profile with two degrees of freedom. Input parameters used by the simulation
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Figure 11: Frequency spectrum analysis of angle of rotation ϕ (left) and verti-
cal displacement h (right) history in time, (u∞, v∞) = (15, 0) m/s,
computed using LWR scheme and linearized equations of profile
motion.

are the same as in the numerical examples presented in Section 7.3. Initial
conditions are h(0) = −10 mm, ḣ(0) = 0, ϕ(0) = 3◦, ϕ̇(0) = 0.

Conclusions

A finite volume solver of two-dimensional incompressible flows with aeroe-
lastic effects was developed and implemented. The main progress was done
in inviscid flow simulations. Nevertheless, promising preliminary results of
numerical solutions of laminar viscous flows considering aeroelastic effects
were also achieved. The aeroelastic effects are represented by flow induced
vibrations of a profile with two degrees of freedom in this work.

Explicit numerical schemes for solving steady state flows are presented.
These schemes in conjunction with the artificial compressibility method were
proven to be applied to steady state simulations performed within this work.
It is demonstrated by the presented numerical results and their compari-
son with experimental data. The experimental and computed data are in
a good agreement. Convergence history diagrams confirm the robustness of
the methods used.

A numerical analysis of four slip wall boundary condition realizations was
made. It consisted in exploiting Bernoulli’s principle and comparing numer-
ical results obtained for all four alternatives.

Two approaches were considered for numerical solution of unsteady govern-
ing equations - an artificial compressibility approach and a dual-time stepping
method. To deal with deformations of the computational domain due to the
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Figure 12: Isolines of velocity value field around the vibrating profile NACA
0012, (u∞, v∞) = (10, 0) m/s, data computed using DTSM
scheme.

profile motion, two methods were applied - the small disturbance theory and
the arbitrary Lagrangian-Eulerian method. First, numerical results concern-
ing prescribed periodic oscillations of the profile are presented. Computed
data are compared with experimental and theoretical ones. The best fitting
results are given by the dual-time stepping scheme in arbitrary Lagrangian-
Eulerian formulation. Second, numerical solutions of freely oscillating profile
with two degrees of freedom are shown. The governing equations of the profile
motion were considered in both linearized and nonlinear form. The results
are compared with NASTRAN flutter analysis data. Good agreement was
achieved. The robustness of the dual-time stepping method is illustrated by
the convergence history graphs in dual time.

The last section of the work is devoted to rather preliminary steady state
and unsteady numerical simulations of viscous flow past a profile. However,
from the qualitative point of view they are promising for continuation in
development of the viscous flow solver.

The future steps intended are to continue in an improvement of the viscous
flow solver for unsteady simulations with aeroelastic effects and to extend the
methods for three-dimensional problems.
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Název práce: Numerické řešeńı nestlačitelného prouděńı s dynamic-

kými a aeroelastickými účinky

Anotace

Práce se zabývá numerickým řešeńım nestlačitelného prouděńı s uvažováńım
interakce proud́ıćı tekutiny a kmitaj́ıćıho profilu se dvěma stupni volnosti.

Prvńı část je věnována systému Eulerových a Navier-Stokesových rovnic
představuj́ıćıch matematické modely dvourozměrného nevazkého resp. vaz-
kého nestlačitelného prouděńı a dále okrajovým podmı́nkám aplikovaným
na hranićıch oblasti řešeńı. Jelikož jsou v numerických výpočtech užity bez-
rozměrné formy výše zmı́něných matematických model̊u, je v této části též
uveden převod rozměrového na bezrozměrný tvar těchto rovnic.

V druhé části jsou popsány aplikované numerické metody. Stručně je shrnut
princip metody konečných objemů, je představena metoda umělé stlačitelnos-
ti užitá při řešeńı stacionárńıho nevazkého a vazkého nestlačitelného prouděńı
a jsou prezentována explicitńı numerická schémata implementovaná autorem.
Pro lineárńı skalárńı rovnici advekce s konstantńımi koeficienty ve dvou pro-
storových dimenźıch je provedena analýza stability, jež vede na podmı́nku
omezuj́ıćı časový krok výpočtu. Tato podmı́nka je v mı́rně změněné podobě
využita v implementovaných algoritmech. Dále jsou uvedeny numerické me-
tody pro řešeńı nestacionárńıho nestlačitelného prouděńı, konkrétně př́ıstup
umělou stlačitelnost́ı a metoda s duálńım časem. Pro zacházeńı s deforma-
cemi výpočetńı oblasti zp̊usobenými pohybem profilu je aplikována jednak
metoda malých poruch a jednak arbitrary Lagrangian-Eulerian metoda. Po-
drobně jsou popsána schémata pro numerické řešeńı nestacionárńıho prouděńı
a numerické realizace užitých okrajových podmı́nek. Jsou zde také odvozeny
rovnice popisuj́ıćı pohyb profilu a je popsáno jejich numerické řešeńı.

Posledńı část se věnuje výsledk̊um numerických simulaćı jak pro nevazké
tak pro laminárńı vazké prouděńı. Jsou zde prezentovány výsledky stacio-
nárńıch i nestacionárńıch výpočt̊u, z nichž některé jsou srovnány s experi-
mentálńımi daty.

20



References

[1] E. H. Dowell, R. Clark, D. Cox, H. C. Curtiss Jr., J. W. Edwards, K. C.
Hall, D. A. Peters, R. Scanlan, E. Simiu, F. Sisto, T. W. Strganac, A
Modern Course in Aeroelasticity, 4th Edition, Kluwer Academic Publish-
ers, 2004.

[2] M. P. Pa̋ıdoussis, Fluid-Structure Interactions, Vol. 1, Academic Press,
1998.

[3] F. Axisa, J. Antunes, Fluid-Structure Interaction, 1st Edition, Vol. 3,
Elsevier, 2007.
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Edition, Vydavatelstv́ı ČVUT, Praha, 2001.
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flow through a cascade with slender profiles, in: Proc. of VI. Int. Conf.
on Numerical Methods in Fluid Dynamics, SAN Moskva, 1979.
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fyziky, 1st Edition, Vol. 3, Fragment, 2001.
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