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Anotace

Tato práce se zabývá numerickým řešeńım transsonického prouděńı v turb́ınových mř́ıž́ıch
a stupńıch. Vlastnosti použitých numerických schémat jsou analyzovány pomoćı modifiko-
vaných rovnic pro skalárńı př́ıpady, včetně rovnice se zdrojovým členem a nestacionárńı
metody ’fractional step’. Numerická realizace výpočtu na neperiodické v́ıce-blokové śıti
je prezentována. Vhodná matematická formulace a numerická aproximace okrajových
podmı́nek je diskutována pro př́ıpady prouděńı v turb́ınových mř́ıž́ıch a stupńıch. Př́ıpad
výstupńı okrajové podmı́nky je popsán podrobněji. Vliv použité śıtě, diskretizace a okra-
jových podmı́nek je zmı́něn. Formulace a numerické řešeńı 3D nestacionárńı interakce
statoru s rotorem na pohybuj́ıćıch se śıt́ıch jsou navrženy a testovány pro vhodné př́ıpady
reálného prouděńı. Rovnice popisuj́ıćı v́ıcefázové prouděńı maj́ı z matematického hlediska
’stiff’ charakter kv̊uli rychlým fázovým změnám. Proto je navržena speciálńı varianta
’fractional step’ metody s r̊uznými časovými kroky pro jednotlivé podproblémy. Tato nu-
merická metoda je analyzována pro př́ıpad 1D nestacionárńıch operátor̊u. Použitelnost
prezentovaných numerických metod pro př́ıpady reálného prouděńı je ověřena pomoćı
porovnáńı numerických výsledk̊u s dostupnými experimentálńımi daty stejně jako s nu-
merickými výsledky jiných autor̊u. Prezentovaná práce zahrnuje výsledky numerického
řešeńı r̊uzných reálných př́ıpad̊u prouděńı (spolupráce s PBS Velká B́ıteš, Škoda Plzeň a
Von Kármánovým institutem). Dosažené numerické výsledky jsou v dobré shodě s výsledky
jiných autor̊u a s experimentálńımi daty.

Abstract

This work deals with a numerical solution of a transonic flow in turbine cascades and
stages. The properties of used numerical schemes are analyzed by means of modified equa-
tions for scalar cases including also the cases of the equation with a source term and an
unsteady fractional step method. A numerical realization of computation on a non-periodic
multi-block grid is presented. Appropriate mathematical formulation and numerical ap-
proximation of boundary conditions are discussed for the cases of flow in turbine cascades
and stages. The case of outlet boundary condition is described in more details. The influ-
ence of used grid, discretization and boundary conditions is mentioned. The formulation
and the numerical solution of a 3D unsteady stator/rotor interaction problem on moving
grids are proposed and tested on appropriate real flow cases. The equations describing the
multiphase flow have from mathematical point of view stiff character due to the fast phase
changes. Therefore a particular version of a fractional step method with the different time
steps for individual sub-problems is proposed. This numerical method is analyzed for 1D
unsteady operators. The applicability of all presented numerical methods for real flow cases
is verified by a comparison of numerical results with available experimental data as well
as with numerical results of other authors. Presented work includes results of numerical
solution of different real flow problems (cooperation vith PBS Velká B́ıteš, Škoda Pilsen
and Von Kármán Institute). Obtained numerical results are in a good agreement with the
results of other authors and with experimental data.



List of symbols

Alphanumeric symbols:

a [m s−1] speed of sound
cp [J kg−1K−1] specific heat at constant pressure
e [J m3] total energy per unit volume
J [m−3s−1] nucleation rate
J [−] complex unit
Kn [−] Knudsen number
L [J kg−1] latent heat
M [−] Mach number
p [Pa] pressure
q [W m−2] heat flux
r [m] r–coordinate, droplet radius
R [J kg−1K−1] gas constant
t [s] time
T [K] temperature
T [s] time period

T̂ [◦C] temperature
u [m s−1] velocity
w [−] wetness
x [m] x–coordinate
y [m] y–coordinate
z [m] z–coordinate

Greek symbols:

η [Pa s] dynamic viscosity
ϕ [−] ϕ–coordinate
γ [−] ratio of specific heats
λ [W K−1m−1] thermal conductivity
Ω [s−1] angular velocity
ρ [kg s−1] density
σ [N m−1] surface tension
τ [Pa] shear stress

Superscripts:

·n discrete time
·′ physical quantity



Subscripts:

·0 total
·ϕ ϕ–component
·c critical
·i grid index
·is isentropic
·j grid index
·l liquid
·r r–component
·R rotor
·s saturation
·S stator
·t time derivative
·v vapor
·x x–component, x–derivative
·y y–component, y–derivative
·z z–component, z–derivative
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1 Introduction, present state of numerical modelling

of flow in turbines

This work deals with a numerical solution of transonic flow in turbine cascades and stages.
Up to now there are still no available theoretical results for the existence and the uniqueness
of physically acceptable solution of compressible flow problems. An analysis of numerical
methods is limited only to the case of a scalar equation for one or eventually more space
variables. Obtained theoretical results are then extended to multi-D problems.

Since a numerical modelling of flow takes nowadays a place during the whole design
procedure of any turbine, we have to solve numerically 2D, quasi-3D or 3D either steady or
unsteady Euler or Reynolds averaged Navier-Stokes equations, which can be further com-
pleted by additional equations describing the effects of turbulence, condensation, chemical
reaction etc. Moreover the real structure of turbomachinery flows is generally very complex,
it includes such phenomena as limited flow rate, shock waves, shear layers, condensation,
secondary flow effects etc. This means we have first to choose such flow model, which is an
appropriate approximation of the real flow and which can be solved numerically, it mean
e.g. which allows the use of physically acceptable and numerically realizable boundary
conditions. Results obtained by any numerical method can be then of course analyzed
only within the limits of this flow model.

A numerical method has to be chosen according to the properties of equations of a used
flow model. Before one can rely on results of numerical method he has at least to verify
the influence of grid (grid type, number of grid points, cell aspect ratio, grid refinement,
cell deformation, . . . ), the influence of used discretization (there are different ways how to
discretize convection, dissipation and production terms) and the influence of boundary (a
proper type of boundary conditions, position of boundary, . . . ). This verification is possible
either by using several independent numerical methods or/and precise experimental data.
Praxis shows that there is no universal numerical method.

Some of currently investigated problems are: a proper higher order discretization of
convective term; inflow and outflow boundary conditions; turbulence modelling; interaction
of blade cascades, coupling of Euler and Navier-Stokes equations with other equations
describing condensation, blade vibrations, chemical reactions, combustion, etc.

The different types of inflow and outflow boundary conditions are limited to certain
cases. Giles [32] published non-reflecting boundary conditions for the inflow and the outflow
boundary for explicit cell-vertex schemes and for 2D axial cascades. These conditions were
extended to 3D by Saxer [55]. Magagnato recently tested the use of buffer layer technique
for internal aerodynamics, however he reported big problems in [50].

It is known that for the flow in turbine stages steady flow models yield results different
from the time-averages of results of unsteady flow models. This fact motivates the devel-
opment of methods modelling the cascade interactions, e.g. Laumert et al [47], Jung et al
[42].

The Euler or Navier-Stokes equations for a two-phase flow are coupled with the conser-
vation equations for droplets for the modeling of two-phase flow of vapor with condensed
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droplets. Some authors model the droplet spectra by dividing droplets into several classes
according to droplet radius, e.g. Young [66]. However for multi-D problems with complex
geometry it is mainly considered the average radius (only one droplet class), e.g. Šejna
[60], Schnerr [56] or Dykas [16].

Praxis (author’s stays, participation at international conferences on flow modelling and
private discussions) shows that the successful use of complex flow solvers (either commercial
or in-house) is conditioned by the user experiences and ’feeling’, since they contain many
parameters, which has to be tuned using several test cases. The big advantage of in-house
codes against the commercial ones is, that the the existence of these parameters is known
and they can be easily modified directly in the source code. Moreover some parameters in
commercial codes are adjusted to provide a stable solution in any case, regardless if it is
physically acceptable. These facts promotes the development of own in-house numerical
codes, although they necessarily start from simple problems and their development takes
several years.

The numerical methods applied for the calculation of flow in turbine cascades and
stages in this work are mainly based on the Lax-Wendroff type schemes, therefore in the
first part we analyze their properties (numerical stability and the dispersive/dissipative
behaviour) for a different linear scalar partial differential equations modelling the pure
convection, the convection-diffusion and the convection-production flow problems. Further
it follows a description of an extension of finite difference methods from linear to non-
linear cases. Conclusions drawn for finite difference methods for linear scalar equations
presented in the first part are used for the analysis of properties of finite volume methods
for multidimensional nonlinear problems (the choice of discretization, the estimates for the
time step, the choice of splitting, . . . ).

The second part deals with the numerical solution of an inviscid and a laminar transonic
flow in turbine cascades modelled by the Euler or the Navier-Stokes equations respectively.
The used finite volume method for structured grids is based on the Lax-Wendroff scheme
described in the first part. an appropriate mathematical formulation and a numerical
approximation of boundary conditions are discussed for the cases of flow in 2D/3D ax-
ial/radial turbine cascades. The mathematical formulation and the numerical realization
of outlet boundary condition for the case of flow with shock waves in the outlet part is de-
scribed in more details. Further a numerical realization of computation on a non-periodic
multi-block grid is presented. A particular attention is paid to the quality of computational
grid. The applicability of used numerical method for real flow cases has been verified by
means of numerical results of an inviscid and a laminar 2D flow in the axial stator cascade
SE 1050 (QNET network); an inviscid 2D flow in radial stator and rotor cascades com-
puted in the frame of cooperation with the PBS Velká B́ıteš; an inviscid 3D flow in axial
stator and rotor of the last stage of 1000 MW turbine Škoda computed in the frame of
cooperation with the Škoda Pilsen; and a laminar 3D flow in a curved channel.

The formulation and the numerical solution of 3D unsteady stator/rotor interaction
problem on moving grids are proposed in the third part. Other numerical techniques,
which can be used for the modelling of the unsteady stator/rotor interaction, are also
mentioned. The finite volume method, which was developed during the author’s stay at
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Von Kármán Institute is described. This method was validated by the comparison of
numerical results with the experimental data for the NASA and BRITE (BRITE-EURAM
program) stages.

The fourth part deals with a transonic flow of wet steam. It starts with the description
of a model of condensation, which is based on the Šejna’s model [60]. However several
material properties which were in the Šejna’s model considered as constants are taken
as functions of temperature (e.g. specific heat ratio). Improvements of the relation for
nucleation rate as well as modifications improving the original Hill’s approximation [38]
for the description of droplets are presented. The equations describing the wet steam
flow have from mathematical point of view stiff character due to the fast phase changes.
Therefore a particular version of fractional step method with the different time steps for
individual sub-problems is proposed. This method is analyzed in the firts part using
the scalar equation as well as by 1D operators. Numerical results of quasi-2D and 2D
transonic flow of condensing steam in convergent-divergent nozzle are compared with the
experimental data of Barschdorff [8] as well as with the numerical data of Dykas [16].
Finally, numerical results of 2D inviscid and laminar transonic flow of condensing steam
in the axial turbine cascade SE 1050 are discussed.

2 The goals

The goals of the presented work are:

1. to analyze properties of the Lax-Wendroff scheme for the linear scalar equations mod-
elling the pure convection, the convection-diffusion and the convection-production
flow problems by means of the finite difference method, eventually to find possible
improvements of this scheme for particular flow problems.

2. to develop and to validate a finite volume method for the solution of an inviscid and a
viscous flow, i.e. to find an appropriate mathematical formulation and numerical real-
ization of boundary conditions for a transonic flow in 2D/3D axial/radial stator/rotor
cascades, to find a proper artificial dissipation term with regards to applicability to
real flow cases (Re ≈ 106), and to find a suitable type of a computational grid.

3. to propose an appropriate problem formulation for the case of unsteady stator-rotor
interaction on moving grids, and to develop and to validate a finite volume method
for the solution of 3D unsteady inviscid stator-rotor interaction in axial stage.

4. to propose a suitable problem formulation for the case of two-phase flow of condensing
steam in complex geometries, to develop and to analyze a numerical method for the
solution of stiff problem of two-phase flow of condensing steam, and to validate the
numerical method using suitable real flow cases (inviscid and laminar 2D flow of
condensing steam in nozzles and turbine cascades).
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3 Scalar equations for model problems

Finite volume methods applied for multi-D flow problems are based on finite difference
methods for corresponding scalar equations. We draw an attention in the following scalar
equations: a pure convection equation (it corresponds to an inviscid flow without body
forces), a convection-diffusion equation (it models a viscous flow without body forces) and
a convection-production equation (it represents an inviscid flow with a source term due
to body forces or with a condensation). For each case we analyze first the Lax-Wendroff
scheme for a linear problem. Stability conditions are derived using the Von Neumann spec-
tral analysis and a truncation errors are checked by means of modified equations, which
also provide an information about dispersive or dissipative behavior of schemes. Moreover
two different artifical dissipation terms are discussed (stability conditions, modified equa-
tions) and a further numerical scheme (Runge-Kutta scheme) is shown. Possible extensions
of schemes for a nonlinear problems are also presented. For a convection-diffusion equa-
tion is discussed the discretization of diffusion term. In the part describing a convection-
production equation it is presented not only a Lax-Wendroff scheme, but also a fractional
step method based on the Lax-Wendroff scheme for the pure convection part and the
Runge-Kutta scheme for the production part. Both numerical methods are compared from
the point of view of stability and of truncation error. Furthermore a two different splitting
techniques in the fractional step method are discussed.

4 Transonic flow in cascades

The inviscid flow model (the Euler equations) helps to validate the discretization of convec-
tive terms. It also yields a basic idea about the influence of computational grid and about
the adjustment of artificial viscosity coefficients. Moreover it provides a valuable informa-
tion about the flow with a dominant potential effect (accelerated flow without separation).
The laminar flow model (the Navier-Stokes equations) for a high Reynolds number flow is
an artificial step in the development of a method for a turbulent flow. It helps to verify
the grid influence, the discretization of viscous terms and the applicability of numerical
method for high Reynolds number flows (balance between physical and artificial viscosity).

A numerical method is based on a cell-vertex finite volume discretization and the Lax-
Wendroff scheme.

4.1 Governing equations, numerical method

A laminar transonic flow is modelled by the system of Navier-Stokes equations (1) – equa-
tions are written in the Cartesian frame which can rotate around x–axis at a constant
angular velocity Ω. The system of equations is closed by the relation (3) for the pressure
p.

∂

∂t
W = − ∂

∂x
Fc +

∂

∂x
Fv − ∂

∂y
Gc +

∂

∂y
Gv − ∂

∂y
Hc +

∂

∂y
Hv + P, (1)
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W = [ρ, ρux, ρuy, ρuz, e]
T ,

Fc = [ρux, ρu2
x + p, ρuxuy, ρuxuz, (e + p)ux]

T
,

Fv = [0, τxx, τxy, τxz, uxτxx + uyτxy + uzτxz − qx]
T ,

Gc =
[

ρuy, ρuyux, ρu2
y + p, ρuyuz, (e + p)uy

]T
,

Gv = [0, τxy, τyy, τyz, uxτxy + uyτyy + uzτyz − qy]
T ,

Hc = [ρuz, ρuzux, ρuzuy, ρu2
z + p, (e + p)uz]

T
,

Hv = [0, τxz, τyz, τzz, uxτxz + uyτyz + uzτzz − qz]
T ,

P = [0, 0, ρ(Ω2y − 2Ωuz), ρ(Ω2z + 2Ωuy), 0]
T

,

(2)

p = (γ − 1)

[

e − 1

2
ρ

(

u2
x + u2

y + u2
z

)

+
1

2
ρΩ2(y2 + z2)

]

, (3)

where the symbol ρ denotes density, ux, uy and uz velocity components, p pressure, e total
energy per unit volume, τ shear stress, q heat flux, t time, x, y and z the spatial coordinates,
γ the specific heat ratio, superscripts ·c the convective and ·v the viscous fluxes.

The domain of solution D ⊂ R3 for a cascade flow calculations consist usually of one
blade passage. The solution W : D → R5 has to fulfill the integral form (4) of equation
(1) for any subset V ⊂ D and boundary conditions along boundary ∂D.

∂

∂t

∫∫∫

Vi,j,k

W dV = −
∫∫∫

Vi,j,k

(Fx + Gy + Hz − P) dV. (4)

×

×
×

×
×

××

×××

××

× ×
×××

point Pi,j,k

Vi,j,k

V’i,j,k

Figure 1: Finite volumes Vi,j,k and V ′

i,j,k

The cell-vertex finite volume method based on the Lax-Wendroff scheme on structured
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hexahedral grid can be written in the following two steps

Wt

∣

∣

n

i,j,k
= − 1

µ(Vi,j,k)

∮∮

∂Vi,j,k

(F(1),G(1),H(1)) ~n∂V dS +
1

µ(Vi,j,k)

∫∫∫

Vi,j,k

PdV

Wn+1
i,j,k = Wn

i,j,k + ∆tWt

∣

∣

n

i,j,k
+

∆t2

2µ(V ′

i,j,k)

∫∫∫

V ′

i,j,k

PWWt

∣

∣

n

i,j,k
dV ′−

− ∆t2

2µ(V ′

i,j,k)

∮∮

∂V ′

i,j,k

(

F
(0)
W

Wt

∣

∣

n

i,j,k
,G

(0)
W

Wt

∣

∣

n

i,j,k
,H

(0)
W

Wt

∣

∣

n

i,j,k

)

~n∂V dS ′ + DISn
i,j,k,

(5)

where
F(ξ) = Fc − ξFv, G(ξ) = Gc − ξGv, H(ξ) = Hc − ξHv (6)

and the symbols FW, GW, HW and PW denote Jacobi matrices. According to the scheme
for scalar equation the Jacobi matrixes are evaluated only for inviscid fluxes (ξ = 0). The
DISn

i,j,k is the conservative form of artificial viscosity term with the second and fourth
order derivatives according to Stringer and Morton [59]

For the evaluation of shear stresses τ and of heat fluxes q we need all space derivatives of
all velocity components and of temperature T . The x-derivatives are calculated as follows

∂

∂x









ux

uy

uz

T









∣

∣

∣

∣

∣

∣

∣

∣

i,j,k

=
1

µ(Vi,j,k)

∫∫∫

Vi,j,k

∂

∂x









ux

uy

uz

T









dV =
1

µ(Vi,j,k)

∮∮

∂Vi,j,k









ux

uy

uz

T









nx
∂V dS, (7)

the y and z-derivatives are calculated analogically. For practical use all integrals are
replaced by sums over cell volume or faces. We have also tested a numerical method, where
the time derivatives of fluxes are not calculated using Jacobi matrixes, but numerically.

We use structured quadrilateral (2D) or hexahedral (3D) grids. The simplest structured
grid is the algebraically generated H-type grid, which can be generated very easily, however
it discretizes poorly the leading and trailing edge regions, especially for thick leading and
trailing edges. Improvements of the discretization of leading and trailing edge regions can
be reached by using the H-type mesh created by elliptic generator. Further improvements
brings the O-H multi-block grid, which eliminates the grid distortion close to leading and
trailing edges.

The component of inlet velocity, which is normal to the inlet boundary, is considered
to be subsonic. Therefore according to the theory of characteristics we have to prescribe
’number of unknowns minus one’ parameters and to take ’one’ from a solution domain at
the inlet boundary. The implementations for particular cases of flow in 2D/3D stator/rotor
cascades are described.

The component of outlet velocity, which is normal to outlet boundary, is also considered
to be subsonic, therefore according to the theory of characteristic we have to prescribe
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’one’ parameter and to take ’number of unknowns minus one’ from a solution domain.
The simplest implementations of this condition is a constant value of pressure pout along
the whole outlet boundary. Since this condition ignores any pressure gradient along the
outlet boundary, its use for transonic flow (unphysical shock reflections) and for radial
cascades (outlet boundary is very close to trailing edges) is very limited. The aim of the
so called non-reflecting boundary condition is to suppress the influence of the flow field
by the position of computational domain boundary. One of the possibilities for cell-vertex
methods is the formulation published by Giles [32] and [34]. The non-reflecting outlet
boundary condition of Giles is relatively complicated and it was derived for axial cascade,
cell-vertex finite volumes and uniformly spaced grid points along the outlet boundary. We
propose simpler condition (further called ’integral of pressure’), which can be used for any
type of finite volumes and it is not limited to axial case as well as to uniform spacing of
grid points, see 2D Eq.(8), where 0 < ζ ≤ 1 is relaxation parameter.

pj = f(Wn+1
imax,j)

p∗j = (1 − ζ) · pj + ζ · pj ·
pout

pj

en+1, corrected
imax,j = f(ρn+1

imax,j, ~u
n+1
imax,j, p

∗

j)

(8)

This condition yields the same flow field structure like the non-reflecting outlet boundary
condition of Giles.

4.2 Inviscid flow in 2D axial cascade

Numerical results of inviscid flow in 2D axial cascade show the grid influence. The alge-
braically generated H-type grid causes an unphysical production of entropy at the leading
and the trailing edges, which can be seen as a distortion of isolines of the Mach number
close to the profile and a wake-like structure downstream the trailing edge. An elliptic
H-type grid suppresses the unphysical entropy production at the leading edge, however
the wake-like layer, is still strong. The O-H multi-block grid suppresses also the wake-like
layer. Presented results show, that for the discretization of leading edge is important a
sufficient number of grid points, while the grid distortion is not of a great importance. The
discretization of trailing edge region is also discussed.

4.3 Inviscid flow in 2D radial cascades

Flow parameters like flow angle, static pressure, etc. in the case of spiral flow (flow in
radial cascades) depend on radius, i.e. unlike to axial cascades we cannot prescribe the
same boundary conditions if we shift the inlet or the outlet boundary. Moreover the outlet
boundary radius cannot be smaller than critical radius (radius, at which the radial velocity
becomes sonic). Since the parameters necessary for the boundary conditions are not usually
available at required radius they must be recalculated, see Fořt [18].

There is a lack of experimental data available for the radial cascades. The design of
these cascades is mainly based on the knowledge of axial cascades. Numerical results
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therefore yield valuable information. We present a sample of numerical results computed
within the frame of the cooperation with PBS Velká B́ıteš. The numerical results show the
inviscid transonic flow in two plane cascades, one axial and one radial (see Fig. 2), with
the same throat to chord ratio and composed of the same blade profiles. The equivalent
boundary conditions were imposed for both cascades. The calculations of flow in radial
cascade takes into account Coriolis and centrifugal forces. The effect of blade channel
convergence as well as the effect of rotation are discussed. Numerical results show that the
radial configuration provides a higher work output.

Figure 2: Radial (left) and axial (right) configuration.

4.4 Inviscid flow in 3D axial cascades

The numerical results of transonic flow in 3D axial turbine stator from the low pressure
steam turbine stage of Škoda Pilsen Turbines show the abilities of presented cell-vertex
numerical method to cope with a complex 3D geometry (big divergence of tip casing). Used
algebraic H-type grid has about 5 · 104 points. Constant values of stagnation quantities
and axial flow direction have been imposed at the stator inlet. Outlet static pressure
has been prescribed as a function of radius. The figure 3 show the blade geometry and
isolines of Mach number in three cuts for TVD MacCormack scheme (Fürst [27], constant
outlet pressure), former cell-vertex scheme (artificial dissipation term according to Fořt
et al [25], constant outlet pressure) and presented cell-vertex scheme (integral of pressure
in the pitch-wise direction at the outlet). We can observe a relatively good agreement
in flow field structure for all schemes. The constant pitch-wise distribution of the outlet
pressure for the TVD MacCormack and for the former cell-vertex method causes a visible
distortions of Mach number isolines. Presented results show that the presented cell-vertex
method is less dissipative than the former one and that the integral of pressure at the
outlet is applicable also for 3D steady case.

The flow in a rotor cascade with highly twisted blades from the same stage as the
previous stator has been computed in relative frame of reference. Radial distributions of
total relative density ρrel,0, total relative speed of sound arel,0 and relative flow angles,
which we prescribe at the rotor inlet, were computed from W at the stator outlet and
from angular velocity Ω.
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(a) TVD MacCormack scheme, Fürst [27] (b) the former cell-vertex method

XY
Z

(c) the presented cell-vertex method

Figure 3: 3D turbine stator, isolines of Mach number (∆M = 0.05) in three grid planes
15%, 50% and 85% of span from the hub.

The figure 4 shows the isolines of relative Mach number obtained by TVD MacCormack
scheme (Fürst [27], the frozen rotor case) and the former cell-vertex method for both
the frozen rotor case (Coriolis and centrifugal forces are not taken into account) and the
rotating rotor case. We can see a relatively good agreement in flow field structure for the
frozen rotor case for the both methods. The results computed by the former cell-vertex
method show the influence of rotation (compare the frozen and the rotating rotor cases).
This influence is most dominant at the rotor hub.
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(a) TVD MacCormack scheme, Fürst [27],
the frozen rotor case.

(b) the former cell-vertex method, the
frozen rotor case.

(c) the former cell-vertex method, the ro-
tating rotor case.

Figure 4: 3D turbine rotor, isolines of relative Mach number (∆M = 0.05, marked isoline
denotes the sonic line) in the grid plane located at the hub.

4.5 Laminar flow in 2D axial cascade SE1050

Although the laminar flow model is artificial for high Reynolds numbers, its numerical
solution shows the applicability of methods for high Reynolds number flow calculations.
After this necessary step, the presented method will be in future extended for a computation
of turbulent flows.

The comparison of numerical results obtained by the presented cell-vertex method with
the results of Roe scheme (Dobeš et al [12]) for Re = 1.5 · 106 is shown in the Fig. 5. The
same elliptical H-type grid was used for the both methods. The overall agreement of
numerical results is good. The pressure distribution along the blade profile obtained by
the presented cell-vertex method fits better the experimental data. The comparison with
the experimental data is possible also for the results of laminar flow model, because Šťastný
and Šafař́ık reported in [62] that the boundary layer is laminar along the whole pressure
side and on the suction side it is laminar up to re-compression domain.
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(b) laminar flow model, Mach number iso-
lines, the presented cell-vertex method

0 0.2 0.4 0.6 0.8 1
chord

0

0.2

0.4

0.6

0.8

1

p/p0

laminar (Roe)
laminar (cell-vertex)
experiment
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Figure 5: The flow in SE1050 turbine cascade

4.6 3D curved channel

The secondary flow with two counter-rotating vortices in a curved duct can be found in
almost each fluid mechanics textbook. Later investigations, done e.g. by Bara et al [7], have
discovered next pair of counter-rotating vortices for the flow with higher Dean numbers
De = Re/

√
C, where C = R/dh is non-dimensional radius, R the inner radius and dh the

hydraulic diameter. The margin between two- and four-vortex structures is called critical
Dean number (it is a function of C).

All calculations presented in this section were done for Dean numbers close to critical
value, i.e. for small Reynolds numbers, where the use of laminar flow model is appropriate.
The results of the former cell-vertex method are compared with the results of the Runge-
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Kutta multistage scheme for steady incompressible laminar flow (Fořt et al [23]).

(a) cell-vertex scheme (b) cell-vertex scheme (lower artificial dissipation)

(c) Runge-Kutta scheme (Fořt et al [23])

Figure 6: The secondary flow structure, De = 316 < Dec, C = 2.5 and α = 140◦.

A curved channel with the constant square cross-section, turning angle 180◦ (0◦ cor-
responds to the inlet and 180◦ to the outlet) and inner radius equal to 1 has been used
for all calculations. Numerical tests have shown that the flow field is very sensitive to the
parameters of numerical methods such as the amount of artificial velocity, see Fig. 6. The
big anti-clockwise rotating vortex in the Fig. 6.a has the same position like the one in Fig.
6.c. The clockwise rotating vortex is negligible. There is another anti-clockwise rotating
vortex in the lower right corner, which rapidly increases its strength in the case of lower
amount of artificial viscosity, see Fig. 6.b. The clockwise rotating vortex in Fig.6.b is
stronger and shifted a bit leftwards.

5 Unsteady inviscid transonic flow in axial stages

The promising results of the numerical study of the unsteady stator/rotor interaction done
by a quasi 3D Euler code during the participation of author at Diploma course 1997-98 at
VKI and mainly the new experimental data, which were gathered at VKI’s CT3 facility
and which provide a good database for a validation of 3D unsteady numerical simulations,
have led to a decision to develop the own 3D Euler code in order to better understand
which unsteady effect is of potential and which is of viscous nature.

Numerical solution of the unsteady stator-rotor interaction brings mainly these diffi-
culties:

• due to the different number of blades in the stator and in the rotor cascades the
periodicity conditions need a special treatment,
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• the relative movement of cascades has to be handled,

• the gap between stator and the rotor is very narrow (less than blade chord), so there
are problems at least with the grid generation.

For the periodicity we use the idea of Rai and Madavan [54] and Dawes [10], i.e. we
use a computational domain composed of m stator and n rotor pitches, where mPS = nPR

and m and n are small integers, see Fig. 7. The periodicity conditions are then given by
equations (9)

W(A) = W(B),

W(C) = W(D),
(9)

and do not require any special implementation.

x

y
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A C
flow

m
ot
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n

Figure 7: A computational domain composed of m = 2 stator and n = 3 rotor pitches.

The use of any kind of boundary condition along the stator-rotor interface is avoided
by applying a relatively simple technique of ’interface cells’, proposed by Giles [33] and
[34]. Both stator and rotor grids have the same number of uniformly spaced points along
interface, so they can be connected directly by grid lines, see Fig. 8.

Figure 8: The interface between the stator and the rotor grid for an unsteady stage calcu-
lations.

13



Marked points denote the interface cell. The grids are overlapped over one cell row,
therefore the same finite volumes (like for points inside the domain) can be used in points
along the interface. The relative movement of grids is provided by the deformation of
interface cells during the grid movement. The grids are periodically reconnected in a
proper moment in order to avoid excessive cell deformation, see four consequent views in
Fig. 8.

5.1 Unsteady flow in NASA stage

The NASA stage with 36 vanes and 64 blades published by Moffit et al [51] has been chosen
for the first numerical tests. Calculations have been performed on the domain composed
of three stator and five rotor blade passages, see Fig. 9, it corresponds to a stage with 36
vanes and 60 blades (number of vanes remained - the stator throat is kept).

X

Y

Z

p

point to point periodicity

non-permeability cond.

p0, T0

α, µ

Figure 9: Computational domain and boundary conditions for an unsteady stage calcula-
tion (α and µ denote the pitch and yaw angle respectively).

The algebraic H-type grid for whole computational domain (3 stator and 5 rotor blade
passages) amounts about 60 thousand points. The table 1 shows the comparison of mea-
sured (Moffit et al [51]) and calculated time-average flow angles and a mass flow rate.
Symbols α and β denote the absolute and relative flow angles respectively. Index ·1 is used
for the stator exit and index ·2 for the rotor exit. Calculated values of angles α1 and β2

fit very well the measured data. The higher calculated mass flow rate (no boundary layer
blockage for an inviscid flow model) results in a slightly different angles α2 and β1.

14



measured [51] calculated

α1 [◦] 72.25 72.00
β1 [◦] 48.26 49.37
α2 [◦] -22.60 -19.75
β2 [◦] -56.40 -56.46
ṁ [kgs−1] 3.708 3.938

Table 1: The comparison of the time-pitch averages of flow angles at midspan and the
comparison of mass flow rate

5.2 Unsteady flow in BRITE stage

The real stage is composed of 43 stator and 64 rotor blades. A domain composed of two
stator and three rotor blade passages has been chosen as a good approximation, i.e. a
slight change of the number of blades is necessary, either 42 stator and 63 rotor blades
(’42/63’ case) or 44 stator and 66 rotor blades (’44/66’ case).

Two elliptical H-type computational grids with different number of points were gener-
ated by the ’JERRY’ grid generation code of Arnone [1]. The ’basic’ grid has about 4 · 105

points and the ’fine’ grid about 6 · 105 points for the whole domain.
The time averaged distributions of Mrel fit very well the experiment (the agreement is

better than for the numerical results published by Laumert et al [47], computed by the
Navier-Stokes solver VOLSOL). The flow acceleration on a front part of the rotor suction
side is well predicted at 15% and 50% (Fig. 10) and slightly over-predicted at 85% of the
span.

0.0 0.5 1.0
x

0.0

0.5

1.0

1.5

Mrel

experiment
calculation 42/63, basic grid
calculation 42/63, fine grid

Figure 10: The time-averaged distribution of the relative Mach number around rotor blade
at 50% of the span - comparison with the experimental data of VKI (Valenti et al [63]).

The example of unsteady results in form of static pressure traces for the 42/63 case
on the basic grid is in the Fig. 11. The pressure traces for the particular probes in the
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mentioned graph show the fluctuations with respect to the mean value (time average in
considered probe location) and their plots are equidistantly distributed along y-axes. The
computed unsteady results fit very well the experimental data (the agreement is again
better than in Laumert et al [47]).
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Figure 11: The time-resolved distribution of pressure at the specified locations on a rotor
blade at 50% of the span - comparison with the experimental data of VKI (Valenti et al
[63]).

6 Two-phase transonic flow of condensing steam

Condensation may appear during an expansion of vapor. The condensation itself is some-
times desired (e.g. for drying of earth gas through an expansion in nozzle) and sometimes
undesired (e.g. it decreases the efficiency and durability of steam turbines). Condensation
in turbomachinery applications is important issue mainly for the last stages of low–pressure
part of steam turbine (used for production of electrical energy), since it is non-negligible
loss source. Heat released by condensation in supersonic region may cause a steep pressure
raise called condensation shock, which can be both steady or unsteady. Complex measure-
ments on real turbine are complicated, therefore numerical predictions of condensation of
transonic flow of wet steam yield valuable informations for the design of such turbines.

Presented flow model is an extension of Šejna’s work [60]. The flow of the mixture is
approximated by an inviscid or laminar flow models described by the quasi-2D and the 2D
Euler or 2D Navier-Stokes equations respectively. We consider following simplifications for
the modeling of liquid phase:

• condensation is homogenous,

• the droplets are convected by the vapor - there is a zero slip velocity between the
mixture and the droplets,

• the steam has small wetness - volume of droplets can be neglected,

• the pressure of the mixture is approximated by the pressure of vapor,
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• vapor is the perfect gas,

• droplets are described by the Hill’s approximation [38].

The condensation process has two different mechanisms. The first one - a nucleation -
is the creation of new droplets with radius equal to critical radius. We use the nucleation
rate relation according to Becker and Döring [9]

J =

√

2σ

πm3
v

· ρ2
v

ρl

· exp

(

−β · 4πr2
cσ

3kBTv

)

[m−3s−1], (10)

rc =
2σ

ρlRvTvln(pv/ps)
[m]. (11)

The symbol σ denotes the surface tension of water (for straight surface), mv the mass of
one water molecule, ρv the vapor density, ρl the density of liquid phase, rc the critical
radius, kB the Boltzmann constant, Tv the vapor temperature, Rv the gas constant, pv the
vapor pressure, and ps the saturation pressure. The value of surface tension is corrected
by the coefficient β, see Petr and Kolovratńık [53]

β = 1.328p0.3
cor ± 0.05, (12)

where pcor [bar] denotes the pressure at the intersection of the expansion and steam satu-
ration lines. We consider an isentropic expansion for this purpose, see Fig. 12.
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Figure 12: Calculation of pcor.

The second mechanism is the growth ṙ of already existing droplet (relation according
to Valha [64])

ṙ =
λv∆T

Lρl(1 + 3.18 · Kn)
· r − rc

r2
[ms−1],

Kn =
ηv ·

√
2πRvTv

4rpv

[1],

(13)
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where λv is the vapor thermal conductivity, ∆T is the difference between temperature of
vapor and liquid phase, r is the droplet radius, L is the latent heat of condensation, Kn is
the Knudsen number and ηv is the vapor dynamic viscosity.

The Hill’s approximation uses following three parameters for the whole droplet spectra:

Q0 = n, Q1 =
n
∑

i=1

ri, Q2 =
n
∑

i=1

r2
i , r =

〈

0, w ≤ 10−6

√

Q2/Q0, w > 10−6
, (14)

where n denotes the total number of droplets per unit mass of mixture, ri is the radius of
i-th droplet, r is the average radius and w is wetness - the mass fraction of liquid phase.
The limit value 10−6 for wetness was chosen according to numerical tests in order to get
stable numerical solution.

The Navier-Stokes equations for the 2D flow of mixture and the conservation law equa-
tions for Q0, Q1, Q2 variables can be written together as one system of partial differential
equations in conservative form (15)

∂

∂t
W = − ∂

∂x
Fc +

∂

∂x
Fv − ∂

∂y
Gc +

∂

∂y
Gv + Q, (15)

W = [ρ, ρux, ρuy, e, ρw, ρwQ2, ρwQ1, ρwQ0]
T ,

Fc = [ρux, ρu2
x + p, ρuxuy, (e + p)ux, ρwux, ρwQ2ux, ρwQ1ux, ρwQ0ux]

T
,

Fv = [0, τxx, τxy, uxτxx + uyτxy − qx, 0, 0, 0, 0]T ,

Gc =
[

ρuy, ρuyux, ρu2
y + p, (e + p)uy, ρwuyρwQ2uy, ρwQ1uy, ρwQ0uy

]T
,

Gv = [0, τxy, τyy, uxτxy + uyτyy − qy, 0, 0, 0, 0]T ,

Q =
[

0, 0, 0, 0, ρ
(

4
3
πr3

cρl
J
ρ

+ 4
3
π3Q2ṙρl

)

, ρ
(

r2
c

J
ρ

+ 2Q1ṙ
)

, ρ
(

rc
J
ρ

+ Q0ṙ
)

, ρJ
ρ

]T

,

(16)

where the symbol ρ denotes mixture density, ux and uy mixture velocity components, p
pressure, e total energy of mixture per unit volume, τ shear stress, q heat flux, t time and
x and y spatial coordinates. The first four and the last four equations are coupled by the
equation for the pressure according to Šejna [60]:

p = (γ − 1)
(1 − w)

1 + w(γ − 1)

[

e − 1

2
ρ(u2

x + u2
y) + ρwL

]

, (17)

where γ = γ(W) is the specific heat ratio. Numerical tests shown a better fit to experi-
mental data if the specific heat ratio is considered as a local function of vector of unknowns
γ = γ(W) opposite to the case when it is considered as a constant (e.g.Šejna [60]).

The time step necessary for modeling of condensation corresponds to relaxation time
τ , which is smaller than the time step suitable for convection. Basic concept of numerical
method is described in Eq. (18). The convection part is solved by an explicit finite volume
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cell-vertex method described in the third chapter. The condensation part is solved by the
explicit two stage Runge-Kutta method. We have also tested one- and four-stage explicit
Runge-Kutta methods, tests shown the two-stage method as a good choice.

∂

∂t
W= Q N steps

∆t

2N
by RK-2 method,

∂

∂t
W= − ∂

∂x
Fc +

∂

∂x
Fv − ∂

∂y
Gc +

∂

∂y
Gv one step ∆t by cell-vertex m. ,

∂

∂t
W= Q N steps

∆t

2N
by RK-2 method,

(18)

where N = ∆t
τ

.
As an initial conditions we usually prescribe the total inlet parameters (i.e. zero flow

velocity) inside the whole domain. The boundary conditions are specified according to the
different parts of boundary: we prescribe the total pressure and temperature, flow angle
and w = Qi = 0 at the subsonic inlet; the non-permeability or the no-slip together with
adiabatic wall conditions for inviscid or laminar flow respectively; point-to-point period-
icity; and the mean value of pressure or no condition at the turbine or the nozzle outlet
respectively. Marching in time and using steady boundary conditions we get either a steady
or a periodical unsteady solution. Presented method can be used also for unsteady cases.
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Figure 13: Barschdorff nozzle I [8] - computational domain

Figure 13 shows computational domain for the Barschdorff nozzle I [8]. Numerical
results for two cases of inviscid two-phase flow in Barschdoff nozzle with the same inlet
total pressure p01 = 78390Pa and two different inlet total temperatures are shown in
the Fig. 14. Heat released by the nucleation slows down the supersonic flow, resulting
in pressure jump (called condensation shock). The position of nucleation start (i.e. the
position of condensation shock) strongly depends also on used correction β (Eq. (12)).
Such corrections are obtained from a set of experimental data. The pressure distributions
in Fig.14 show a well captured position of nucleation start. The magnitude of pressure
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rise for T01 = 373.15K (Fig.14 on the right) is slightly over-predicted most probably due
to used inviscid flow model (higher jump is expectable without physical viscosity).
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Figure 14: Pressure distribution along the Barschdorff nozzle axis, experimental data from
Barschdorff [8], T01 = 380.50K (on the left), T01 = 373.15K (on the right).

The results of numerical tests for 2D transonic flow in a turbine cascade are also dis-
cussed.

7 Conclusions

The goals stated in the beginning of presented work were successfully fullfiled.

1. The finite difference methods for the linear scalar equations analyzed in the sec-
ond chapter were used as a basis for all the presented finite volume methods. The
favourable properties of the proposed finite difference method based on the splitting
technique have been shown for the case of the convection-production equation. This
finite difference method has been successfully used for the development of numerical
method for the transonic flow of condensing steam.

2. The numerical method for the solution of 3D laminar transonic flow based on finite
volumes of cell-vertex type for structured grid was developed and validated. During
the method development were tested modifications of

• inlet boundary condition: variants for 2D axial cascades, 2D radial cascades
(combination of absolute and relative frame of reference in the case of rotor)
and 3D axial cascades (the distribution of total relative parameters is considered
for the rotor)

• formulation of outlet boundary condition: constant value of pressure (it fails
for the case with a bigger pressure gradients along the boundary, which are
typical for transonic flow), non-reflecting condition of Giles for a steady flow
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(rather complicated and limited to cell-vertex type of finite volumes and to
axial cascades) and proposed ’integral of pressure’ (comparable to non-reflecting
condition, in addition suitable for any type of finite volumes and also for radial
cascades)

• periodicity condition: common point to point periodicity and ghost cells for
non-matched grids

• structured computational grid: algebraically generated H mesh (unphysical pro-
duction of entropy at leading and trailing edge as a consequence of poor dis-
cretization of these regions), H mesh created from several parts obtained by
elliptic generator, which are smoothed as a whole (unphysical production of en-
tropy only at trailing edge), multi-block O-H mesh (unphysical production of
entropy also at trailing suppressed thanks to nearly orthogonal mesh close to
trailing edge and to grid coarsening downstream the trailing edge)

Numerical results of presented cell-vertex method were successfully verified using the
numerical results of independent numerical methods of other authors as well as using
the available experimental data. Obtained results were used in Škoda Energo enter-
prise and in PBS Velká B́ıteš company. Results were also published on international
conferences, e.g. Babák et al [6], Dobeš et al [13], Fořt et al [21], [22], [23], [24] and
[25].

3. The numerical method for the solution of 3D unsteady inviscid stator/rotor interac-
tion based also on finite volumes of cell-vertex type for structured grid was developed
and validated.

• the influence of deformation of interface cells as well as the influence of grid re-
connection for the matching of stator and the rotor by ’interface cells’ technique
of Giles was tested (this influence was found negligible)

Numerical results together with the experimental data of Von Kármán Institute were
used for analysis of individual flow phenomena in stator/rotor interaction. Compar-
ison of numerical results with the experimental data were published on international
conferences, see Halama and Arts [35], Halama et al [36] and Valenti et al [63].

4. The numerical method for the solution of 2D two-phase transonic flow with conden-
sation was developed and validated.

• all material properties are taken as functions of temperature and/or pressure
(e.g. specific heat ratio)

• classical relation for nucleation is corrected according to Petr and Kolovratńık

• used fractional step method provides sufficiently robust numerical method and
enables easy extension into 3D
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• all terms describing condensation are treated strictly locally (small time steps
are used only where it is necessary, i.e. extra computational time with respect
to the case without condensation is reasonable)

Numerical results have been already published at international conference GAMM
Jahres Tagung 2003 in Padua and are accepted for the International Workshop on
Multiphase and Complex Flow Simulation for Industry in Cargèse 2003.

The development of presented numerical methods will further continue. The ideas for
the future work are:

• to extend existing numerical methods for the turbulent flow by implementing an
appropriate turbulence model;

• to develop an implicit or a semi-implicit numerical method;

• to extend the two-phase flow calculation into 3D case.
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[22] Fořt J., Fürst J., Halama J., Kozel K.: Comparison of two finite volume
methods for 3D transonic flows through axial cascades, Proceedings of ’Finite Volumes
in Complex Applications II’, Duisburg, 1999, pp 701-708.
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