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Summary

The aim of this thesis is to develop and implement various numerical methods
suitable for solution of three-dimmensional unsteady compressible transonic
inviscid flow. The mathematical model describing the mentioned problem is
derived with the use of the basic conservation laws in the first part of the
thesis. At first only the steady state with adequate boundary conditions is
considered. Then the Arbitrary Lagrangian-Eulerian method and Small Dis-
turbance theory are used for description of unsteady flows. Various numerical
FVM schemes are proposed in the second part. The emphasis is placed on
their ability to capture important flow characteristics. Because the considered
case is transonic and unsteady, it is characterized by the occurance of shock
waves, which may be interpreted as discontinuities in the physical quantities
used for flow description. In order to simulate them correctly, some high-
order schemes are constructed. Obtained numerical results are successfuly
compared with numerical results of other authors and also experimental data
from IT CAS, AGARD and ONERA for both steady and unsteady cases.

Shrnutí

Cílem této disertační práce bylo navrhnout a implementovat numerické metody
pro řešení 2D a 3D stacionárního a nestacionárního transsonického stlačitel-
ného proudění ve vnější aerodynamice. V první části je pomocí základ-
ních zákonů zachování odvozen matematický model vhodný pro popis uvažo-
vaných případů proudění. Při jeho odvozování je nejprve uveden stacionárni
stav (spolu s odpovídajícími okrajovými podmínkami), který je posléze po-
mocí metod SDT a ALE rozšíren i na nestacionární případy. Druhá část je
věnována návrhu numerických schemat metody konečných objemů (FVM)
schopných zachytit důležité charakteristiky proudění ve zkoumaných pří-
padech. Uvažovaný režim je převážně transsonický a nestacionární a je tedy
charakterizován mimo jiné výskytem tzv. rázových vln, které lze interpreto-
vat jako nespojitosti v rozložení veličin popisujících proudění. Proto byla pro
numerickou simulaci vybrána schemata vyššího řádu přesnosti v prostoru
a čase. Odvozené metody jsou otestovány jak na stacionárních tak nesta-
cionárních případech dvou- a třírozmerného proudění pro různé typy profilů
a křídel. Získané výsledky jsou v dobré shodě s výsledky jiných autorů a ex-
perimentálními daty naměřenými na ústavech ÚT ČAV, AGARD a ONERA.
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List of Symbols

Alphanumeric Symbols

𝑐 [m] Profile chord length
𝑐𝑖𝑗 Local sound-speed, 2D
𝑐𝑝 Pressure coefficient
𝑐𝑛 Lift coefficient
𝑒 Energy
𝑓 [Hz] Frequency
𝑘 [Hz] Reduced frequency
n Unit normal vector
𝑝 [Pa] Dynamic pressure
𝑡 [s] Time
∆𝑡 [s] Time step
(𝑢, 𝑣, 𝑤) [m s−1] Velocity vector components
𝑥, 𝑦, 𝑧 [m] Spatial coordinates
x𝑟𝑒𝑓 Reference point
𝑤𝑖 i-th component of domain velocity
w Domain (grid) velocity
F,G,H Flux vectors
𝐹 𝑐, 𝐺𝑐, 𝐻𝑐 Convective flux vectors
F𝑣, G𝑣,H𝑣 Diffusive flux vectors
𝑀 Mach number
𝑃𝑟 Prandtl number
𝑅𝑒 Reynolds number
𝑇 [K] Temperature
T Nondimensional temperature
W Vector of conservative variables
𝜕𝐷𝑖 Boundary of the finite volume cell 𝐷𝑖

|𝐷𝑖| Volume (area) of the finite volume cell 𝐷𝑖

Greek Symbols

𝛼1, 𝛼2 Angle of attack
𝛼1(t) Pitching angle
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Γ Boundary of a solution domain Ω
𝜂 [m2 s−1] Coefficient of viscosity (dynamical viscosity)
𝜑0 [rad] Initial deviation angle
𝜑1 [rad] Maximal amplitude
𝜅 Gas constant
𝜌 [kg m−3] Mass density
𝜏𝑖𝑗 [m2 s−2] ij-th component of tensor of viscous stresses
𝜔 [rad · sec−1] Angular velocity
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Introduction

Non-steady flows with aeroelastic effects appear in many physical processes
of fluid dynamics including turbomachinery flows, flows in the atmosphere
boundary layer, blood flow and last but not least in wing deformations during
high-speed flight. The proper wing design is crucial for achievement of de-
sired flight characteristics of all transonic (and potentially hypersonic) public,
commercial and military freighters and fighter-planes. In the pioneer years
of supersonic flights the unsteady effects often led even to the destruction of
a wing designed for subsonic flights and therefore experiencing destructive
oscillations during the transition from subsonic into supersonic flight. Al-
though this problem has been solved a long time ago, new problems emerge
constantly with the use and discovery of new materials and procedures in
airplanes construction. Therefore the numerical simulations of mentioned ef-
fects have become an important way in their investigation because they allow
consideration of such flow regimes that would have catastrophic consequences
in reality.
The aim of this thesis is to numerically investigate behaviour of transonic
inviscid flow over an airfoil and a wing, respectively, considering forced os-
cillatory motion. In the first part the governing systems of equations are
discussed. These are the system of Euler equation describing the flow of 3D
compressible inviscid flow and the system of Navier-Stokes equation describ-
ing flow of 3D viscous compressible fluid. The boundary condition for the
case of general 3D system of Euler equations are shown and one of the possi-
ble ways of choosing the boundary conditions for Navier-Stokes equations is
also presented. Since no analytical solution of mentioned systems has been
discovered till today, the last chapter of the first part contains one of possible
approaches of so called weak solution definition, on the base of which the
numerical solution is derived.
The second part is devoted to numerical methods used for numerical so-
lution. Further, two methods suitable for solution of 3D unsteady prob-
lems are introduced. Namely the Small Disturbance Theory and Arbitrary
Lagrangian-Eulerian method. The mathematical background of these meth-
ods is presented and the mentioned schemes are extended into the “unsteady”
form. The penultimate chapter deals with the governing equation of profile
motion and geometry change during the unsteady computations. Properties
of computational meshes for both steady and unsteady flows are described in
the last chapter.
Numerical results achieved by the author and their comparison both with
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experimental data and numerical results of other authors form the contents
of the third part, which is divided in two chapters. The first contains the
results of simulation of steady inviscid and laminar flows and the second deals
with the unsteady simulation of inviscid flows. Both 2D and 3D subsonic and
transonic flows are considered.

State of the Art

In present days there are generally available two ways of numerical investi-
gation of unsteady flows (as for example flow around an oscillating wing -
either with forced oscillatory motion or experiencing aeroelastic effects due
to flutter). The first is use of some of the commercial software packages as
FLUENT, ANSYS CFX, NASTRAN or STAR-CD which are however able to
handle only particular unsteady problems of aeroelasticity or hydroelasticity
and are limited mainly to linearised models. When a need for investigation
of more complex problems arise simulation of the particular problem with a
self-implemented method can be the second option. The advantage of this
approach is better adaptation of the chosen method to the problem and also
the inconsiderable possibility of modification of the code to fit demands laid
on the numerical solution. The widely-used modern FVM schemes are based
on TVD [47], ENO [35], Residual Distribution [36] and/or specific numerical
flux computation (AUSM, HLLC... [39]) approach usually combined with
Large-Eddy Simulation [34]. The unsteady effects are prevailingly modelled
with the use of ALE [26] method (although for small changes of the reference
frame the SDT can also be used). The recent knowledge on unsteady flows
and aeroelasticity is summarised in [32].

Objectives of the Work

The main objectives of this work are to develop and implement various nu-
merical methods for numerical solution of two and three-dimensional steady
and unsteady inviscid transonic flow around an oscillating profile and a swept
wing. This goal can be divided in following steps:

∙ Definition of mathematical model.

∙ Development and implementation of various modern high-order numer-
ical schemes based on TVD approach in two dimensions.

∙ Implementation of suitable boundary condition in two dimensions.
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∙ Implementation of unsteady effects (prescribed oscillations of the pro-
file) using two different techniques: Small Disturbance Theory and Ar-
bitrary Lagrangian–Eulerian Method.

∙ Extension of implemented 2D unsteady method into 3D.

∙ Numerical validation of both 2D and 3D methods with respect to nu-
merical results of other authors and also to experimental data.

Achieved Results

In this work numerical results concerning two- and three-dimensional un-
steady transonic inviscid flow are presented. In order to validate developed
methods, numerical results are compared with results of other authors and
experimental data for both steady and unsteady cases. Overall good agree-
ment can be observed. Experimental results in the case of 3D unsteady
flow were unfortunately not available to the author in the time of writing
of this thesis. The results however look reasonable and in accordance with
theory. Preliminary results of two-dimensional laminar viscous flow are also
presented.

Acknowledgement

The author would like to thank to the supervisor Prof. RNDr. Karel Kozel
DrSc. (Czech Technical University in Prague, Faculty of Mechanical Engi-
neering), Prof. José Manuel Redondo (Universitat Politécnica de Catalunya,
Departament de Física Aplicada) and Doc. Ing. Jiří Fürst, PhD. (CTU,
Faculty of Mechanical Engineering). Great thanks belong also to the Aero-
nautical Research and Test Institute in Prague for providing the possibility
of close cooperation.
This work has been partly supported by the Research plan of the Ministry
of Education of the Czech Republic VZ MSM 6840770010 and project of the
Grant Agency of the Czech Academy of Science of the Czech Republic GACR
201/08/0012.

1 Mathematical Models of Compressible Flows

Governing system of equations used for description of motion of viscous com-
pressible fluids is presented by the Navier–Stokes equations [30]. The influ-
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ence of viscous effects on the flow is however nearly negligible in some cases
and hence a simpler model presented by the Euler equations can be chosen.

2 Navier–Stokes Equations

2.1 Navier–Stokes Equations

In the case of three-dimensional flow of viscous compressible fluid the Navier–
Stokes Equation can be written in a following vector form:

W𝑡 + F𝑥 + G𝑦 + H𝑧 = 0, (1)

where

F = F𝑐 − F𝑣,

G = G𝑐 −G𝑣,

H = H𝑐 −H𝑣,

and

W =
(︀
𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝑒

)︀𝑇
,

F𝑐 =
(︀
𝜌𝑢, 𝜌𝑢2 + 𝑝, 𝜌𝑢𝑣, 𝜌𝑢𝑤, (𝑒 + 𝑝)𝑢

)︀𝑇
,

G𝑐 =
(︀
𝜌𝑣, 𝜌𝑢𝑣, 𝜌𝑣2 + 𝑝, 𝜌𝑣𝑤, (𝑒 + 𝑝)𝑣

)︀𝑇
,

H𝑐 =
(︀
𝜌𝑤, 𝜌𝑢𝑣, 𝜌𝑢𝑤, 𝜌𝑤2 + 𝑝, (𝑒 + 𝑝)𝑤

)︀𝑇
,

F𝑣 =
(︀
0, 𝜏𝑥𝑥, 𝜏𝑥𝑦, 𝜏𝑥𝑧, 𝑢𝜏𝑥𝑥 + 𝑣𝜏𝑥𝑦 + 𝑤𝜏𝑥𝑧 + 𝑘𝑇𝑥

)︀𝑇
,

G𝑣 =
(︀
0, 𝜏𝑥𝑦, 𝜏𝑦𝑦, 𝜏𝑦𝑧, 𝑢𝜏𝑥𝑦 + 𝑣𝜏𝑦𝑦 + 𝑤𝜏𝑦𝑧 + 𝑘𝑇𝑦

)︀𝑇
,

H𝑣 =
(︀
0, 𝜏𝑥𝑧, 𝜏𝑦𝑧, 𝜏𝑧𝑧, 𝑢𝜏𝑥𝑧 + 𝑣𝜏𝑦𝑧 + 𝑤𝜏𝑧𝑧 + 𝑘𝑇𝑧

)︀𝑇
.

𝜏𝑥𝑥 =
2
3
𝜂(2𝑢𝑥 − 𝑣𝑦 − 𝑤𝑧)

𝜏𝑦𝑦 =
2
3
𝜂(−𝑢𝑥 + 2𝑣𝑦 − 𝑤𝑧)

𝜏𝑧𝑧 =
2
3
𝜂(−𝑢𝑥 − 𝑣𝑦 + 2𝑤𝑧)

𝜏𝑥𝑦 = 𝜂(𝑢𝑦 + 𝑣𝑥)
𝜏𝑥𝑧 = 𝜂(𝑢𝑧 + 𝑤𝑦)
𝜏𝑦𝑧 = 𝜂(𝑣𝑧 + 𝑤𝑦)

𝜂 = 𝜂(𝑇 ) (2)
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where W is vector of conservative variables, F𝑐,G𝑐,H𝑐 are inviscid fluxes and
F𝑣,G𝑣,H𝑣 are viscous fluxes, 𝜌 is density, (𝑢, 𝑣, 𝑤) are velocity vector com-
ponents, 𝑝 is static pressure, 𝑒 is total energy per unit volume, 𝜏 is tensor of
viscous stresses, 𝜂 is dynamical viscosity, 𝑇 is temperature, 𝑃𝑟 is the Prandtl
number and 𝑘 is heat transfer coefficient. Such a system contains the continu-
ity equation (conservation of mass, first order, hyperbolic), the Navier-Stokes
equation (conservation of momentum, second order, parabolic) and the con-
servation of energy equation (second order, parabolic). The whole system
keeps the character of the individual equations, which in the case of Navier-
Stokes equations is mixed parabolic-hyperbolic. System (1) is enclosed with
the Equation of state:

𝑝 = (𝜅− 1)
[︀
𝑒− 1

2
𝜌(𝑢2 + 𝑣2 + 𝑤2)

]︀
, 𝜅 =

𝑐𝑝

𝑐𝑣
. (3)

Because

𝑐𝑣𝑇 =
𝑝
𝜌

𝜅− 1
and 𝑘 =

𝜂𝑐𝑝

𝑃𝑟
,

the heat flux in ideal gas may be computed using following relations

𝑘𝑇𝑥 =
𝜂

𝑃𝑟

𝜅

𝜅− 1

(︁𝑝

𝜌

)︁
𝑥
, 𝑘𝑇𝑦 =

𝜂

𝑃𝑟

𝜅

𝜅− 1

(︁𝑝

𝜌

)︁
𝑦
, 𝑘𝑇𝑧 =

𝜂

𝑃𝑟

𝜅

𝜅− 1

(︁𝑝

𝜌

)︁
𝑧
.

(4)
Function 𝜂(𝑇 ) is then derived from Rayleigh relation

𝜂(𝑇 )
𝜂(𝑇0)

=
(︁ 𝑇

𝑇0

)︁ 3
4

2.2 Euler Equations

2.2.1 3D Flow

If the viscous terms in (1) are neglected (i.e. 𝜂 = 0) the system of Euler
equations describing flow of compressible inviscid fluid is obtained

W𝑡 + F𝑐
𝑥 + G𝑐

𝑦 + H𝑐
𝑧 = 0. (5)

Similarly like (1) also this system has to be enclosed with the Equation of
state (3). The character of the system (5) is hyperbolic, because the terms
with second derivatives on the right-hand side of equations (1), which express
the influence of viscous effects, are neglected. From a certain point of view,
the system of Navier-Stokes equations (1) may be understand as a parabolic
perturbation of hyperbolic system of Euler equations (5).
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3 Numerical Methods

3.1 Finite Volume Numerical Schemes

The numerical solution of considered flow problems was realised with the use
of the following finite volume schemes in cell-centered form:

1. Lax–Wendroff scheme in Richtmyer form with additional artificial dis-
sipation [24], [5],

2. Lax–Wendroff scheme in MacCormack form with additional artificial
dissipation (special case are Causon’s TVD and Modified Causon’s
schemes) [29], [47], [38]

3. Composite scheme [24], [5]

The additional artificial dissipation was chosen as

1. Mesh geometry dependent [5]

2. Jameson’s artificial dissipation (various modifications [5], [24], [1])

3. Causon’s TVD and Modified Causon’s artificial dissipation [29], [38].

3.2 Numerical Methods for Unsteady flow

The unsteady flows were simulated using two different methods. The first
one is a rather simple method based on Small Disturbations Theory (SDT),
which can be used for simulation of oscillatory motion with one degree of
freedom and under the assumption of small amplitudes. The second, more
complex method, is called Arbitrary Lagrangian-Eulerian (ALE) method and
is suitable for more difficult unsteady problems - considering more degrees of
freedom and greater maximal amplitudes.

3.2.1 Small Disturbance Theory

Main idea of SDT is approximation of the rotation of an inviscid wall around
a fixed point by the rotation of a normal vector to the wall, i.e. there is no
real motion of the profile/wing and moreover the position of elastic axis is
not taken into account. As mentioned above, this method is suitable only
for motion with a small angle of rotation. In this work, SDT has been used
for obtaining preliminary results of 3D unsteady flow around a swept wing
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with NACA 0012 profile in order to investigate if proposed Modified Causon’s
scheme is able to handle also three-dimensional unsteady transonic flows. The
maximal admissible used angle of attack in our computations was 𝜑 ≤ 3∘.
Let us consider the x axis of the coordinate system aligned with the chord of
the profile with zero angle of attack. The AoA is considered positive in the
case of clockwise rotation of the profile. The fluid velocity vector (u, v)𝑇 on
the profile surface has to satisfy the relation

arctan
(︁ v

u

)︁
= arctan(𝑓 ′)− 𝜑 (6)

where the graph of the function 𝑓 defines either the lower or the upper side
of the profile. This corresponds to the fact, that in the case of inviscid flow
the profile surface is a streamline and hence the fluid velocity vector on the
wall has to be tangent to the wall with normal vector n. In SDT the vector
n is rotated by the angle 𝜑 with respect to the normal vector n𝑤 of the wall
at a zero angle of rotation.

3.2.2 Arbitrary Lagrangian-Eulerian Method

Arbitrary Lagrangian Eulerian method combines the use of the classical La-
grangian and Eulerian reference frames, which are two basic reference frames
in fluid dynamics. In the case of the Lagrangian reference frame the fluid
motion is investigated by following individual fluid particles as they move
through space and time. The Lagrangian reference frame is largely used
most commonly in solid mechanics - it sets up a reference frame by fixing a
grid to the material of interest and then as the material deforms the grid de-
forms with it. On the other hand in the case of the Eulerian reference frame a
concrete area (points in space) through which the the fluid moves is observed.
The Eulerian reference frame is the typical framework used in the analysis
of fluid mechanics problems. It allows for material to flow through the grid.
However, it does not track the path of any individual particle. The ALE
approach allows for both a flexible grid and a grid that allows for material to
flow through it. In essence, it takes the best part of both reference frames and
combines them into one. This is helpful in problems with large deformations
in solid mechanics and in fluid-structure interaction. The mentioned schemes
have of course an other form in the case of unsteady computation with the
ALE method than in the case of steady computation [25]. When using the
ALE method in order to obtain numerical solution of unsteady flow on a
moving and deforming grid one of the main demands laid on the method is
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that it predicts a uniform flow because it is then mathematically consistent.
This demand is satisfied only when the algorithm constructed for the mesh
modifications and the numerical scheme chosen for numerical solution fulfil
the discrete Geometric Conservation Law as shown in [25]. The Geometry
Conservation Law states that the change in area of each cell between time
t𝑛 and t𝑛+1 must be equal to the area swept by the cell boundary during
△t = t𝑛+1 − t𝑛.

3.2.3 Mathematical Prescription of the Airfoil and Wing motion

The unsteady effects considered in this work were given in both 2D and 3D
cases by prescribed profile/wing oscillations around an elastic axis governed
by the relation for pitching angle

𝛼1(t) = 𝜑0 + 𝜑1 sin(𝜔t) (7)

around the reference point x𝑟𝑒𝑓 , 𝜑0 is the initial deviation of the aerofoil and
𝜑1 is the maximal amplitude. The angular velocity is defined as

𝜔 = 2𝑘𝜋
𝑈∞
𝑐

(8)

where 𝑈∞ is the free-stream velocity, 𝑐 is the chord length and 𝑘 is the reduced
frequency.

4 Numerical Results - Steady Flows

4.1 2D Flow

Two standard test cases are simulated using the schemes mentioned in 3 - 2D
flow around the profile NACA 0012 and flow around DCA 18% in a channel.

4.1.1 Inviscid Flow past the NACA 0012 profile

Steady computation of flow around the NACA 0012 aerofoil was carried out
using structured FVM mesh made from quadrilaterals with 8400 computa-
tional cells (140 cells around the profile). The solution domain covered by the
computational mesh was 20 profile chords long and 20 profile chords wide.
Flow was simulated in the following regimes

1. 𝑀∞ = 0.5, AoA = 0∘ (AoA stands for angle of attack)
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2. 𝑀∞ = 0.5, AoA = 1.25∘

3. 𝑀∞ = 0.8, AoA = 0∘

4. 𝑀∞ = 0.8, AoA = 1.25∘

For the numerical simulation the following FVM schemes were chosen

1. Modified Causon’s scheme (i.e. LW MacCormack with modified Cau-
son’s artificial dissipation)

2. LW Richtmyer scheme with Jameson’s artificial dissipation

3. Composite scheme (i.e. LW Richtmyer + LF)
Figures 1, 2 show inviscid numerical results achieved by LW scheme in

Richtmyer and MacCormack form and by the Composite scheme. The re-
sults are shown in the form of Mach number and 𝑐𝑝 isolines for 𝑀∞ = 0.8
and both zero and non-zero inlet angles of attack. The distribution of Mach
number and 𝑐𝑝 along top and bottom side of the profile for subsonic as well
as transonic flow is also compared. It is obvious that proposed (and im-
plemented) schemes are in a good correspondence with the results of other
authors and also with the expectation about the behaviour of investigated
flow regimes.

4.1.2 Viscous Laminar past the NACA 0012 profile

The viscous laminar flow simulation was realised with the use of Modified
Causon’s scheme for Reynolds numbers 𝑅𝑒 = 104 and 𝑅𝑒 = 105, 𝑀∞ =
0.5, 0.8 and AoA = 0∘. In the case of the lower velocity, i.e. for inlet Mach
number 𝑀∞ = 0.5, the scheme performed as expected - laminar boundary
layer tightens with increasing Reynolds number. However, in the case of inlet
Much number 𝑀∞ = 0.8 the flow becomes unsteady even for 𝑅𝑒 = 104 (see
unsteady behaviour of the solution in the wake Fig. 3). Such a fact can not
be unfortunately verified as there are no experimental data available for flow
characterised by this values of inlet velocity and Reynolds number.

4.1.3 Flow past the DCA 18% profile in a channel

In the case of inviscid flow over the DCA 18% profile the MacCormack scheme
combined with Jameson’s artificial dissipation was used. The results for both
subsonic and transonic flow were compared with experimental data from
Institute of Thermomechanics, Czech Academy of Science. As can be seen
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in figure 4 there is a good correspondence between the experimental and
numerical results in the case of subsonic flow. On the other hand, the results
for transonic flow differ. This is caused above all by the fact that the chosen
mathematical model was considered inviscid while the experiment was carried
out under the condition of 𝑅𝑒 = 5· 106. Moreover, from the experimental
results is clear that the real flow field became unsteady.

𝑀∞ = 0.5, angle of attack𝛼1 = 0∘ 𝑀∞ = 0.5, angle of attack𝛼1 = 1.25∘

𝑀∞ = 0.8, angle of attack𝛼1 = 0∘ 𝑀∞ = 0.8, angle of attack𝛼1 = 1.25∘

Figure 1: NACA 0012, 𝑐𝑝 distribution alongside the profile, comparison of
used schemes.
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(a) 𝑐𝑝 distribution alongside the top
and bottom side of the aerofoil

(b) Detail 1, 𝑐𝑝 distribution on the
top-side shock wave.

(c) Detail 2, 𝑐𝑝 distribution on the
bottom-side shock wave.

Figure 2: NACA 0012, 𝑀∞ = 0.8, angle of attack𝛼1 = 1.25∘, 𝑐𝑝 distri-
bution on the profile, comparison of used schemes and schemes from other
authors.

16



CoordinateX

C
oo

rd
in

at
eY

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Cp

0.34
0.28
0.22
0.16
0.1
0.04

-0.02
-0.08
-0.14

Mach=0.5, Re=10e4

CoordinateX

C
oo

rd
in

at
eY

-1 -0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Mach
0.570272
0.501839
0.433407
0.364974
0.296541
0.228109
0.159676
0.0912435
0.0228109

Mach=0.5, Re=10e4

𝑐𝑝, 𝑀∞ = 0.5, 𝑅𝑒 = 104 Mach Number, 𝑀∞ = 0.5, 𝑅𝑒 = 104

CoordinateX

C
oo

rd
in

at
eY

-0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Cp

0.34
0.28
0.22
0.16
0.1
0.04

-0.02
-0.08
-0.14

Mach=0.5, Re=10e5.

CoordinateX

C
oo

rd
in

at
eY

-0.5 0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

Mach

0.56
0.5
0.44
0.38
0.32
0.26
0.2
0.14
0.08
0.02

Mach=0.5, Re=10e5.

𝑐𝑝, 𝑀∞ = 0.5, 𝑅𝑒 = 105 Mach number, 𝑀∞ = 0.5, 𝑅𝑒 = 105

CoordinateX

C
oo

rd
in

at
eY

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Cp

1
0.85
0.7
0.55
0.4
0.25
0.1

-0.05
-0.2
-0.35
-0.5

Mach=0.8, Re=10e4

CoordinateX

C
oo

rd
in

at
eY

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Mach
1.05
0.95
0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15
0.05

Mach=0.8, Re=10e4

𝑐𝑝, 𝑀∞ = 0.8, 𝑅𝑒 = 104 Mach number, 𝑀∞ = 0.8, 𝑅𝑒 = 104

Figure 3: NACA 0012, viscous laminar flow, 𝑀∞ =
0.5, 0.8, angle of attack𝛼1 = 0∘, 𝑐𝑝 and Mach number distribution.

17



X

Y

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

Experimental results, 𝑀∞ = 0.526 Numerical results, 𝑀∞ = 0.526

X

Y

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

Experimental results, 𝑀∞ = 0.79 Numerical results, 𝑀∞ = 0.79

Experimental results. Numerical results

Figure 4: DCA 18% in a channel, comparison of experimental and numerical
results, Mach number isolines [a) - d)] and its behaviour on the profile.

18



4.2 3D Flow

Two different cases were chosen for the simulation of three-dimensional flow.
At first a simple geometry of a fictitious swept wing with NACA 0012 profile
fixed in a wall has been used and two flow regimes based on the known two-
dimensional test cases were simulated to obtain preliminary results of 3D
computation. Then the standard 3D test case - the transonic flow over the
ONERA M6 wing was successfully simulated and compared with the results
of other authors and experimental data.

4.2.1 Flow over the NACA 0012 swept wing

The flow regimes were characterised by the following inlet Mach number and
the angle of attack

1. 𝑀∞ = 0.8, angle of attack𝛼1 = 0∘

2. 𝑀∞ = 0.8, angle of attack𝛼2 = 1.25∘

The wing has the NACA 0012 profile and spread of 3 profile chords. The tip-
chord equals one-half of the root-chord. Numerical results can be seen on Fig.
5 . As there are no experimental data available for this case of flow, the only
usable reference present the 2D results for the same initial condition (Fig. 1,
2). The 3D results obtained on H-type structured mesh with 253715 elements
show all the important characteristic that can be expected according to the
knowledge of the 2D results.

4.2.2 Flow over the ONERA M6 wing

The 3D inviscid transonic flow over the ONERA M6 wing was characterised
by the inlet Mach number 𝑀∞ = 0.8395 and the angle of attack 𝛼1 =
3.06∘. For the computation two modification of LW scheme were chosen
(later denoted as Method 1 and Method 5). Numerical results obtained by
the author were compared to the results of other authors (Methods 2 - 4)
and to the experimental data [46] with a very good agreement (Fig. 6 - 7).

Method 1 As the first method the cell-centred 3DMacCormack predictor-corrector
scheme with 3𝑟𝑑 order Jameson’s artificial dissipation was chosen. Al-
though this scheme does not posses the TVD property, for properly
chosen coefficients it is able to deliver results comparable with TVD
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a) 𝑐𝑝 coefficient, angle of attack 𝛼1 = 0∘ b) Mach number, angle of attack 𝛼1 = 0∘

c) 𝑐𝑝 coefficient in the cuts, AoA 𝛼1 = 0∘d) 𝑐𝑝 coefficient in the cuts, AoA 𝛼2 = 1.25∘

e) 𝑐𝑝 coefficient, angle of attack 𝛼2 = 1.25∘f) Mach number, angle of attack 𝛼2 = 1.25∘

Figure 5: NACA 0012 swept wing, 𝑀∞ = 0.8, angle of attack𝛼1 = 0∘, 𝛼2 =
1.25∘. Distribution of the 𝑐𝑝 coefficient and Mach number on the top side of
the wing and in the cuts 20%, 40%, 60% and 80% of the wing spread.
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variant of MacCormack scheme. For the discretisation of the computa-
tional area following FVM meshes were used: C-mesh with 493000 cells
and H-mesh with 687456 cells. The code was parallellised with the use
of the OpenMP library. Method was implemented by the author.

Method 2 In this case the cell-vertex Ron-Ho-Ni scheme described in [1], [40]
was used. It is one-step explicit Lax–Wendroff-type scheme with 3𝑟𝑑

order Jameson’s artificial dissipation. The same computational C-type
mesh as for Method 1 was used. Method was implemented by Milan
Kladrubský (VZLU a.s.).

Method 3 The computational area was discretised by an unstructured mesh with
quadrilateral computational cells. The problem was solved by FVM in
a cell-centred formulation - the Roe-Riemann solver [41] was used to
solve the Riemann problem on each side of each finite volume. Spa-
tial accuracy of the method was increased by linear reconstruction us-
ing the Least Square method [42]. For the time discretisation the lin-
earised backwards Euler method was used. Final system of equation
was solved by GMRES method with ILU preconditioning. Method was
implemented by Jiří Dobeš (CTU, Faculty of Mechanical Engineering).

Method 4 This method is an extension of the high-order FVM weighted least-
square (WLSQR) scheme mentioned in [28] into three dimensions. The
high order WLSQR reconstruction is combined with the HLLC numer-
ical flux and the resulting semi-discrete system of equations is solved
by the linearised backward Euler method. Resulting sparse system of
linear equations is then solved with GMRES method [33] with modi-
fied ILU(0) preconditioner. Computational mesh was the same as in
Method 3. Method was implemented by Jiří Fürst (CTU, Faculty of
Mechanical Engineering).

Method 5 Modified Causon’s scheme in 3D form. Computation was carried out
using the same C-type mesh as in Method 1. The code was parallellised
with the use of the OpenMP library. Method was implemented by the
author.

Comparison between numerical and experimental results in the case of 3D
flow shows that both schemes implemented by the author give very similar
results. The correspondence with experimental data is satisfactory. Both
the position and intensity of shock waves are captured reasonably well. The
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Figure 6: ONERA M6, 𝑀∞ = 0.8395, angle of attack𝛼1 = 3.06∘. Methods
1, 2 and 3. Comparison with the experimental results [46]. Distribution of
the 𝑐𝑝 coefficient in the cuts alongside the wing.
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a) 20% b) 44%

c) 65% d) 80%

e) 90% f) 95%

Figure 7: ONERA M6, 𝑀∞ = 0.8395, angle of attack𝛼1 = 3.06∘. Methods
4 and 5. Comparison with the experimental results [46]. Distribution of the
𝑐𝑝 coefficient in the cuts alongside the wing.

23



observed differences are highly probable consequence of inviscid nature of
the chosen model, which collide with viscous turbulent behaviour of the real
flow. The Modified Causon’s scheme (as well as the LW MacCormack scheme
with Jameson’s artificial dissipation) has somewhat limited use because of its
explicit form and its ability to handle only the structured meshes. The first
drawback can be removed by using the implicit version of the scheme [47].
Its demands on the computational time are however comparable with the
WLSQR scheme and Roe-Riemann solver, but it needs much less memory.
WLSQR scheme and the Roe-Riemann solver are on the other hand able to
solve greater variety of problems described also by unstructured meshes.

5 Numerical Results - Unsteady Flows

5.1 2D Flow

5.1.1 Flow past the DCA 18% profile

Functionality of the LW MacCormack scheme with Jameson’s AD in the
combination with ALE method was tested on the case of inviscid subsonic
flow over the DCA 18% aerofoil in a channel. The oscillatory motion of the
profile around the reference point x𝑟𝑒𝑓 = [ 13 , 0.00] is given by (7) with initial
deviation 𝜑0 = 0∘ and maximal amplitude 𝜑1 = 1.25∘. The angular velocity
is defined as

𝜔 = 2𝑘𝜋
𝑈∞
𝑐

(9)

where 𝑈∞ is the free-stream velocity, 𝑐 is the chord length and the reduced
frequency is 𝑘 = 0.08 and 𝑀∞ = 0.755. The unsteady state development is
observed on the lift coefficient (𝑐𝑛) behaviour, where

𝑐𝑛 =
∮︀

𝑃𝑑𝑥
1
2𝑢2

𝑟𝑒𝑓𝜌𝑟𝑒𝑓

(10)

As can be seen from the figure 8 the flow becomes periodic after one period
of unsteady computation and the numerical solution possess all the charac-
teristics as expected.

5.1.2 Flow past the NACA 0012 profile

Considered test case is a transonic flow over an oscillating NACA 0012 profile
for which the experimental data are available in [45]. The oscillatory motion
is governed by the equation (7) and is characterised by
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Figure 8: DCA 18%, lift coefficient behaviour during the unsteady compu-
tation, LW MacCormack scheme with Jameson’s artificial dissipation.

- the inlet Mach number 𝑀∞ = 0.755

- the reference point x𝑟𝑒𝑓 = [0.25, 0.00]

- the initial deviation of the profile 𝜑0 = 0.016∘

- the maximal amplitude 𝜑1 = 2.51∘

- and the reduced frequency 𝑘 = 0.0814 (in (9))
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Figure 9: NACA 0012, lift coefficient behaviour.
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Computation was carried out using Modified Causon’s scheme and same
structured C-type mesh as in section 4.1.1. The results were compared with
results obtained by J. Fürst using the WLSQR scheme with AUSMPW+ flux
[28] on unstructured mesh with 6720 quadrilateral cells (120 cells around pro-
file). As can be seen from the figures 9 - 10 the Modified Causon’s scheme
performs well. The results correspond qualitatively, but the experimental
data show a bit higher 𝑐𝑛 values (Fig. 9). Considering the symmetry of
simulated problem, also the behaviour of the 𝑐𝑛 should be symmetric with
the center of symmetry in point [0, 0]. The experimental data however do
not posses this characteristic and therefore a suspicion of their systematical
error comes in mind. Important characteristics, as for example the position
and strength of the shock wave, are however in a good correspondence.
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5.2 3D Flow

5.2.1 Flow over the NACA 0012 swept wing

A fictitious swept wing same as in the section 4.2.1 was used for the first
test of the LW MacCormack scheme with Jameson’s artificial dissipation in
combination with Small Disturbance Theory. The flow was characterised by

∙ The inlet Mach number 𝑀∞ = 0.8,

∙ Forced oscillatory motion around an elastic axis parallel with the axis
z was again given by (7)

𝛼1(t) = 𝜑0 + 𝜑1 sin(𝜔t), 𝜔 = 2𝑓𝜋

with

– initial deviation 𝜑0 = 1∘,

– maximal amplitude 𝜑1 = 0.25∘

– frequency 𝑓 = 10Hz

Obtained numerical results show that the fully periodical state of the flow
was achieved during the third period of the computation. Although the
results are satisfactory, the SDT is however not the ideal way to simulate
such a complicated problem as 3D unsteady flow because it does not concern
the reference point through which leads the elastic axis and therefore neglects
an important flow characteristic.

5.2.2 Flow over the ONERA M6 wing

More complex 3D computation was carried out using the ALE method. The
initial conditions were taken from the steady result (section 4.2.2). The forced
oscillatory motion of the wing around the elastic axis parallel with the axis z
and going through the reference point x𝑟𝑒𝑓 = [ 12 ; 0.00; 0.00] was given by the
same relation for pitching angle as in 2D (7). The inlet Mach number was
considered 𝑀∞ = 0.8395, initial deviation 𝛼0 = 3.06∘, amplitude 𝛼1 = 1.5∘.
The computational mesh was the same structured C-type mesh as in Sec.
4.2.2. The Modified Causon’s scheme has proved itself well - the results (Fig.
12 ) show that the fully periodic state has been achieved at least during the
3𝑟𝑑 period of the oscillatory motion. Both shock waves on the top side of
the profile, which are characteristic for this type of flow over the ONERA
M6 wing, move on the wing surface throughout the period as expected and
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the scheme does not produce spurious oscillations. Comparison with the
experimental data is unfortunately not yet available, but at the present time
a work is in progress on implementation of another wing geometry used in
the experiments with oscillating wing at the Aeronautical Research and Test
Institute in Prague.
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a) Steady result. b) Non-steady result, 𝜔𝑡 = 6𝜋.
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c) Non-steady result, 𝜔𝑡 = 1
2𝜋 + 6𝜋. d) Non-steady result, 𝜔𝑡 = 𝜋 + 6𝜋.

X

C
p

0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

20%
40%
60%
80%

X

C
p

0 0.5 1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

20%
40%
60%
80%

c) Non-steady result, 𝜔𝑡 = 3
2𝜋 + 6𝜋. d) Non-steady result, 𝜔𝑡 = 2𝜋 + 6𝜋.

Figure 11: NACA 0012 wing, 𝑐𝑝 coefficient behaviour during 3𝑟𝑑 period of
forced oscillatory motion. 𝑀∞ = 0.8, 𝜑0 = 1∘, 𝑓 = 10 Hz, 𝜑1 = 0.25∘, cuts
alongside the wing in 20%, 40%, 60%, 80% of the wing spread.
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a) Steady result. b) Non-steady result, 𝜔𝑡 = 0𝜋 + 3𝜋.

c) Non-steady result, 𝜔𝑡 = 1
2𝜋 + 3𝜋. d) Non-steady result, 𝜔𝑡 = 𝜋 + 3𝜋.

c) Non-steady result, 𝜔𝑡 = 3
2𝜋 + 3𝜋. d) Non-steady result, 𝜔𝑡 = 2𝜋 + 3𝜋.

Figure 12: ONERAM6 wing, 𝑐𝑝 coefficient distribution in the cuts alongside
the wing during 3𝑟𝑑 period of the oscillatory motion. 𝑀∞ = 0.8395, 𝑘 =
10 Hz, 𝜑1 = 1.5∘
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6 Conclusion

The objectives of the thesis have been fullfiled. The mathematical back-
ground for numerical solution of hyperbolic equations is presented also with a
simple analysis of boundary and initial conditions. The way of TVD schemes
construction is described and the basic properties of FVM schemes based
on Lax–Wendroff approach are investigated in the case of 1D scalar initial
value problem. Three different FVM methods with five types of artificial
dissipation are introduced for both 2D and 3D and used for the numerical
simulations of subsonic and transonic inviscid flow (one of the methods is
extended also for viscous laminar flows). 3D numerical results of transonic
inviscid flow over the ONERA M6 wing is compared with the results of other
authors as well as with the experimental data with a very good agreement
(the best results have been obtained with the so called Modified Causon’s
scheme). Two different approaches to the numerical solution of unsteady
flow considering forced oscillation of a profile and a wing are applied. Firstly
a simple Small Disturbance Theory model is used for the simulation of 3D
inviscid transonic flow around a fictitious swept wing. Obtained results show
that fully periodic state is achieved. Then a more advanced way using the
Arbitrary Lagrangian-Eulerian method is proposed and implemented. The
results of 2D unsteady flow are compared with experimental data obtained by
NASA and numerical results by J. Fürst. A good agreement can be observed.
The 3D extension of implemented method is used for solution of transonic
inviscid flow over the ONERA M6 wing with satisfactory results (the compar-
ison to experimental data is unfortunately not yet available). According to
this facts, the proposed method is proved as a reliable numerical simulation
of chosen flow regimes and is expected to be able to solve also other problems
of similar nature. For broader use the method would however need a deeper
numerical validations.
The presented results are in a form of distribution of Mach number and 𝑐𝑝

coefficients (both 2D and 3D) which are completed by the behaviour of the
lift coefficient in the case of unsteady flow.
The future steps intended are extension of 3D unsteady inviscid method also
for the case of turbulent flow and introduction of one more degree of freedom,
i.e. implementation of aeroelastic effects.
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