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Ing. Jǐŕı Dobeš
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Doc. Jǐŕı Fürst, Czech Technical University, Prague
Dr. Mario Ricchuto, INRIA Futurs, France

This thesis was delivered on:
(FIXME: doplnit)

The defense of the dissertation will take place on:
(FIXME: opravit:) 15th of June 2007 in room No. 104, building D, ground
floor of the Faculty of Mechanical Engineering, Czech Technical University,
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Název práce: Numerické metody pro výpočet stacionárńıho a nesta-
cionárńıho stlačitelného prouděńı s uvažováńım pohyblivých ge-
ometríı – s aplikaćı na interakce tekutiny s tělesy

Anotace

Tato práce se zabývá vývojem numerických metod pro výpočty stlačitelného
prouděńı s aplikaćı na interakci tekutiny a elastického tělesa.

Nejprve se zabýváme vývojem numerických metod založených na schématech
využ́ıvaj́ıćıch distribuci residua (RD). Je presentován rozbor teoretických
výsledk̊u pro stabilitu a řád aproximace RD schémat. Reziduálńı schémata
formulovaná pro řešeńı nestacionárńıch problémů jsou dále rozš́ı̌rena pro
př́ıpad výpočt̊u na časově proměnných śıt́ıch. Dále je pro řešeńı prouděńı
vyvinuta metoda konečných objemů v cell centered i vertex centered formu-
laci. RD metoda je srovnána s metodou konečných objemů jednak teoreticky
pomoćı modifikované rovnice v jednorozměrném př́ıpadě, tak i porovnáńım
numerických výsledk̊u řešeńı skalárńı rovnice a systému Eulerových rovnic. Je
presentováno množstv́ı dvou a trojrozměrných stacionárńıch i nestacionárńıch
př́ıpad̊u, dokládaj́ıćıch vlastnosti vyvinutých numerických metod. Výsledky
jsou porovnány s teoretickým řešeńım a experimenty.

Ve druhé části disertačńı práce je vyvinuta numerická metoda pro řešeńı
problémů interakce proud́ıćı tekutiny s tělesy. Problém je rozdělen na ťri
jednodušš́ı problémy: problém dynamiky tekutin na pohyblivé výpočetńı śıti,
problém pohybu tělesa a problém pohybu výpočetńı śıtě. Pohyb tělesa je
popsán soustavou parciálńıch diferenciálńıch rovnic druhého řádu pro ela-
stické anizotropńı kontinuum a řešen metodou konečných prvk̊u. Metoda
je rozš́ı̌rena pro výpočet vlastńıch kmit̊u tělesa. Pohyb śıtě je formulován
jako pohyb pseudo-elastického kontinua a opět řešen metodou konečných
prvk̊u. Uvedené tři problémy jsou spolu svázány iteračńı metodou. Vlastnosti
metody jsou demonstrovány na př́ıpadě 2D supersonického třepotáńı pan-
elu (panel flutter) a 3D transsonického třepotáńı AGARD kř́ıdla. V prvńım
př́ıpadě jsou výsledky srovnány s teoretickým řešeńım a výpočty publiko-
vanými v literatuře, ve druhém př́ıpadě s experimentem.
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Abstract

Key words: Residual distribution scheme, Finite volume method, ALE
method, Unsteady method, Implicit method, Parallel method, Unsteady
flows, Aeroelasticity, Three field formulation, Finite element method, CFD,
AGARD 445.6 wing, Panel flutter.

This work deals with the development of numerical methods for compress-
ible flow simulation with application to the interaction of fluid flows and
structural bodies.

First, we develop numerical methods based on multidimensional upwind
residual distribution (RD) schemes. Theoretical results for the stability and
accuracy of the methods are given. Then, the RD schemes for unsteady
problems are extended for computations on moving meshes. As a second
approach, cell centered and vertex centered finite volume (FV) schemes are
considered. The RD schemes are compared to FV schemes by means of the
1D modified equation and by the comparison of the numerical results for
scalar problems and system of Euler equations. We present a number of two
and three dimensional steady and unsteady test cases, illustrating properties
of the numerical methods. The results are compared with the theoretical
solution and experimental data.

In the second part, a numerical method for fluid-structure interaction prob-
lems is developed. The problem is divided into three distinct sub-problems:
Computational Fluid Dynamics, Computational Solid Mechanics and the
problem of fluid mesh movement. The problem of Computational Solid
Mechanics is formulated as a system of partial differential equations for an
anisotropic elastic continuum and solved by the finite element method. The
mesh movement is determined using the pseudo-elastic continuum approach
and solved again by the finite element method. The coupling of the problems
is achieved by a simple sub-iterative approach. Capabilities of the methods
are demonstrated on computations of 2D supersonic panel flutter and 3D
transonic flutter of the AGARD 445.6 wing. In the first case, the results
are compared with the theoretical solution and the numerical computations
given in the references. In the second case the comparison with experimental
data is presented.
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1 Introduction

A large number of methods is available for the solution of compressible flows
today. They work on structured or unstructured meshes. Since structured
mesh generation is one of the biggest bottlenecks for industrial type simula-
tions, see e.g. [2], we will focus on methods working on unstructured meshes.
One of the most commonly used methods for industrial type compressible
flow simulations on unstructured meshes is the finite volume method in cell
centered or vertex centered settings, see e.g. [12, 3]. Despite its large popu-
larity, there are still some problems unresolved, namely accuracy for the flow
features not aligned with the mesh, and dependence of the scheme on 1D
physics introduced by the numerical flux.

As a cure to the above-mentioned problems, the residual distribution (RD)
schemes were suggested in [20]. Since then, a successful development was
sought. Nowadays, RD schemes can be used to solve complex problems such
as 3D inviscid flows around full aircraft or 3D turbulent flow past a wing. A
first objective of the thesis is to select several residual distribution schemes
and to obtain their properties for well defined test cases. Then the schemes
should be applied to technically important problems and problems of math-
ematical physics.

The fluid–structure interaction problems ultimately call for highly accu-
rate methods. Since RD schemes are expected to be more accurate than
traditional finite volume schemes, the use of RD methods for fluid–structure
interaction problems is appealing. Until recently, only first order RD schemes
for moving grids computations were available, see [14]. Hence, a second objec-
tive of the thesis is to explore possible extension of higher order accurate RD
schemes for computations on moving meshes with application to aeroelastic
simulations.

2 Specific objectives of the thesis

The goals of the presented work are:

1. To develop a numerical method based on selected schemes of residual
distribution type and to analyse some of their properties. Eventually
find possible improvements for particular flow problems. Develop an
extension for problems involving a time dependent domain of solution.

2. To develop a numerical method based on a finite volume method in
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cell centered or vertex centered formulation. Include the possibility of
handling a time dependent domain of solution.

3. To test selected numerical methods on problems of scalar conservation
law and system of Euler equations, with particular attention to the
accuracy of the schemes and monotone capturing of complex solution
features.

4. To develop a finite element method for the problem of elasticity, where
the material is modeled as an elastic continuum allowing large displace-
ments and taking into account possible anisotropic material properties.

5. To develop and validate the numerical method for fluid structure inter-
action problems, where the flow is modeled as a inviscid perfect gas and
the body either as a elastic continuum or by a system of two ordinary
differential equations.

3 Formulation of the fluid dynamics problem

The fluid dynamics problem is formulated in an Arbitrary Lagrangian Eu-
lerian (ALE) frame of reference. We define the ALE mapping [9] which for

each t ∈ [0, tmax] associates a point ~Y of reference configuration Ω0 to a
point ~x on the current domain configuration Ωt, At : Ω0 ⊂ R

d 7→ Ωt ⊂ R
d,

~x(~Y , t) = At(~Y ), where d is the number of spatial dimensions. The ALE map-
ping At is chosen sufficiently smooth and invertible with nonzero determinant
of Jacobian JAt

. A domain velocity ~w(~x, t) is defined as the time derivative

of ~x for constant ~Y . We start from the conservative ALE formulation of the
Euler equations in d spatial dimensions

1

JAt

∂JAt
u

∂t

∣

∣

∣

∣

~Y

+ ∇x · [~f(u) − u~w] = 0, (1)

where the conserved variables are

u = (ρ, ρ~v,E), (2)

with density ρ, components of the velocity vector ~v = (v1, . . . , vd) and total
energy E. The flux is

fi = (ρvi, ρvivj + δijp, [E + p]vi), 1 ≤ j ≤ d, (3)
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where p is the static pressure and δij is Kronecker delta symbol. The system
is closed by a thermodynamic equation of state for the pressure p = f(u).
We will only consider a perfect gas, then the equation is given by

p = (γ − 1)

(

E −
1

2
ρ

d
∑

i=1

v2
i

)

. (4)

The ratio of specific heats for a diatomic gas is used, i.e. γ = 1.4 (if not
specified otherwise). The system is equipped with an entropy inequality.
Equation (1) reduces to the standard system of conservation laws

∂u

∂t
+ ∇ ·~f(u) = 0 (5)

for a fixed mesh.
As a simplification, we will also consider a scalar conservation law, where

u : R
d → R and ~f : R → R

d×1, in particular an advection equation, where
the flux vector is defined as ~f(u;x, y) = (−yu, xu) in two dimensions and
~f(u;x, y, z) = (−yu, xu, 0) in the case of three dimensions.

The problem is closed with a set of initial and boundary conditions.

4 Residual distribution scheme

Several methods based on distribution of residuals have been developed in
the past, see e.g. [15, 20], for a survey see e.g. [16]. This part of the work deals
with residual distribution schemes as defined in [12], i.e. schemes, which are
usually written as in section 4.1 and 4.2. Such schemes will be referred to as
residual distribution schemes.

4.1 Introduction and general framework

We will consider meshes consisting of only simplex elements in this work.
The residual distribution schemes for steady problems generally involve the
following steps:

1. Compute the residual as the integral of the convective terms of equation
(5) over element E as

φE =

∫

E

∇ ·~fh d~x = −

∫

E

∂uh

∂t
d~x =

∑

i∈E

kiui, (6)
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where i ∈ E means all the nodes in element E and

kj =
∂~fh

∂uh
(ū) ·

~nj

d
(7)

is the upwind matrix. Symbol ~ni denotes the normal perpendicular to
the face opposite to the node i scaled by its measure. The state ū for
the evaluation of the Jacobian is suitable chosen, see [5], such that the
method is conservative.

2. Distribute the residual φE to the nodes of element E via distribution
matrix βi

φE
i = βE

i φE , such that
∑

i∈E

φE
i = φE . (8)

3. Update the solution in all the nodes of the computational domain

uh,n+1
i = uh,n

i − αi

∑

E∈i

φE
i , (9)

where n is the index of the time level and αi > 0 is a relaxation param-
eter, to be specified later.

Certain schemes define directly the residual contribution φE
i to the node i.

The distribution coefficient is then defined implicitly from eq. (8).

4.2 RD schemes for unsteady problems

The above-stated RD schemes are first order accurate at most for unsteady
problems even if a high order time discretization scheme is used, see, e.g.
[8]. The reason is that there exists a coupling between spatial and tempo-
ral discretization through a finite element type mass matrix. The accuracy
problem was treated by two distinct approaches: schemes formulated using
a mass matrix, see, e.g. [8] and space-time schemes, see, e.g. [1]. Although
the schemes were derived using different frameworks, they can be reduced to
a common base. Namely, we can formulate the unsteady problem (5) using
the pseudo time stepping (or dual time), i.e.

∂u

∂τ
+

∂u

∂t
+

d
∑

j=1

∂

∂xj

fj(u) = 0, (10)
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and we seek for an unsteady solution of (5) as a steady solution of (10) in
pseudoo time

lim
τ→∞

∂u

∂τ
= 0. (11)

Hence we can proceed with a similar solution method as in section 4.1:

1. Compute the approximation of the unsteady residual as the integral of
equation (5) over the space-time element EST between time levels n
and n + 1

φEST

=

∫

EST

(

∂uh

∂t
+ ∇ ·~fh

)

d~xdt =

∫

[tn,tn+1]

∫

E

(

∂uh

∂t
+ ∇ ·~fh

)

d~xdt. (12)

2. Distribute residual φEST

to the nodes of the element EST located on
the time level n + 1 via the distribution parameter (matrix) βi

φEST

i = βEST

i φEST

with
∑

i∈E

φEST

i = φEST

. (13)

Because we have an initial value problem with data at n, the distribu-
tion is constrained to nodes at n + 1.

3. Update the solution in all the nodes of the computational domain at
the time level n + 1

uh,n+1,m+1
i = uh,n+1,m

i − αi

∑

E∈i

φEST

i , (14)

where m is the index of the pseudo-time step and αi is the relaxation
coefficient.

4. The steps 1. to 3. are repeated until a steady solution in pseudo-time
is found. Then, the next layer of the space-time elements is considered
[tn, tn+1] → [tn+1, tn+2].
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4.3 Some examples of considered numerical schemes

The core contribution of the thesis consists of novel extensions of the residual
distribution schemes for moving meshes. We will present the extension of the
second order LDA scheme and the first order N scheme. Then, we briefly
explain the construction of two nonlinear schemes, the N-modified scheme
and the Bx scheme.

LDA scheme is a second order accurate linear scheme. We will con-
sider a scalar problem for a moment. For the LDA scheme we use an
equivalency of the linearity preserving RD schemes with the Petrov-Galerkin
FEM formulation. The solution and the mesh velocity are approximated
by linear Galerkin trial functions ψi from the current domain configura-
tion. The Petrov–Galerkin test function is given on each element E by
ϕE

i = ψi + βi − 1/(d + 1), where βi is the RD distribution coefficient for
node i. For the mesh velocity term we use ∇x · (u~w) = u∇x · ~w + ∇xu · ~w
and the identity

∇x · ~w =
1

JAt

∂JAt

∂t

∣

∣

∣

∣

~Y

. (15)

These terms have to be treated carefully to retain conservativity of the scheme
[14]. This formulation gives us the (semi-discrete) element contribution

φE,LDA
i =

1

Jh
At

∑

j∈E

∂Jh
At

uj

∂t

∣

∣

∣

∣

~Y

mE
ij + φE,sLDA

i −
1

Jh
At

∂Jh
At

∂t

∣

∣

∣

∣

~Y





∑

j∈E

ujm
E
ij



 ,

(16)
where mE

ij =
∫

E
ϕiψj d~x is the element contribution to the mass matrix and

φE,sLDA
i is the well known nodal contribution from the steady version of the

LDA scheme
βi = k+

i N (17)

where k± = ±max(0,±k) and

N ≡ (
∑

i∈E

k+
i )−1. (18)

For the time discretization, the 3BDF formula is used, i.e. the ALE time
derivative is approximated by

1

Jh
At

∂Jh
At

uj

∂t

∣

∣

∣

∣

~Y

=
αn+1µ(En+1)un+1

j + αnµ(En)un
j + αn−1µ(En−1)un−1

j

tn+1 − tn

(19)
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with coefficients

αn+1 =
1 + 2τ

1 + τ
, αn = −1 − τ, αn−1 =

τ2

1 + τ
, τ =

tn+1 − tn

tn − tn−1
. (20)

The measure (volume) of the element is denoted by µ(E). All the terms in
(16) are evaluated at time level n + 1.

The first order N scheme is formulated with diagonally lumped mass ma-
trix, the geometric source term is divided into the convective part and the
velocity divergence term, the latter treated by the point-wise discretization
on the dual grid. The 3BDF time discretization is again used.

φE,N
i =

αn+1µ(En+1)un+1
i + αnµ(En)un

i + αn−1µ(En−1)un−1
i

d + 1
+

φE,sN
i −

∑

j∈E un+1
j

d + 1

αn+1µ(En+1) + αnµ(En) + αn−1µ(En−1)

d + 1
. (21)

Here φE,sN
i is the well known nodal contribution from the steady version of

the N scheme

φi = k+
i (ui − uin), uin = −N

∑

j∈E

k−

j uj , (22)

The N scheme is a first order positive scheme, if a proper time discretization
formula is used.

The schemes are extended to the system of Euler equations following the
approach of [23].

A second order non-oscillatory scheme for the Euler equations can be con-
structed by using a blending coefficient θ = min(1, sc2 h), sc = (∂p

∂t
+ ∇xp ·

~v)+/δpv, where ~v is the velocity vector of the flow, p is the static pressure, h
the diameter of the element and δpv is a product of the characteristic pressure
and velocity in the domain. Finally, the sum of the element contributions to
each node is driven towards zero using a dual-time approach.

A second option to construct a second order nonlinear scheme is by the
modification procedure, where the (implicitly defined) distribution coeffi-
cients are limited, such that they become uniformly bounded, see e.g. [18].
The scheme is called N-modified scheme.
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5 Finite volume scheme

The idea behind the finite volume schemes, i.e. approximating the integral
of the divergence terms as a contour integral, has contributed to the devel-
opment of many numerical methods, see e.g. [22]. This part of the work is
devoted to finite volume methods as defined in [12], i.e. discretizations based
on eq. (24). Such discretization will be referred to as a finite volume method.

The domain of solution Ω is covered by a mesh consisting of elements. We
consider two classes of FV schemes: cell centered (CC) and vertex centered
(VC), see [3, 12]. For the CC method the (finite) volume used to satisfy the
integral form of the equation is the mesh element itself, while for the VC
method the finite volumes are cells of the dual mesh. Dual cells are con-
structed in two dimensions by connecting the centroids of the mesh elements
with the centers of the edges. A similar construction applies in 3D.

We start from the conservative ALE formulation (1). The equation is
integrated over finite element Ei. Using the Gauss-Ostrogradski theorem, the
mean value theorem and the substitution theorem we get a relation between
the mean value of the time derivative in the finite volume and the contour
integral of convective terms

∂JAt
u

∂t

∣

∣

∣

∣

~Y

+

∮

∂Ei

[~f(u) − u~w] · d~n = 0, (23)

where ui is the mean value of the solution in the element. The contour
integral involves the flux on the boundary of the finite volume. It is approx-
imated using the numerical flux evaluated in Gauss points. For the second
order approximation, one Gauss point in the centroid of each face of the finite
volume is needed.

∂µ(Ei)ui

∂t
+

∑

∀j

F(uL,j ,uR,j , ~nj , ~w) = 0, (24)

where the index j goes over the faces of the finite volume Ei and ~nj is the
normal of the face scaled by the measure (surface) of the face j. The uL,j

and uR,j are values of the approximation of the solution at the Gauss point
from the left and right side of the face of the finite volume. The ALE flux is
computed using a modification of Roe’s approximated Riemann solver [19].
The face velocity ~w and the (time dependent) normal ~nj are approximated
as in [11].
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Figure 1: Onera M6 wing 5× 306843 DOF. WLSQR reconstruction. Parallel
speed-up. Left: explicit scheme. Right: implicit scheme, CFL =
1000.

In order to increase the accuracy of the method, linear reconstruction in
each control volume is applied. To preserve non-oscillatory properties of the
method we use Barth limiter [4] or WLSQR approach [10].

The problem is solved in dual time in parallel. The computational domain
is split in (almost) equal size sub-domains. The problem is then distributed to
different processors in the computational cluster. The data are interchanged
with help of the MPI library. The same approach is used also for the residual
distribution schemes.

6 Comparison of some FV and RD schemes

In this section we shall investigate finite volume (FV) schemes both in vertex
centered (VC) and cell centered (CC) settings in comparison with residual
distribution (RD) schemes. To perform such a comparison one has to over-
come a number of technical problems.

• Cell and vertex centered methods employ a different number degrees of
freedom for the same mesh.

• The methods can significantly differ in their computational complexity.

• The methods have to be available with similar level of development
maturity (i.e. both state–of–the–art FV and RD codes).
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• Formulation and implementation of the boundary conditions can sig-
nificantly affect the solution.

Up-to now, there is no wide agreement on the definite superiority of one type
of method.

We have selected a number of test cases examinating different aspects of
the schemes. The test cases are sorted from easy to more complex: from
scalar linear equation, then scalar nonlinear equation up-to the system of
nonlinear equations; from steady to unsteady flow; from smooth solution to
discontinuous solution.

To enable comparison of the methods with different number of degrees of
freedom, i.e. cell centered and vertex centered methods, we define an equiv-
alent mesh spacing

hball,2D = 2

√

Si

π
, hball,3D =

3

√

3

4

Si

π
, (25)

where hball is the diameter of circle (ball) with surface (volume) Si, with

Si =
µ(Ω)

DOF
. (26)

The surface of the whole computational domain is denoted by µ(Ω) and DOF
is the number of degrees of freedom in the domain.

As the first test, we solve the steady scalar advection equation introduced
in section 3 on a domain Ω = [−1, 1]× [0, 1]× [0, 1], with the initial conditions
u0 = 0 and boundary conditions

u =

{

cos2[π min(0.5, 1.4 ‖~x − (0.5, 0, 0.5)‖)] on x > 0, y = 0,
0 on the rest of inflow boundary.

(27)

The norm of the error with respect to the equivalent mesh spacing is plotted
in Fig. 2. One can observe high accuracy of the LDA scheme in comparison
with all the other schemes. The order of convergence for a similar 2D problem
computed from a mesh refinement study is given in Tab. 3. A second order
convergence rate is observed for linear FV schemes with linear reconstruction
and for the LDA scheme in relevant norms.

The next test case examines the accuracy of the numerical methods on
deforming meshes. It is probably the most important test case in this thesis,
because proper extension of unsteady schemes for moving mesh computations
always raises accuracy concerns [7]. The LDA scheme is compared with the
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Figure 2: 3D steady circular advection problem. Convergence study.

FV scheme. The FV scheme uses linear reconstruction without limiter. Both
schemes are equipped with the 3BDF time integrator. The setup of the test-
case is similar as for the previous test. We solve the problem on a square
Ω = [−1, 1]× [−1, 1]. As the initial condition the following cosine profile was
prescribed

u0(~x) = 1 +
cos(4π min(d, 1/4))

2
, d = ‖~x − (−0.5, 0)‖. (28)

The mesh coordinates depend on time with formula

~x(t) =
3 − cos t

2
~Y , (29)

where ~Y is the original mesh coordinate and ~x(t) is the current configuration
mesh coordinate. The error is measured in Lp norm over the space-time
domain Ωt × [0, 2π]. The convergence is plotted in Fig. 4 and the rate of
convergence is computed from the least square fit in tab below. Both schemes
give almost second order accuracy. The higher accuracy of the LDA scheme
in comparison with the FV scheme is clear, both from the lower error and
from the higher convergence rate.
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Scheme L1 order L2 order L∞ order

CC FV Const. 0.76 0.72 0.60
VC FV Const. 0.58 0.54 0.40
N 0.75 0.71 0.59

CC FV Linear 2.04 1.92 0.90
VC FV Linear 1.99 1.95 1.39
LDA 2.16 2.11 1.79

CC FV Barth 1.64 1.60 0.96
VC FV Barth 2.00 1.95 1.47
N-mod 1.66 1.54 1.21

Figure 3: 2D steady circular advection problem. Estimated order of accuracy.

A comparison of the methods for transonic flow past the Onera M6 wing
is presented as the next test case, see [21]. We have chosen data from Test
2308, i.e. with free stream Mach number Ma∞ = 0.8395 and angle of attack
α = 3.06◦ . We use an unstructured mesh consisting of 57041 nodes and
306843 tetrahedral elements. This means that the CC FV scheme cannot be
directly compared to the VC FV and RD schemes, since the CC FV uses
about 6 times more unknowns. Isolines of the Mach number are presented in
Fig. 5. The λ-shock pattern is clearly visible for the more accurate schemes.
Comparison with experimental data is presented.

In order to asses the performance of the scheme for Euler equations on
deforming meshes, we present a test case consisting of a compression of gas
inside a cylindrical piston. The test case is essentially one-dimensional, how-
ever we solve the problem in three dimensions. The domain is initially of
length 5, with diameter of 1. The initial state is defined by ρ0 = 1.4, p0 = 1
and zero velocity. The gas is enclosed with walls. The wall x0 = 0 starts to
accelerate with derivative of acceleration

...
x = 0.2, while the opposite wall is

fixed. The position of the nodes in between is linearly interpolated. The sim-
ulation is performed until time t = 4. The problem can be solved analytically
by a method of characteristics. We use a fully unstructured mesh consisting
of 3257 nodes and 16054 tetrahedral elements. Note that the FV scheme uses
rougly 6× more DOF than the RD method. The mesh plot with isolines of
Mach number for time t = 4 (∆t = 0.04) is presented in Fig. 6, top. One can
observe that the isolines are essentially straight lines. The distribution of the
pressure and density along the x axis is shown in the middle and bottom for
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Scheme L1 order L2 order L∞ order

LDA 2.02 1.91 1.94
CC FV2 nolim 1.71 1.64 1.73

Figure 4: 2D unsteady circular advection problem of deforming mesh. LDA
scheme and FV scheme with linear reconstruction without limiter.
Norm of error vs. mesh spacing and estimated order of accuracy.

all the nodes in the computational domain. In both cases a more accurate
behavior of the LDA scheme compared to the FV scheme can be seen.

7 Finite element method for elasticity problems

In this section we will formulate the elastic problem and state the numerical
method. The strain tensor for large displacements has the form

εij =
1

2

(

∂ui

∂xj

+
∂uj

∂xi

+
∂uk

∂xi

∂uk

∂xj

)

, (30)

where uj is the displacement in direction j and k is a summation index. The
quadratic term renders the method nonlinear. The displacement is defined
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Figure 5: Inviscid flow past Onera M6 wing. Isolines of Mach number and the
pressure coefficient at 44 % of span. Full line: experiment, points:
numerical solution. Left: CC FV WLSQR scheme. Middle: VC
FV WLSQR scheme. Right RD Bx scheme.

as the difference between the deformed state and the initial state

ui = x′
i − xi. (31)

We use a linear relation between the strain ε and the stress σ called (gen-
eralized) Hooke’s law

σij = cijklεkl, (32)

where cijkl is the elastic tensor. The dynamic equation for the continuum
(Newton’s law) is

ρ
∂2ui

∂t2
=

∂σij

∂xj

+ fi, (33)

where fi is a component of the internal force (e.g. gravity) and ρ is the
material density. Structural damping is not considered.
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Figure 6: Piston driven compression, solution at t = 4. Left column: LDA
scheme. Right column: FV scheme. Top row: Isolines of Mach
number and computational mesh. Middle and Bottom rows: Dots
represent pressure and density as a function of x, plotted for all
points in the computational domain. Full line: exact solution.
Note that the FV scheme uses rougly 6× more DOF than the RD
method.

Multiplying (33) by test function ϕ and integrating over Ω we obtain the
weak form of the equation,

∫

Ω

ϕρ
∂2ui

∂t2
dΩ +

∫

Ω

∂ϕ

∂xj

σij dΩ =

∫

Ω

ϕfi dΩ +

∮

∂Ω

ϕ ti dS, (34)

where ti is a traction (load per unit surface) in the direction of the i axis.
This formulation leads directly to the matrix representation for the numerical
method.

The domain of solution is covered by finite elements. The displacement ui
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Figure 7: Finite elements in 2D. Left: linear TRI3 element. Middle: bilin-
ear QUAD4 element. Right: biquadratic sub-parametric element
QUAD9, the solution is approximated with 9 DOF, the geometry
with 4 DOF.

in the i-direction is approximated by the trial functions as

uh
i =

∑

k∈T h

ui,kψk. (35)

The trial functions depend on the element used. (We use Lagrangian P1,
Q1 and Q2 elements as depicted in Fig. 7.) As we use the Galerkin method,
the test functions belong to the same space as the trial functions. The weak
formulation (34) gives directly the finite element method, where the solution
is replaced by its approximation (35) and the test functions by ϕk. The
problem can be written as

MÜ + KU = F, (36)

where U is the algebraic vector of unknowns (displacements), M is the mass
matrix, K is the stiffness matrix and F the vector of right hand sides.

For the time integration we have chosen the Newmark method. We have
also included modal analysis capabilities, where we solve a generalized eigen-
problem

ω2
mMUm + KUm = 0. (37)

8 Numerical method for fluid–structure

interaction

In this section a method to couple both problems will be discussed. We use
a three field formulation introduced in [13]. The three distinct fields involve
computational fluid dynamics (CFD), computational structural mechanics
(CSM) and the fluid mesh deformation as the third field.
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• CFD is coupled with the CSM via position and velocity of the compu-
tational domain. It is also intrinsically coupled to the mesh dynamics.

• CSM is coupled to CFD by the stress tensor on the surface of the body.

• The position and velocity of the fluid mesh boundary is coupled to the
position and velocity of the surface of the body. The force acting to
the elastic body is related to the pressure of the fluid at the boundary.

For the aeroelastic computations, there is a strong need to treat non-
matching interfaces. We compute the displacement of the fluid boundary
nodes as follows: we project the fluid boundary nodes to the elastic boundary.
We compute the value of the finite element trial functions at the projected
point. The fluid boundary displacement is given by the weighted average
of the nodal displacements given at the elastic boundary nodes, where the
weights are given by the finite element trial functions.

The force on the boundary of the elastic body is prescribed from the equal-
ity of virtual work. The virtual work performed by the fluid boundary has
to be equal to the virtual work of the elastic boundary

∫

ΓF

−p~n · ~uF ds =

i=iS
∑

i=1

~fi · ~uSi
. (38)

Considering how the displacement of the fluid boundary was determined, is
is possible to evaluate the force acting at the elastic boundary nodes as the
weighted sum of the pressure forces acting on the fluid boundary. In this
case, the energy exchanged between the elastic body and fluid domain is
conserved.

As a simplification in 2D, we also consider the body motion governed by
two ordinary differential equations.

9 Numerical results of fluid–structure interaction

problems

We consider supersonic panel flutter, see [17]. An elastic panel with infinite
aspect ratio is clamped on both edges. Its upper side is exposed to a super-
sonic air-stream, while the lower side resides in the still air with the same
pressure as on the upper side. The panel has length L = 0.5 m, a uniform
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Figure 8: Panel flutter problem. Dependence of the integral of deflection on
time for different numerical schemes. Ma∞ = 2.2.

thickness h = 1.35·10−3 m, Young modulus E = 7.728·1010 N/m2, Poisson ra-
tion ν = 0.33 and density ρs = 2710 kg/m3. The plane strain assumption was
used. The flow conditions are given by p∞ = 25714Pa and ρ∞ = 0.4 kg/m3.
The critical Mach number Macr

∞, that is, the lowest free stream Mach num-
ber for which an unstable aero-elastic mode of the panel appears, is given in
the reference [17]. Using theoretical methods (linearized theory) the authors
get Macr

∞ ≈ 2.27 and using their numerical scheme Macr
∞ ≈ 2.23, what they

consider an “excellent agreement”.

The elastic panel is discretized with 60 × 2 elements. The computational
domain is formed by a half-circle of diameter R = 5. The mesh consists
of 3451 nodes and 6722 triangular elements, giving 50 elements along the
panel. One more computation is performed on a regular quadrilateral mesh
of 300× 100 elements with 100 elements along the panel (referred as “fine”).
The integral of the deflection of the panel for Ma = 2.2 is plotted in Fig. 8.
The neutral response was correctly reproduced. Although the LDA scheme
is a linear scheme, it is able to capture weak shock waves in a non-oscillating
manner. The nonlinear Bx scheme gives similar results as the LDA scheme,
which are very different from the first order N scheme.

Finally, transonic flutter of the AGARD 455.6 wing (“solid model”) is con-
sidered [6]. The elastic wing was discretized using 350 tri-quadratic elements.
The CFD mesh consists of 22k nodes and 118k tetrahedral elements. The
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Figure 9: AGARD 445.6 wing. Time dependence of the volume integral of
the wing velocity for the measured neutral response regime.

neutral response regime was chosen, which is characterized by the flutter
speed index of 0.5214 and the free stream Mach number Ma∞ = 0.92 with
flow medium Freon-12. One period was divided in 120 time-steps. The inte-
gral of the wing deflection is plotted in Fig. 9. For the FV scheme, a small
negative damping is observed, while for the LDA scheme the neutral response
was correctly reproduced. The difference between the measured oscillation
period and the computed period is 0.66 % for the LDA scheme and 2.08 %
for the FV scheme. Considering the uncertainty of the elastic constants we
judge this result more accurate than one can expect.

10 Conclusions

The goals stated in the beginning of presented work were successfully fulfilled.

1. A numerical method based on residual distribution schemes was devel-
oped and several extensions for moving mesh simulation were proposed.
We have analyzed the positivity of first order schemes, showing that the
proposed extension satisfies a discrete maximum principle for a scalar
conservation law. We have also analyzed the positivity and accuracy
requirements of nonlinear schemes constructed as a linear combination
of low and high order schemes. We have proposed and tested a new
nonlinear scheme built as a convex combination of the LDA and the N
scheme, named Bx scheme.

2. We have developed a finite volume method in both cell centered and ver-
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tex centered settings, including the capability to handle moving meshes.
We have tested the influence of renumbering degrees of freedom for a
parallel implicit method, showing its importance for the parallel per-
formance.

3. We have conducted a number of computational experiments, starting
from scalar advection problems, Burgers equation to the Euler equa-
tions, including the technically important case of transonic flow past
the Onera M6 wing. The tests were performed in two and three spa-
tial dimensions, for steady and unsteady problems, including problems
with deforming meshes. A number of convergence studies for scalar
cases were performed, also in three dimensions, giving opportunity to
directly compare accuracy of different schemes for the same test case.

4. A finite element method for the structural problem has been developed
in two and three dimensions including large displacement formulation
and handling of anisotropic material properties. The modal analysis
capabilities were included, as they are needed for the validation of the
structural model and the prescription of the initial conditions in the
fluid–structure interaction problem.

5. A numerical method for fluid–structure interaction was developed and
coded. The numerical method for the fluid flow is based on the schemes
developed in the first part of the work. Interface boundary conditions
were developed and validated. The mesh motion algorithm uses the
finite element method to find a nodal displacement. The method was
validated for 2D transonic flow past a NACA 64A010 airfoil, where the
structural dynamics is modeled by a system of two ordinary differential
equations. The flutter, neutral and damping response were correctly
reproduced. A flutter boundary for one selected Mach number of a two-
dimensional elastic panel problem was computed and compared with
theoretical results and solutions known from the literature. Finally,
the method was tested on the 3D AGARD 445.6 wing test case. We
have compared the solution using different developed CFD methods,
both of the residual distribution and finite volume type.
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thesis, Université Libre de Bruxelles, Von Karman Institute for Fluid
Dynamics, June 1995.

[17] S. Piperno and C. Farhat. Partitioned procedures for the transient so-
lution of coupled aeroelastic problems part II: Energy transfer analysis
and three-dimensional applications. Comput. Meths. Appl. Mech. Engrg.,
190(24):3147–3170, 2001.

[18] M. Ricchiuto, A. Cśık, and H. Deconinck. Residual distribution for
general time-dependent conservation laws. Journal of Computational
Physics, 209(1):249–289, 2005.

[19] P. L. Roe. Approximate Riemann solvers, parameter vectors, and dif-
ference schemes. J. Comput. Phys., 43:357–372, 1981.

[20] P. L. Roe. Fluctuations and signals – a framework for numerical evo-
lution problems. In K. W. Morton and M. J. Baines, editors, Numerical
Methods for Fluid Dynamics, pages 219–257. Academic Press, 1982.

30

Preliminary version – 12th June 2007 – 14:01



[21] V. Schmitt and F. Charpin. Pressure distributions on the Onera–M6–
wing at transonic Mach numbers. Advisory Report AGARD-AR-138,
Advisory Group for Aerospace Research & Development, 1979.

[22] E. Stein, R. de Borst, and T. J. R. Huges, editors. Encyclopedia of
Computational Mechanics. John Wiley & Sons, Ltd., 2004.

[23] E. T. A. van der Weide. Compressible Flow Simulation on Unstructured
Grids Using Multi-dimensional Upwind Schemes. PhD thesis, Technische
Universiteit Delft, Von Karman Institute for Fluid Dynamics, 1998.

Some publications related to the presented results

[1] H. Deconinck, R. Abgrall, M. Ricchiuto, K. Sermeus, T. Wuilbaut,
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multidimensional residual distribution schemes – application for moving
meshes problems. Computers and Fluids, 2007. To appear.
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[15] J. Dobeš, J. Fürst, J. Fořt, J. Halama, and K. Kozel. Numerical simula-
tion of transonic flow in steam turbine cascades. In H. Sobieczky, editor,
Proceedings of Symposium Transonicum IV, pages 145–150, Göttingen,
September 2002. DLR, Kluwer Academic Publishers. ISBN 1-4020-1608-
5.
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