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Abstrakt

Predkladara diserté&ni prace Vypccetri hlediskafeSeri okrajovych Gloh poiitim MKP se
zabyva pouwitim metody konénych prvki (MKP) v Glohach termomechaniky. MKP se&é
powiva k prostoroe diskretizaci paréilnich diferencalnich rovnic popisugich takow Glohy.
Vysledkem je soustava obgjnych diferencalnich rovnic, ktea se i@ktefym ze standardoh postug
numericlé integrace fevede na soustavu algebragck rovnic, ji je nutréfesit v kazdemcasoem
kroku. Pokud je tato soustava nelérd nebo ili s velka, mohou fi jejim feSen nastat prol@my.

Prace sestva ze dvoucasi. Prvn cast se zajva nelinérri Ulohou vedentepla v pevem
télese, dem je zleit numerickou stabilitu ypoCtu. Modifikovara Newton-Raphsonova metoda
je roAifena o linérri akceleraci (line-search) a jsou nagny dva zpisoby rozhodoar, kdy se na
aktualizovat tangenalni matice. Pro ob varianty se z§tuje vliv linearri akcelerace na zrychléen
konvergence a Zer numericlé stability.

Druha cast se @nuje poditi metod rozkladu oblasti beZgkryvan (nonoverlapping domain
decomposition). Rice se soustd predesim na metodu BDDC (Balancing Domain Decompo-
sition by Constraints) a jegfektivii implementaci prdeSen velkych soustav linarrich rovnic
v Ulohach elasticity.

Algoritmy uvadere v oboucastech byly zabud@ny do standardho sysému podivajiciho
MKP a byly vyzkowseny nailohach irzeryrské praxe v oblasti neliri@riho vedeitepla a lin@érri
elasticity.

Abstract

The thesiComputational aspects of the FEM for solving boundary valoblemsThe thesis
is devoted to the computational aspects of the Finite El¢Method (FEM) applied to problems of
thermomechanics. FEM is a commonly used method for spasiedetization of partial differential
equations that govern these problems. The resulting systardinary differential equations is
then numerically integrated using standard techniqueghnleads to the solution of the system
of algebraical equations at every time step. Difficulties ocacur when the system to be solved is
either nonlinear, or very large, or both.

The thesis has two main sections. The first section treatBneamity in heat conduction in
solids with the aim to enhance the numerical stability of¢dbmputation. The common Modified
Newton-Raphson method is complemented by line-search. ®aigion criteria of when to update
the tangential matrix are proposed and compared with rdgdvdtter convergence and numerical
stability properties. They are compared also to the NeviRaphson method without line-search.

The second section deals with the application of nonovpitegpdomain decomposition meth-
ods, namely Balancing Domain Decomposition by Constraintsid8p The aim is to reduce
computational time needed for solving large problems istaldy.

Algorithms discussed in both sections were implementedgugarts of a standard FEM soft-
ware and tested on practical problems in nonlinear heatugdimh and linear elasticity.
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BDD ................ Balancing Domain Decomposition

BDDC .............. Balancing Domain Decomposition by Caastis
DD ... Domain Decomposition

FEM ... ... Finite Element Method
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Chapter 1

Introduction

1.1 Motivation

The thesis is devoted to computational aspects of the Hilegment Method (FEM) applied to
problems of thermomechanics. FEM is a commonly used metbod Epatial discretization of
partial differential equations that govern these problerfike resulting system of ordinary dif-
ferential equations is then numerically integrated usitagdard techniques, which leads to the
solution of a system of algebraic equations at every timp. siifficulties can occur when the
system to be solved is either nonlinear, or very large, dn.bot

The thesis has two main parts. The first part treats noniilyearheat conduction in solids
with aim to enhance the numerical stability and efficiencyhef computation.

The second part deals with an application of nonoverlapgorgain decomposition methods,
especially Balancing Domain Decomposition by ConstraintsB)

1.2 State of the art

Numerical solution of problems in linear and nonlinear nathbs often leads to solving of large,
sparse, unstructured linear systems.

Direct methods are often applied to solution of these systdike a frontal algorithm by
IRONS[10] — a variant of the Gauss elimination especially dedigioe the FEM. Its more recent
generalization suitable for parallel computers, a mutital algorithm, was proposed byubF
AND REID [6]. The direct solvers usually need a lot of memory and alsmputational time
increases fast with data size.

Iterative solvers like Preconditioned Conjugate Gradi@RGG) are less expensive in terms of
memory and computational time, but they do not guaranteeergance for ill-conditioned sys-
tems. The convergence rate of iterative methods deteeg®rath growing condition number of the
solved linear system. The condition number of linear systebtained by discretization of many
problems in mechanics typically grows@$h~2), whereh is the meshsize of the triangulation, so
the larger the problem, the better preconditioner is uguededed.

Linear systems derived from huge problems are hard to sgideréct solvers because of their
size and their lack of structure. They are also hard to soviebative solvers because of their
large condition number. Most efficient recent methods usebdoation of both approaches, often
together with some hierarchy in meshing. Domain DecomjpositDD) methods are powerful
tools to handle large linear systems arising from the disgaton of differential equations. They
have many common traits with another efficient tool, the igritt methods.
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Historically, they emerged from the analysis of partiafeli€ntial equations, beginning with
the work [26] of SSHWARZ in 1870. A general approach of DD methods is to decompose the
underlying domain into subdomains and use this informatorsplitting the original large linear
system into number of smaller and numerically more convermires. Most often DD methods are
used as very efficient preconditioners for an iterative mhéitee PCG. The intrinsic parallelism of
DD algorithms and the straightforward distributabilitytbe associated data makes this approach
suitable for parallel computing.

1.3 Aims of the work

The main concern of the presented Ph.D. thesis are aspettie 6EM applied to problems of
thermomechanics, namely treating slow convergence ahilistaf iterative methods in nonlinear
problems and treating large, sparse, unstructured lirystess.

The common tool for dealing with nonlinearity in algebraguations is the Newton-Raphson
method or the Modified Newton-Raphson method. These ardivtenmethods which convert
a solution of a nonlinear algebraic system to the successikgion of linear algebraic systems.
Sometimes problems occur concerning slow convergencelwandnical stability of these methods.
Several algorithms are tested for handling of these proflem

Domain decomposition methods represent a promising way@llelization of problems in
thermomechanics.

1.4 Commentary

The subject of the presented Ph.D. thesis consists of mairtseachieved by the author and
published in selected articles:

e [1A] Cerfkova, M. and Dobas, J.: Numerical Solution of Nonlinear Heat Conduction on
Solids,Engineering Mechanics 4, 2 (199,/95-106.

o [2A] Cerikova, M.: Parallel Implementation and Optimization of Balamgcomain De-
composition in ElasticityScience and Supercomputing in Europe (200)1-596.

e [2B] Burda, P.,Cerfkova, M., Novotry, J. andSistek, J.: BDDC method with simplified
coarse problem and its parallel implementati®npceedings of MIS 2007, Jogef Dl
Czech Republic, January 13—-26-9.

e [2C] Sistek, J., Burda, PCerfikova, M. and Novot§, J.: On Construction of The Coarse
Space in the BDDC MethodProceedings of Seminar Programs and Algorithms of Numeri-
cal Mathematics 14, PANM’08, DaliMaxov, Czech Republic, June 1 — 6 (2008y7-184.

e [2D] Sistek, J., Novotf, J., Mandel, J.Cerfkova, M. and Burda, P.: BDDC by a frontal
solver and stress computation in a hip joint replacembftath. and Comp. Simulation
(Elsevier), spec. issue devoted to Computational Biomectamd Biology 2009, in print

The full text of these articles is involved in the Appendix.



Chapter 2

Nonlinear heat conduction problem

2.1 Problem to be solved

PDE governing nonstationary nonlinear heat conductioblpro can be written as

pc %—z —div(Agradl’) = g,

whereT represents unknown temperature ardpresents time. The thermophysical parameters
¢ — heat capacityp — mass density, andl — heat conductivity, and the right-hand sigle- den-

sity of heat sources, can depend not only on spatial codetindut also on the temperature:
c = c(z,7),p=plx,T), A= Nz, T),andg = g(z,T).

The PDE is transformed to the weak form and discretized vagfard to spatial unknowns by
means of FEM, which results in a system of ODEs. Its subsdquenerical integration using a
general one-step methodAMBERT [17]) leads to the system of algebraic equations, which can
be formally written as

Kjiw =qj41. (2.1)

The system has to be solved at every time s$tgp for unknown vectom,, ;. Both the matrix
K;i1 = K;;1(u;41) and the right-hand sidg; 1 = q;+1(u;j41) can in general depend on the
unknown vectouw,; (beyond an explicit dependence tn; and values computed at the previous
time stept;). This dependence dK,;; andq;;; on u;;; makes the system nonlinear. The
nonlinearity originates in dependence of thermophysicatiemial and heat transfer properties on
temperature and also can be caused by certain types of bgwadalitions, for instance radiation.

Components ofi;, are often calledlegrees of freedoiand they represent values of tempera-
ture at timet;;, at mesh nodes of an underlying domain. Components of the maynd sidey;
can be interpreted as a heat flux concentrated to mesh nodes.

2.2 Modified Newton-Raphson method

The modified Newton-Raphson method (MNR) is a common iteraéeanique for solving
nonlinear systems of algebraic equationR(&I1THS AND SMITH [9]). Assume that equation
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(2.1) is solved at time step; ;. Let us drop the index,, in the rest of this section and let us
emphasize the nonlinearity by rewritting the equation)(2sl

K(u)u=q(u). (2.2)

One iterative step of the full Newton-Raphson method for #qné2.2) then can be formulated

as to findu**! such that
J") (™ —u’) = q(u’) — K(u")u’, (2.3)

whereJ(u') is the Jacobian (tangential) matrix of the residBglu’)u’ — q(u’). The iteration
process is usually started witl! = u; and the sequena# is expected to converge to;. The
iteration process (2.3) requires the forward Gauss elitimnao be performed in every iteration.

In MNR the system matrix of equation (2.3) is kept unchangedéveral iterations in order to
reduce the number of forward Gauss eliminations, usualtiieaexpense of slower convergence.
One iterative step of MNR can be formulated as to firit! such that

J(u™) (u" —u') = q(u’) - K(u)u', (2.4)

wherem € < 0,...,i > is fixed for several iterations.

BATHE [2] recommends using the matrli(u™) as a good approximation dffu™), so the

equation
Ku™) (u'™ —u’) = q(u’) - K(u')u’ (2.5)
is solved instead of (2.4).

The question remains as when to updatéo the current value of and recompute the matrix
K(u™) on the left-hand side of (2.5). One possibility is to updatén every M-th iteration
step (the choice o/ = 1 leads to the method of successive approximations for emué#i.2)).
Another possibility is to choos&/ as an upper bound for the number of iterations between two
successive updates and updaten the basis of actual convergence rate.

2.3 Line Search

The Line Search (LS, EE [19]) is a general method that applies to any iterative metHa
every iteration step of (2.5) we can try to improve the acaygdroximationu*! of the solution of
(2.2) by searching a better approximatef?) on the line determined by the last two approxima-
tionsu’, u'*! as

u(f) =u + put —u'). (2.6)
The appropriaté is obtained as a root of the real function
r(8) = (™t —u’) - R(u(p))", (2.7)

where the dot denotes the scalar productBiid) = K(u) u — g(u) is the residual of (2.2). The
root need not be computed too accurately, it is suitableki® amy 3 satisfying

r(B)] < elr(=1)], (2.8)

with e chosen somewhere in the intervald.3, 0.5 > (LEE[19]).

If a suitables is found and if in additiorjR(u(5))| < |R(u’*!)| in the Euclidean norm, the
approximationu(3) is chosen instead af'*! and the iteration process (2.5) continues by the next
step. The line search is carried out onlyuift! itself is not “good enough” in a sense that the
condition (2.8) is not fulfilled fors = 0.



CHAPTER 2. NONLINEAR HEAT CONDUCTION PROBLEM 5

2.4 Results

The methods described in paragragtidand2.3 above were incorporated into standard FEM
software package and extensively tested on practical @madl
Three algorithms were tested and compared:

1. The method (2.4) witln updated after every/ iteration steps. No line search.

2. The method (2.4) withn updated if eithefR.(u’)| < |R(u’™!)| or M iteration steps passed
since the last updating. No line search.

3. The method (2.4) witln updated if eithefR(u’)| < [R(u'"!)| or M iteration steps passed
since the last updating. The line search was added.

It was found that it is difficult to estimate in advance the appiate number of iterations
between two successive updating in Algorithm 1 and that ttegg/choice sometimes causes even
failure of the convergence of the method.

On the contrary, if the time of updating of the tangentialmxawas controlled by the norm of
residual as in Algorithms 2 and 3, both the stability of thettme and the number of iterations
were improved. Our experience shows that the nuniideshould be selected big enough not to
interfere with the residual criterion.

The best results were achieved with Algorithm 3 with the Bearch involved, which lowered
not only the number of iterations, but also the number of tgslaf the tangential matrix.

A typical performance of these three algorithms is demauetr on three illustrative examples
presented in articlgLA] given in Appendix of the Ph.D. thesis. Table 2.1 bellow shtvistypical
preformance on one of the examples. The three columns chlhe itepresent the three algorithms
described above, the table compares the total number atides of MNR and the number of
Gauss factorizations (the numbers are separated by a.slash)

| M | Algorithm 1 | Algorithm 2 | Algorithm 3 |

1 10/10 10/10 15/15
2 17179 14177 24112
3 34/12 11/5 15/6
4 2719 10/4 25/9
5 3417 59/21 18/6
6 2815 20/7 11/4
7 58/9 13/4 12/4
8 2714 13/4 12/4
9 411/5 1474 12/4
10 49/5 1474 12/4
11 4314 1474 12/4

Table 2.1: A comparison of the results of the three algorthom a nonlinear problem:
The total number of iterations of MNR / The number of Gaus$oi@zations

Full text of the articld1A] is involved in Appendix of the Ph.D. thesis.



Chapter 3

Substructuring DD methods

Basic ideas of an important class of the DD methods, namelguhstructuring DD methods
sometimes also calletbnoverlappingare described here, with an emphasis on two of the recent
leading DD algorithms, BDDC and FETI-DP.

Substructuring methods rely on splitting the domain intaow@rlapping subdomains, or sub-
structures, tied-up together by means of some interfacerzorication.

There are two basic approaches to interconnection amorsytidomains, arimal and adual
one (see Section 3.4), with the interface problem formed Bglaur complement problem. The
Schur complement problem and its decomposition is destiibdetail in Sections 3.2 and 3.3, re-
spectively. DD methods are generally used as precondisotiet is why they are formulated here
as Richardson methods. In Section 3.6 the general use of Hsdramethods as preconditioners
is described.

Troughout this text we assume that investigated domainalegady meshed and divided into
nonoverlapping subdomains and the original equationslezady discretized by means of FEM.
For a better insight, algebraic formulations are illugdadbn an example of a 2D Poisson equation,
one of the most common partial differential equations entened in various areas of engineering.

DD methods have developed a lot during past twenty years landiterature of the field is
quite extensive. Let us mention just some important sumrteatg here. A good introduction to
the field is the monograph byH TALLEC [18]; it introduces the model problem in solid mechanics,
presents its mathematical formulation and describes tineiples of the DD methods in several
forms: differential, operator and matrix form. The monqurdy TOSELLI AND WIDLUND [28] is
a modern comprehensive 400-pages book with a list of ne@fy&lated references. An excellent
textbook on iterative methods generally isA» [25], a whole chapter in his textbook is devoted
also to DD. A comprehensive overview and comparison of subttring DD methods can be
found in SOUSEDIK [27]. A more practical point of view on domain decompositimethods is
presented by KuIs [16]. In a recent book [5] by BSTAL, application of FETI-DP method to
solution of a coercive variational inequality can be fouogdther with a wide introduction to the
field, developed in several chapters starting with linegelta.

3.1 Problem to be solved

After a discretization of a linearized partial differemtequation of elliptic type in a given
domain(?, a system of linear algebraic equations

Ku=f (3.1)

6
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is to be solved with a matriK and a right-hand sidéfor the unknown vecton. Components of
u are often calledlegrees of freedom

The discretizad domain is split into nonoverlapping subdims so that every element belongs
to exactly one subdomain. Two types of nodes can now be digshed:interior nodesbelong-
ing to just one “closed” subdomain amtterface noded¥elonging to boundary of more than one
subdomain.

3.2 Schur complement problem for the interface

The Schur complement problem represents a reduction ofrigma problem to thanter-
face unknowngunknowns linked to the interface nodes) by eliminatingiadérior unknowns
(unknowns linked to the interior nodes); this reductionamgtimes called atatic condensatian

In order to get a suitable structure for Schur complemertesyslet us rearrange the system
Ku = f and rewrite it in a block form, with the first block correspamgito interior unknowns
ordered subdomain after subdomain and the second blockspannding to interface unknowns:

Koo I/ior U, _ f0
[Kro Krr][ﬁ}_[f]’ (3.2)

whereu represents all the interface unknowns. The hat symbiglused to denote global interface
guantities.

Different subdomains have disjoint sets of interior unknewvith no connections among them,
soK,, is block diagonal. Interface unknowns cannot be separatétis way, as every of them
belongs to two or more subdomains.

After eliminating all the interior unknowns from (3.2) wetge

Koo I/{or U, _ fO
5 & (8)-[5)

where S = IA{H — RmKO—OIIA{OT is the Schur complemernudf (3.2) with respect to interface and
g =1 - K, K, 'f, is sometimes calledondensed right-hand side

o)

Problem (3.3) can be split into subdomain problems
Koouo = fo - I/iorﬁ7 (34)

and aSchur complement problem R
Su=g. (3.5)

Problem (3.4) represents N independent subdomain probletnDirichlet boundary condi-
tionsu’ prescribed on the interface
KGou, = f, — K, (3.6)
whereu’ representsi restricted to the interface 6f; andK’ _is a block ofIA{Or corresponding to
Q; (when using the FEM for discretizatioK,, andK' are assembled from element matrices for
elements contained 3, only).

The Schur complement problem (3.5) represents a problemt&nface unknowns only. Its
decomposition to subdomain problems is handled in the metios, as it is not so straightforward.
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3.3 Decomposition of the Schur complement problem

If the original problem is too large, even the Schur complenpoblem (3.5) might be too
large and ill-conditioned to be solved by standard algebmaéthods. An advantage of using it-
erative substructuring DD methods for solving (3.5) is tin@t Schur complement problem is not
assembled and solved as a whole. Instead lmagl Schur complement probleroa subdomains
are repeatedly solved and in every iteration step justfaterinformation between neigbouring
subdomains is exchanged. Moreover, even local Schur congpleproblems need not be assem-
bled; subdomain problems with Dirichlet and Neumann bowndanditions on the interface can
be solved instead.

The local Schur complement operafroperates only on the interface unknowns of the sub-
domain(2;. The local Schur complement problem is obtained as in theéique section, the only
difference is that the process is performed on the subdofaaiather than on the whole domain
Q. Let us consider problem (3.2) restricted 1o

Koo Ko |[w | _[£
)= LE ] &0

T

whereu! represents interface unknowns belongin@tandK: , K¢ , andK®  represent a local
contribution of(; to the global blockX,,, K,,, andK,,, respectively (when using FEM for
discretizationK! , Ki, andK are assembled from element matrices for elements contained
Q; only). However, it is not clear how to determine local inéex forced”.
After eliminating all the interior unknowns from (3.7) wetge
Ko Ko |[w]_|£
IR e
whereS’ = K!, — K! (K! )'K!, is thelocal Schur complementif (3.7) with respect to the
relevant part of the interface anpgd = ' — K’ (K! )~!f’. Problem (3.8) can be split into two
problems: the local subdomain problem (3.6) andldtwal Schur complement problem

Su =g (3.9)

In order to establish relations between the Schur compleéuamd the local Schur comple-
mentsS?, function space$V’, W, andW* and operator® andR’ are introduced in a standard
manner (see MNDEL, DOHRMANN, AND TEZAUR [23]):

o Wisa space of functions with minimal energy on subdomainsticoous across the inter-
face. Functiori € W is represented by a vectarof values at global degrees of freedom at
interface. .

W' is a space of functions frof¥ restricted td;; v’ € W is represented by a vectaf of
values at local degrees of freedom at interfac@ of

o W =W!'xW?x-..x WV is a space of functions with minimal energy on subdomains,
possible discontinuous (“teared apart”) across the iatexf Function,, € W is represented
by a vectoru, of values at union of independent instances of all localrfate unknowns
from all subdomains (so for every global interface unknowatohging tom subdomains
there can ben different local values coming from different subdomains).

o W', W andW’ ... dual spaces o/, Wi, andv, respectively.
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The Schur complement opera@rW — W'is represented by the Schur complerrfémhe local
Schur complement operatsf: Wi — W is represented by the local Schur complentnt

e R": W — Wiisthe operator of a restriction frofdto ;. The operatoR' is represented by
a matrix R’ that keeps only those components of a vector that belongetoltsure of;.
Note that the operator of a restrictidti defined here keeps also interface components that
lie on the boundary of?;.

o R W — W' is the operator of a prolongation frof; to Q2. It is represented by the
transposeWT to the matrixR?, which takes a variable frorf2; and represents it as the
corresponding variable if1.

e R: W — Wisthe operator of tearing interface unknowns apart to ieddpnt subdomains.
It is represented by the matrix
Rl

R = (3.10)

which m-times copies every global unknown belongingriesubdomains.

e RT: W' — W'isa transpose of the operaflr It is represented by the mat®R™, which
sums local interface values from adjacent subdomains.

3.4 Primal and dual methods

Let us suppose in this section that every diagonal block,dbrmed by local Schur comple-
mentS?, is invertible (floating subdomains will be treated in thetrsection).

Bothprimal (Neumann-NeumanBDD type) anddual (FETI type) methods are iterative meth-
ods for solving the Schur complement problem (3.5) usingdgmposed problem (3.9). Only
local Schur complement problems are solved, although iteedy.

3.4.1 Primal methods

The primal DD methods iterate on the primal spi’Ee For algebraic description of the primal
method we need to introduce an operdidior averaging displacements discontinuous across the
interface:

o B: W — Wisthe operator of averaging of interface values from adjasebdomains; it is
represented by a matriz.

o« ET: W' — W'is the operator of distributing of global interface forcessubdomains,
represented by the transpdsé of the matrixE.

The simple example df is an arithmetic average: value at interface node is set asilimetic
average of values at the corresponding node from all subthsncantaining that node. For more
sophisticated choices df see MANDEL, DOHRMANN AND TEZAUR [23] or KLAWONN AND
WIDLUND [13].
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Primal (Neumann-Neumann) method can be formulated as a Rgtramethod for the Schur
complement problem (3.5):
Akt = g® 4 ESTIETRR), (3.11)

whereS is a block-diagonal matrix with blocks formed by local Schomplements®.

3.4.2 Dual methods

The dual DD methods iterate on the dual spéceor, strictly speaking, on a space of the Lagrange
multipliers. More details and references can be found irPth®. thesis.

3.5 BDDC and FETI-DP

The primal (Neumann-Neumann) and dual (FETI type) methasislescribed in the previous
section, have two main drawbacks. First, no floating subdiosraae allowed in order to have local
Schur complements invertible. Second, there is no globaiheonication as in each iteration step
information is exchanged between neighbouring subdonaihs This leads to deteriorating of
the convergence rate with growing number of subdomains.

There have been many different attempts to tackle the fiestlolack. Let us mention just two
successful methods from early 1990s, the FETI methodARHAT AND RouUX [8] and the BDD
method by MANDEL [21].

Most advanced recent methods seem to be the BDDC (Balancing@idddecomposition by
Constraints) developed bydiRMANN [4] and the FETI-DP (FETI Dual-Primal) introduced by
FARHAT ET AL. [7]. Both methods are described and compared in an abstgetiraic setting
in MANDEL, DOHRMANN, AND TEZAUR [23] and in MANDEL AND SOUSEDIK [24], or in a
functional analytic framework in BENNER AND SUNG [3]. A detailed description of the BDDC
method with emphasis on implementation can also be fou@SmEK [29].

Both BDDC and FETI-DP methods construct a new space” 1V by imposing some conti-
nuity constraints across the interfacecwarse degrees of freedogo thatlV’ ¢ W and the local
Schur complement problems (3.9) restrictedtoare invertible. Then methods from previous
section are used o instead ofit: primal method in the case of BDDC and dual method in the
case of FETI-DP.

It was shown that a smart choice of the coarse degrees ofdineeesolves even the second
drawback. It can not only improve convergence propertigisalso make convergence independent
of the number of subdomains (seeJELLI AND WIDLUND [28] or MANDEL AND DOHRMANN
[22]).

3.5.1 The coarse degrees of freedom

The interface nodes can be divided into three types of dassequivalence: faces, edges, and
corners. Afacecontains all nodes shared by two given subdomains (and aoégdloy any other
subdomain), amdgecontains all nodes shared by a given set of three or more suwdide (and
not shared by any other subdomaingaeneris a degenerated edge with only one node.

According to this definition, every interface node belong®xactly one subset: either to a
face, or to an edge, or it is a corner. More details on this fobnd in the work oSisTEK [29]
or KLAWONN ET AL. [14].
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A choice of the coarse degrees of freedom usually starts leyeatson of some nodes on the
interface agoarse nodestypically corners of subdomains are chosen first and thiberotodes
are added as needed. Values at coarse nodes are used aslegaess of freedom. The space
W C W consists of functions continuous across the interface atseonodes, represented by
functions in¥ for which values at coarse degrees of freedom coincide.

For better convergence properties not only values at comdes are used as coarse degrees of
freedom, but also weighted averages of values over edgeaeeslof adjacent subdomains. More
details can be found for instance inAMDEL AND DOHRMANN [22], KLAWONN, WIDLUND,
AND DRYJA [15], KLAWONN AND RHEINBACH [12] or in LI AND WIDLUND [20], where a
change of variables is used for treating averages so thhtaasrage corresponds to an explicit
degree of freedom, like a coarse node.

Let us denote by
e RT: W’ — W' arestriction of the operatdt” to w,
R W W transpose of the operatﬁrT,

e E: W — W arestriction of an average operatoto W,
3.5.2 BDDC (Balanced Domain Decomposition by Constraints) method

The BDDC method is the primal method rewritten for partialgcdmposed problem in the
spacdV instead of totally decomposed problem in the spatdt can be expressed as a Richard-
son method, similarly as (3.11):

Gk — gk 4 E('Sv)flﬁT’f(k)_ (3.12)

3.5.3 FETI-DP (Finite Element Tearing and Interconnecting Dual-Primal)
method

The FETI-DP method is the dual method rewritten for pastiaécomposed problem in the
spacell’ instead of totally decomposed problem in the spd€e More details can be found in
the Ph.D. thesis.

3.6 DD methods as preconditioners

DD methods usually are not used on their own. They are usedtatanding preconditioners,
specifically tailored to the given problem. The original lpleam (3.1), or the Schur complement
problem (3.5), are actually solved using some other itezatiethod, typically PCG for symmetric
problems and GMRES for nonsymetric ones.

A preconditionerM for a given problemA x = b is sought so that it has two concurrent
properties:

e the problemM A x = Mb has good spectral properties (in this seNé&an be regarded as
some approximation oA 1), and
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e a preconditioned residupl = Mr is “cheap” to obtain for any given

A good preconditioner improves the convergence of thetiteranethod; without a preconditioner
the iterative method may even fail to converge. More aboetg@nditioners and iterative methods
can be found in 8AD [25] or BARRET ET AL. [1].

Next idea is adopted frome_TALLEC [18]: DD methods in preceeding sections are formulated
as Richardson iterative methods with a preconditidviefor the problemA x = b as

xH) = x®) Ly Mr®)| (3.13)

wherer®) = b — A x¥ is a residual ak-th iterative step ang = 1. Any such method can be
understood as a recipe for computing a preconditioned uabjslby using only second term of
(3.13) asp = Mr. This is the way how DD methods are used in practice.

From (3.12) it follows that the BDDC preconditioner for prebi (3.5) can be written as

Mpgppe = EST'ET. (3.14)

3.7 Application of BDDC to linear elasticity

Several practical problems from mechanical engineerikg.the problem described bellow, were
computed in order to test different implementations of theodDmethod ported to different com-
puters.

Figure 3.1: Replacement of a hip joint. FEM discretization:586 elements, 154 247 nodes, 551
720 degrees of freedom. Domain is decomposed into 31 subds@oured by different colours.
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Hip joint replacement

One practical problem from engineering is a problem of $tmat analysis of a replacement of
a hip joint construction loaded by pressure from body weight global mesh consists of 27 586
guadratic isoparametric elements and 154 247 nodes thaseag 551 720 degrees of freedom
(Fig. 3.1). The problem and the computational mesh wereigeovby Jaroslav Novosn Institute
of Thermomechanics of the Czech Academy of Sciences.

The domain was decomposed into 31 subdomains using the Mgddsage [11]. For 1 600
coarse nodes randomly selected from interface nodes PC@rgaavafter 46 iterations. The two
most time consuming parts of the computations are the faetoyn of problems on subdomains
and coarse problem and the PCG solution of the interface gmabl

The computation of stress in the construction needs abobb86 when using serial frontal
solver. Two parallel implementations described in theclas[2A] and[2B] are compared in the
two tables bellow. Table 3.1 shows results for coarse prollglved in parallel with the subdomain
problems. Processor 0 is reserved only for the coarse pmblée problems on the subdomains
are divided among the remaining processors. Table 3.2 stesuits for coarse problem processed
in serial mode with the subdomain problems. The problem&estbdomains are divided among
all the processors. The processor 0 solves in addition hésodarse problem.

number of processors 5| 91732
number of subdomains per processor8 | 4| 2| 1
time spent by factorization 44| 30| 27| 21
time spent by pcg iterations 68| 35|18 |12

| total time | 113] 66| 45| 33|

Table 3.1: Scaling results for the problem at Figure 3.1€timminutes), coarse problem is solved
in parallel with subdomain problems.

number of processors 4| 8|16| 32
number of subdomains per processor8 | 4| 2| 1
time spent by factorization 53|35|30| 23
time spent by pcg iterations 67|32 22|15

| total time | 120] 68 52 | 38|

Table 3.2: Scaling results for the problem at Figure 3.1€timminutes), coarse problem is solved
in serial mode with subdomain problems.

Presented results were obtained on the Lomond server (81&Fbk) of EPCC, University of
Edinburgh.

Results obtained by different choices of the coarse problkenpablished in the articld2C]
and[2D].
Full text of the article§2A] —[2D] is involved in Appendix of the Ph.D. thesis.



Chapter 4

Conclusion

The presented thesis summarizes results published iearfdiA] — [2D] (see Section 1.4). It
consists of two parts.

The first part is concerned with nonlinearity in heat congturcin solids. The aim is to enhance
the numerical stability and efficiency of the computatiomeTproblems are treated by a suitable
choice of the criterion when to update the tangential matrMNR and by the line-search method,
as described in Chapter 2.

The second part deals with an application of Balancing Doacomposition by Constraints
(BDDC) — nonoverlapping domain decomposition method, dbedrin Chapter 3. The aim is
to get efficient algorithms for solving large, sparse, undtired linear systems that stem from
numerical solution of practical problems from engineering

Algorithms discussed in both parts were implemented usorgponents of a standard FEM
software and tested on practical problems in nonlinear ¢@aduction and linear elasticity.

My main original results and achievements are:

e Proposing and implementing two criteria for updating thegtntial matrix into Modified
Newton-Raphson method and implementing the line-searchargtandard FEM software
package. Comparing the methods on nonlinear heat condygbiroblems with regard to
better convergence and numerical stability properties.

e Parallelizing solution of the coarse problem of the BDDC rodtim the previous implemen-
tation (the first implementation done 8isTEK [29]) and comparing the efficiency of both
variants.

e Based on deeper insight into the subject of domain decompositethods, | made several
propositions dealing with implementation of constrairdeoas the interface.

Results of work in the thesis were presented at the followigrnational conferences:

e LSSC 6 — Large-Scale Scientific Computations, Sozopol, Bidgadune 5 -9, 2007

e ICCBB 1 - International Conference on Computational BiomechaamcksBiology, Plza,
Czech Republic, September 10-13, 2007

e PANM 14 — Progams and algorithms of numerical mathematicdnilMaxov, Czech Re-
public, June 1 — 6, 2008
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