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Summary

Keywords: �uid dynamics, CFD, in-house numerical code, �nite volume

method, turbulence modelling, ALE formulation,

reciprocating engine, exhaust system

The main target of this work is to simulate and describe the �ow around the exhaust valve of a

reciprocating engine during an exhaust stroke. The computations are performed with two inde-

pendent in-house numerical codes. Both the codes are based on the �nite volume method, using

the modern numerical schemes and the Arbitrary Lagrangian-Eulerian formulation for the simula-

tions with moving geometries. In order to perform the simulations, some substantial developments

(with the main focus on the turbulence modelling) were neccessary and have been accomplished

within the scope of this work. Some one- and two-equations turbulence models of the �rst and

second order closure have been taken from the literature and implemented. The properties of the

mathematical model are tested together with the sensitivity analysis of the simulation parame-

ters (including geometry changes) on the results obtained, respectively on the processes over the

exhaust stroke.
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Anotace

Klí£ová slova: mechanika tekutin, CFD, vlastní numerický program,

metoda kone£ných objem·, modelování turbulence,

ALE formulace, spalovací motor, výfukový systém

Cílem této práce je modelovat a popsat proud¥ní okolo výfukového ventilu £ty°dobého spalovacího

motoru b¥hem jeho pracovního cyklu. Prezentované výpo£ty jsou získány pomocí dvou nezávislých

(nekomer£ních) numerických program·. Oba tyto programy jsou zaloºeny na metod¥ kone£ných

objem·, vyuºívají moderní numerická schémata, p°ípadn¥ ALE formulaci pro výpo£ty proud¥ní na

pohybujících se geometriích. Pro realizaci t¥chto výpo£t· bylo zapot°ebí vyvinout (naprogramo-

vat) ur£ité £ásti obou program·, zejména doplnit modely turbulence. Tento úkol byl pln¥n v rámci

zpracovávání této práce. Postupn¥ bylo do program· dopln¥no n¥kolik jedno- a dvou-rovnicových

model· turbulence 1. a 2. °ádu p°evzatých z literatury. Prezentované výsledky zkoumají vlast-

nosti sestaveného matematického modelu a odhalují citlivost výsledk· (respektive d¥j· ve válci a

výfukovém potrubí b¥hem výfukové fáze) na vstupní parametry simulace, v£etn¥ geometrických

úprav.
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Chapter 1

Introduction

This doctoral work focuses on the application of �uid dynamics on a real industrial problem. Since

its origin, �uid dynamics has been both a theoretical and experimental discipline of general physics.

While the experimental branch has gained in popularity by providing respectable descriptions of

dynamics of �uids, its theoretical sibling has been left in shade for long decades.

The �rst mathematical equations describing the �uid motion have been known since the 18th

century, by D. Bernoulli and L. Euler. Their substantial extension is dated to the 19th century,

acknowledging mainly the works of A. Cauchy, C. Navier, S. Poisson, O. Reynolds, B. de Saint-

Venant, G. Stokes and others. The mathematical properties of the equations derived have been

however, far beyond the limits of the then computational power (usually just a pen & paper).

The real breakthrough came in 1940's when a series of mechanical counters and multiplicators

to automatize the computations have been used for the �rst time, by R. Feynman. This algo-

rithmization principle together with the development of the transistor gave birth to the numerical

branch of �uid dynamics. Its evolution then directly mirrors the enormous progress in the computer

engineering over the past years.

The original rivalry between the experimental and numerical branches about the verity of results

has recently turned into a synergy, establishing a discipline called Computational Fluid Dynamics

(CFD).

From the long term perspective, aeronautics has been the main customer to CFD. Nonetheless,

with the apparent rise in computational power, the numerical methods and models have been

extended to a wide range of applications. More and more industries appreciate the advantages of

an accurate numerical simulation of the �ow �elds in industrial processes. As a part of an integrated

design tool, CFD can help reducing the development time together with the simultaneous increase

of its e�ciency, leading to obvious resource savings.

Today's CFD therefore links: any industrial domain interested (whoever dealing with �uids in

any form), physics (providing the rules/equations of �uid behaviour) and mathematics (providing

the tools and methods to solve e�ciently the equations given).

General Objectives

This work applies CFD on the automotive industry issue. The main target is to reveal and describe

the �uid behaviour over an exhaust stroke of a four-stroke internal combustion engine.

1



2 CHAPTER 1. INTRODUCTION

So far, the �ow under our consideration has only been approached by roughly simply�ed mod-

els/estimates. The programs designed for the simulation of the complete cycle (of the internal

combustion engine) often use too coarse discretization around valves, which causes serious inaccu-

racies of the �ow parameters during the scavenging strokes (intake and exhaust).

The commercial CFD codes are usually also not suitable for the exhaust �ow. The main reason

is the wide velocity range (most of the �ow is deeply subsonic, whereas for the small valve lifts the

velocity turns to supersonics and expands down the exhaust channel) and its steep gradients, which

most of the softwares fail to model properly. Hence, the merit of the thesis is an accurate insight

into the processes a�ecting the exhaust �ow. Due to lack of su�ciently detailed explorations on

the domain of interest, the novel work does not relate to any previous research.

The general objective is to develop a numerical method capable of a reliable prediction of the

(time-dependent) �ow �eld characteristics over the stroke chosen.

The research has been accomplished in several consecutive steps, ordered and executed in a

logical sequence. After a literature survey it has been decided to develop an own numerical code

that would use the state-of-art physical models and numerical methods and allow a �exible and

wide code customization. It was crucial that this code remains as transparent and open source as

possible. This numerical code should also be su�ciently robust and easy to apply (not only for

the exhaust channel problem, but) for other CFD test cases.

An in-house numerical codeMUSA (coded by M. �aloudek) has been used as an initial platform.

In order to carry out realistic simulations on the test case chosen, the code has required several

substantial changes and extensions.

Within the scope of cooperation with the von Kármán Institute for Fluid Dynamics (Rhode St.

Genèse, Belgium) an opportunity to participate on the development of the large CFD framework

COOLFluiD (Computational Object Oriented Library for Fluid Dynamics) has been utilised - this

code has also been used for the purposes of this thesis.

In order to perform the simulations on the exhaust channel, COOLFluiD has required code

extensions, namely supplying the code with new turbulence models, their extension to 3D and

further implementations related to the unsteady approach. Therefore a subsidiary target of the

thesis has been to make a review of current turbulence models and to select those, suitable for the

subject solved, for the code framework (regarding its internal structure) and with a�ordable CPU

demands. The models selected have then been implemented into the code.

The reliability and properties of both numerical codes used have been tested, debugged and

tuned on several reference test cases. Having this validation �nished the solvers have been used on

the exhaust channel test case. Next objective of this work has been to cross-validate the results

obtained by these fundamentally di�erent CFD codes.

After gaining con�dence in the reliability of the results, the in�uence of various simulation

parameters has been analyzed.

From the numerical point of view, over a progressive development of the codes, the in�uence

of the ascending �ow model complexity (inviscid / laminar / turbulent) has been studied and

appraised regarding the respective suitability of the models. The in�uence of particular turbulence

models has also been tested. Lastly, the e�ect of steady and unsteady approach to the problem

simulation has been investigated.

From the technical point of view, an impact of (technologically a�ordable) geometrical changes

to the exhaust channel has been studied. On the �xed part of the channel, the angle between
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the plane of a chamber top and the valve axis has been altered in order to better cast the �ow

direction. On the moving part, three di�erent pro�les of the exhaust valve stem have been tested,

observing their in�uence on the mass �ow rate through a channel during the exhaust stroke.

Goals of the Thesis

The general objectives have been concretized into the following goals:

• model and describe the �ow �eld around the exhaust valve during the exhaust stroke; describe

the characteric �ow properties and dependencies;

• assess the aerodynamical properties of the geometry of the valve and the exhaust channel;

• ascertain the limits of the contemporary numerical methods for simulations of the �ow around

the exhaust valve regarding the turbulence modelling and the numerical scheme used;

• implement the modern numerical schemes and turbulence models into the numerical methods

with an emphasis on the computations on a moving domain.

Structure of the Thesis

Due to the scope of the subject, the thesis is structured into eight chapters.

The second chapter contextualizes the work among the up-to-date research topics and extracts

the respective motivation. A broader technical and physical background of the problem to be

solved is also presented in this chapter.

The third chapter describes the governing equations of the �ow under the consideration. The

mathematical model is based on a general conservation equation for a moving control volume.

Necessary constitutive relations, initial and boundary conditions are presented creating altogether

the so-called well-posed problem (having same number of unknowns and equations, allowing a

numerical solution).

The fourth chapter is dedicated to the turbulence. Its general characteristics are outlined

together with a method of describing the turbulence with mathematical equations. Next section

presents the assembly of the turbulence transport equations with the original equations of �uid

motion from the chapter 3. This chapter also contains a review of current turbulence models,

followed by a detailed description of the models selected for implementation,

The �fth chapter focuses on the numerical methods used across the whole work. Both the

numerical codes employed are introduced here, with an emphasis on their common and diverse

aspects.

The sixth chapter presents numerical results on the reference test cases. The goal has been to

prove the suitability of both codes for the exhaust channel test case. The accuracy and reliability of

both numerical codes have been assessed by the di�erences measured from the reference solution.

After tunning the codes so to have the best agreement possible, the solvers have been used on the

target test case.

The seventh chapter shows, analyzes and discusses the numerical results obtained on the exhaust

channel. The novel results and main achievements of this work are concentrated here.

The �nal chapter brings the conclusions gathered over the entire work and suggests possible

directions for an eventual sequel.
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The last pages belong to the annexes containing useful analysis and derivations and related

technical drawings.



Chapter 2

Motivation

Up to present days, internal combustion engines are the most frequently used sources of mechanical

energy. They play a dominant role in the means of ground tranport, such as motorbikes, cars, buses,

as well as in many other industrial applications. To make the image more concrete, the �gure 2.1

presents the absolute number of registered vehicles in the Czech Republic during the past decade.

Data has been extracted from [6] and the Central Vehicle Registry of the Czech Republic.

Figure 2.1: Absolute number of the double-track vehicles registered in the Czech Republic

The recent year-to-year growth has slowed down due to the economic crisis of last years, nev-

ertheless the long term trends have remained positive for all the categories observed1. Also to

emphasize the importance of motor vehicles let us mention that the today's Czech Republic is

a country with roughly ten million inhabitants and with more than seven million motor vehicles

registered. Because their absolute majority is being powered with an internal combustion engine,

its mechanical reliability, economical operation and ecological friendliness is highly required.

In order to reduce any inconvenient sequels of the usage of the combustion engines, the trans-

formation process of the chemical energy of the fuel into the mechanical energy must be completely

1The peak in the buses' chart in 2002 is caused by the legislative change to the classi�cation of vehicles of this
type.

5



6 CHAPTER 2. MOTIVATION

understood.

Combustion Engines

In general terms, the combustion engine (CE) represents any heat engine, whose purpose is to

produce mechanical energy from chemical energy of (usually fossil) fuel. Two main families of CE

can be distinguished:

• external combustion engine (ECE) - the working medium is heated by the combustion of an

external source. The heating is then made through the heat exchanger or through the wall.

• internal combustion engine (ICE) - here the combustion of the (most often) fuel-air mixture

happens directly inside the engine. The mixture plus its burned products are then the actual

working medium.

By these de�nitions, the gas turbines also belong to the family of ICE. However, their working

principles are too di�erent from the common car engines and will therefore not be considered as

an ICE in the scope of this work.

The term internal combustion engine, if mentioned here, will stand for a reciprocating engine.

It is a unit with one or more reciprocating pistons. The reciprocation is then actuated by the

combustion, whereas the output energy is mechanically extracted from the moving pistons, see the

�gure 2.2.

Figure 2.2: Scheme of the reciprocating engine

2.1 Reciprocating Engines

The �rst reciprocating engine has been developed already in the 18th century, but its real boom

started together with the beginning of the commercial production of petroleum in the middle of

the 19th century. Despite its respectable age, the technology of reciprocating engines is still actual

and its current research focuses on the increase of the overall e�ciency with simultaneous decrease

of air and noise pollution.

Ideal Operating Cycle

Suppose a heat engine at a concrete thermodynamic state. A thermodynamic (operating) cycle

arises, if this engine undergoes a series of di�erent states and �nally returns to its initial state (see
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the �gure 2.3). A Carnot heat engine is a system following an ideal thermodynamic cycle, the

so-called Carnot cycle (the �gure 2.4 b).

Figure 2.3: General thermodynamic cycle in a temperature-entropy diagram

This cycle represents an ideal reversible heat machine. Due to the reversibility it can be seen

either as a heat engine (following the state changes in a clock-wise manner) or a heat pump

(following the state changes in a counter-clock-wise manner).

Figure 2.4: The Carnot cycle in a) pressure-volume chart b) temperature-entropy chart

As depicted in p-v and T-s diagrams in the �gure 2.4, the cycle consists of four state changes:

1. isothermal expansion (step A-B) - the absorption of heat QAB induces the gas expansion,

which provides work WAB .

2. isentropic expansion (step B-C) - all the acting parts of engine are assumed to be ther-

mally insulated and therefore neither gaining nor loosing heat. The gas however continues

expanding, which leads to a decrease of its temperature from TB to TC .

3. isothermal compression (step C-D) - the surroundings perform work on the gas. This work

is released from the system in a form of heat QCD.

4. isentropic compression (step D-A) - all the acting parts are assumed to be thermally insulated

again. The surroundings perform work on the gas, causing an increase of its temperature to

TD, with a simultaneous decrease of the volume.

The overall work gained during such cycle can be computed (according to the �rst law of thermo-

dynamics) as

W =

˛
pdv =

˛
(dQ− dU) . (2.1)

The integral of an internal energy
¸
dU is zero for any closed cycle and therefore the work provided

by the cycle only depends on the heat di�erence

W = QAB −QCD . (2.2)
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The e�ciency of a thermodynamic cycle η is expressed as a ratio of the work done and the energy

provided. Respecting the second law of thermodynamics and equalities TA/C = TB/D, sA/B =

sD/C , the Carnot cycle e�ciency therefore is

QAB = TA(sB − sA), QCD = TD(sB − sA)

ηCarnot =
W

Q
=
QAB −QCD

QAB
= 1− TD(sB − sA)

TA(sB − sA)
= 1− TD

TA
. (2.3)

It can be shown that the Carnot cycle e�ciency (2.3) is the theoretical maximal e�ciency of a

cycle which operates between TA and TD. Furthermore (Carnot's theorem) it can be proved (see

[68]) that any irreversible thermodynamic cycle has smaller e�ciency than ηCarnot.

Real Operating Cycles

Any real operating cycle is irreversible due to themodynamic losses. The isothermal and isentropic

state changes of the Carnot cycle are therefore substituted by other mechanisms, as shown in the

table 2.1. The p-v charts of these engines are shown in the �gure 2.5.

step A-B B-C C-D D-A
Cycle heat addition expansion heat rejection compression

Carnot isothermal isentropic isothermal isentropic
Brayton isobaric adiabatic isobaric adiabatic
Diesel isobaric adiabatic isochoric adiabatic
Otto isochoric adiabatic isochoric adiabatic

Table 2.1: State changes for ideal and some real heat engines

Figure 2.5: The pressure-volume charts of a) Brayton b) Diesel c) Otto operating cycles

• the Brayton cycle describes the work of the gas turbine engine.

• the Diesel cycle is an ideal model of a compression-ignition engine, therefore called a diesel

engine.

• the Otto cycle describes the work of the spark-ignition engine, also called a gasoline or a

petrol engine.

The last two cycles represent the most frequent engines of the today's car industry.

Four-Stroke Engine

All the cycles mentioned consist of four state changes, which is why they are often realized by four-

stroke engines - each cycle step represented by one stroke. Each cylinder needs two revolutions of
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the crankshaft (720 degrees) in order to undergo a whole cycle, i.e. to produce one power stroke.

Both spark-ignition and compression-ignition engines follow the scheme shown in the �gure 2.6,

passing the strokes in a following order:

1. an intake stroke (0◦− 180◦) - the piston travels from its top to the bottom position, drawing

fresh mixture into the cylinder.

2. a compression stroke (180◦ − 360◦) - the both valves are closed and the mixture inside the

cylinder is compressed by the piston moving upwards.

3. a power stroke (360◦ − 540◦) - the mixture ignition leads to a sudden increase of the tem-

perature and pressure, which pushes the piston downwards, forcing the crank to rotate.

4. an exhaust stroke (540◦ − 720◦) - the exhaust valve opens, so that the mixture burnt can

leave the cylinder and the whole cycle can be restarted.

Figure 2.6: Operating cycle of a four-stroke engine

Two-Stroke Engine

In order to obtain a higher power output from a given engine size as well as a simpler valve design,

the two-stroke engines have been developed, linking some stages of the operating cycle together,

see the �gure 2.7. The two strokes usually are

1. a compression stroke - the piston travels upwards, closes the inlet and exhaust ports and

compresses the mixture inside the cylinder with a simultaneous draw of fresh mixture into

the crankcase. When the piston reaches the top position, the combustion is initiated.

2. a power stroke - this stroke is similar to the four-stroke engine until the moment, when the

piston uncovers the exhaust port (�rst), allowing the burnt mixture to exit the cylinder and

the inlet port (second) allowing to refresh the mixture.
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Figure 2.7: Operating cycle of a two-stroke engine

The advantage of a two-stroke engine is the higher frequency of power strokes (one power stroke

each crankshaft revolution), but it is more di�cult to �ll completely the displaced volume with

the fresh mixture on the other hand. Its primar drawback however is, that some mixture of fresh

fuel and air �ows directly out of the cylinder during the scavenging process.

Other Internal Combustion Engines

The list of internal combustion engines should be completed also mentioning the Wankel engine,

gas turbine and jet engine. This work is however focused on piston engines (in a four-strokes regime

only), into which group none of the engines listed belongs to.

• a Wankel engine is a rotary machine operating in a four-stroke manner. The strokes take place

in separate locations of the engine, producing one power stroke per crankshaft revolution.

Due to the excentric shaft it gives better power-to-weight ratio than piston engines, but also

creates much higher technological demands on the manufacturing process.

• a gas turbine is also a rotary machine consisting of a compressor, a combustion chamber

and a turbine. The air, after being compressed, is heated by burning fuel in it. The burnt

mixture then expands in the turbine resulting in work output, which partly also actuates

back the compressor.

• a jet engine requires a large volume of hot gas from a combustion process (typically a gas

turbine), which is then accelerated inside a jet nozzle. This e�ect provides a thrust and work

output to the moving vehicle.

For detailed information about the Wankel engine see [107], for further details of a gas turbine and

a jet engine see [87].

2.2 Flow Inside a Combustion Engine

If not speci�cally mentioned, only the four-stroke internal combustion engine (its basic version has

been depicted in the �gure 2.6) will be discussed from here on. Moreover, the main focus of this

work is on the �ow through the combustion chamber.

It is the most important domain which governs the output parameters of whole engine, such as

its e�ciency, the emission of pollution, the lifespan etc.
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According to the literature [61, 80], the �ow�eld in a combustion chamber is claimed to depend

on the geometry of the interior and on turbulent and chemical processes inside the chamber. The

�ow�eld structure has been found responsible for the quality of the combustion, for the wall heat

transfer and also for the ease of scavenging processes. Altogether it answers the question, why the

proper modelling of the �ow inside a combustion engine plays so important role.

The characteristics of the �ow�eld can be found in [72]: it is a complicated unsteady turbulent

�ow of interacting boundary layers, shear stress and recirculation zones, with both small and large

turbulent timescales of the same importance.

From the turbulence point of view the processes inside the engine can be splitted in two cate-

gories:

1. Scavenging strokes, when either the intake or the exhaust valve is opened. The turbulence is

generated by the shear stress zones, which appear due to the �ow around the valve (channel

with a narrow throat). The intake stroke strongly a�ects the �ow�eld inside the chamber,

which then becomes a source of turbulence during the high-pressure strokes.

2. High-pressure strokes, when the air mixture works in a closed volume. Here the turbulence

arrises due to the piston movement, due to the mixture movement (initiated during the intake

stroke), due to geometry of the chamber, due to ignition and combustion of the fuel. Large

pressure, velocity and temperature gradients are present here, together with the intensive

heat transfer to the walls.

The �rst group of processes impacts the engine power (intake) and the e�ciency of the turbocharger

(exhaust), whereas the second group a�ects the e�ciency of the whole thermodynamic cycle and the

production of pollution. These high-pressure processes have been described in [98], where the e�ect

of turbulence on the compression and the expansion stroke has been studied. The numerical results

have been obtained with an in-house developed CFD solver, based on the �nite volume method

solving an unsteady 3D �ow. Its results have been compared to the experimental measurements

with a qualitative agreement observed for carefully tuned turbulence models. Strong correlation

among the turbulence model chosen, the initial layout of the air mixture, the grid size on the

agreement with experiments have been found.

The numerical results have also proved the independence of the turbulent variables on the

temperature and therefore not a�ecting the solution with or without considering the heat transfer

to the wall. However, serious disproportions have been captured for the non-diagonal Reynolds

stresses and integral scales of the engine when compared to the experimental data.

The scavenging processes have mainly been simulated by 0D or 1D models as described in [62]

(solver OBEH) and [2] (solver GT-Power), empirically (and roughly) estimating the in�uence of the

turbulence and other factors. Within last years these scavenging processes are also modelled with

more advanced methods, usually provided by commercial solvers as Fluent or StarCD. Their focus

is mainly bounded to the intake stroke [12, 63] and only few recent works simulate the processes

during an exhaust stroke [36].

This work is focused especially on this last stroke of the engine cycle and brings �rst explorations

of the problem.

Experimental Results

More then hundred years after the �rst combustion engine has been constructed, there is still

a big lack of experimental data from the combustion chamber and the intake/exhaust channels.
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This is mainly due to the complicated (and expensive) instrumentation required (moving parts at

high speeds and pressures, large volume displacements, non-symmetric geometry etc.) or a strict

policy of the industrial company performing the experimental measurements. For this work, no

publishable experimental data have been available.

Engine Terminology Used

According to the literature [41] the engine parts around the combustion chamber (with importance

to this work) use a nomenclature shown in the �gure 2.8, with

TDC the top dead center, a position with the smallest cylinder volume and with zero instantaneous

velocity of the piston.

BDC the bottom dead center, a position with the largest cylinder volume and with zero instan-

taneous velocity of the piston.

Vc, Vd, Vt the clearance, displacement and total cylinder volume.

Figure 2.8: Basic geometry of the reciprocating internal combustion engine, a �gure from [41]

The nomenclature of the intake/exhaust valve is shown in the �gure 2.9. As the valve and �ow

around it belong to the main target of this work, it will often be displayed with a horizontal

alignment of the valve axis.
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Figure 2.9: Intake/exhaust valve nomenclature
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Chapter 3

Flow Model

This chapter will present the mathematical model of the �ow inside a combustion chamber. This

model is based on the integral balance of the basic conservation laws of mass, momentum and

energy over an arbitrary control volume. Such systems generally contain more unknowns than the

actual number of equations. Therefore, in order to have a solvable system, several constitutive

relations, initial and boundary conditions must also be provided.

3.1 Conservation Laws

Any conservation law on a bounded domain can be expressed with a following equation

[accumulation] = [in�ow]− [out�ow] + [creation] . (3.1)

When balancing a property P, all possible mechanisms of right hand side terms must be considered.

Assume a control volume Ω with a surface ∂Ω and ~w the velocity vector. Because of many moving

parts inside the engine (i.e. moving boundaries of the control volume) the following formulation

has been chosen

d
dt

ˆ
Ω

PdΩ = −
ˆ
∂Ω

P (~w − ~wB)~nd∂Ω +

ˆ
Ω

VPdΩ +

ˆ
∂Ω

~SP~nd∂Ω, (3.2)

with ~w the convective velocity of P, ~wB the boundary movement, ~n the outward unit normal,

VP the volume source and SP the surface source of P. The equation (3.2) is also known as the

Leibnitz-Reynolds transport theorem.

Integral Form of Conservation Laws

By substituting the property P with a suitable physical variable, the equation (3.2) turns to a

conservation law of mass, momentum or energy. The detailed expansion can be found in [68, 110],

with the resulting equations:

• continuity equation (conservation of mass):

P = ρ, VP = 0, ~SP = 0 ,

d
dt

ˆ
Ω

ρdΩ = −
ˆ
∂Ω

ρ (~w − ~wB)~nd∂Ω (3.3)

15
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• momentum equation (conservation of momentum):

P = ρwi, VP = ρgi,
[
~SP · ~n

]
i

=
[
−p · ~n+ ~~τ · ~n

]
i
,

d
dt

ˆ
Ω

ρwidΩ = −
ˆ
∂Ω

ρwi (~w − ~wB)~nd∂Ω +

ˆ
Ω

ρgidΩ (3.4)

+

ˆ
∂Ω

(−pδij + τij)nj d∂Ω,

with g the gravitational acceleration, p the pressure and τ the stress tensor. The volume

source due to gravity
´

Ω
ρgidΩ can be neglected for most of the applications of internal

aerodynamics as its size becomes negligible compared to other terms of the equation.

• energy equation (conservation of energy):

P = ρe, VP = ρgiwi + Q̇−W, ~SP =
(
−p · ~n+ ~~τ

)
(~w − ~wB)− ~̇q ,

d
dt

ˆ
Ω

ρedΩ = −
ˆ
∂Ω

ρE (~w − ~wB)~nd∂Ω

+

ˆ
Ω

ρgiwidΩ +

ˆ
Ω

Q̇dΩ−
ˆ

Ω

WdΩ (3.5)

+

ˆ
∂Ω

(−pδij + τij) (~w − ~wB)~nd∂Ω−
ˆ
∂Ω

q̇~n d∂Ω,

with Q̇, W the heat �ux and the work corresponding to the �rst law of thermodynamics (2.1)

and q̇ the surface source.

As mentioned hereabove, the gravitational terms do not play important role for applications with

characteristic length of centimeters and therefore are neglected in both equations (3.4) and (3.5).

The closed thermodynamic cycle allows the substitution

−
ˆ

Ω

WdΩ =

ˆ
∂Ω

(−pδij + τij) ~wB~nd∂Ω, (3.6)

because the work can only be provided through pressure or viscous forces.

Due to historical reasons, the conservation law of momentum, equation (3.4), is often called

the Navier-Stokes equation. The same terminology is however also being used for the whole set of

equations (3.3), (3.4) and (3.5), mainly in Anglo-Saxon literature. This work employs the second

approach, with the term Navier-Stokes equations denoting all three conservation laws.

Di�erential Form of Conservation Laws

The original equation (3.1) can be di�erentiated using the Gauss theorem

ˆ
Ω

∇F dΩ =

˛
∂Ω

F · ~nd∂Ω. (3.7)
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The boundary movement does not need to be considered in the di�erential form (~wB = 0) and so

the equation (3.1) transforms into

∂P

∂t
= −~∇P ~w + VP + ~∇~SP . (3.8)

The analogous substitutions of the property P as for the integral form lead to conservation laws

in di�erential form

∂ρ

∂t
+
∂ρwj
∂xj

= 0 , (3.9)

∂ (ρwi)

∂t
+
∂ (ρwiwj)

∂xj
=

∂

∂xj
(−pδij + τij) , (3.10)

∂ (ρE)

∂t
+
∂ (ρewj)

∂xj
=

∂

∂xj
[(−pδij + τij)wi]−

∂q̇j
∂xj

+ Q̇ . (3.11)

The Euler Equations

The complete Navier-Stokes equations describe the behaviour of a viscous �uid. However, in many

applications the viscous e�ects can be neglected outside the boundary layer: e.g. high Reynolds-

number �ows, where a boundary layer is very thin compared to the dimension of the body, the

e�ect of the boundary layer on the pressure �eld is very small. In such case the right hand side of

the equations (3.10) and (3.11) simpli�es by assuming

τij ≡ 0 (3.12)

and transforms the whole system into

∂ρ

∂t
+
∂ρwj
∂xj

= 0 , (3.13)

∂ (ρwi)

∂t
+
∂ (ρwiwj)

∂xj
+ δij

∂p

∂xj
= 0 , (3.14)

∂ (ρE)

∂t
+
∂ (ρewj)

∂xj
+

∂

∂xj
(pwiδij) = 0 . (3.15)

This simpli�ed form of the governing equations is called the Euler equations. They describe the

pure convection of �ow quantities in a compressible inviscid �ow.

The Euler equations serve as the basis for the development of discretisation methods and

boundary conditions. However, due to the growth of the computational power and due to the

increased demands on the quality of the simulations (mainly the accurate prediction of the losses,

drag, friction, position of separation, turbulence e�ects, etc.), the Euler equations are increasingly

less employed for �ow computations.

3.2 Constitutive Relations

These relations arise from physical assumptions about the problem solved and create a solvable

set of equations out of the system (3.9)-(3.11). As a working medium the choice of single phase

air has been considered, obeying the state equation

p = ρRT, (3.16)
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with R the speci�c heat constant, see the equation (3.25). The internal energy e is de�ned as

e = cvT , (3.17)

with cv the speci�c heat at constant volume. Similarly for the enthalpy

h = e+
p

ρ
= cpT . (3.18)

With the knowledge of relation between cp, cv and, R

R = cp − cv =
γ − 1

γ
cp (3.19)

the equation of state (3.16) can be rewriten into

p = (γ − 1) ρ

[
E − |~w|

2

2

]
. (3.20)

Here γ denotes the ratio of speci�c heats (so-called the Poisson's constant), see the equation (3.25).

The viscous stresses which originate from a friction between the �uid and the surface of an element

are described by the symmetric stress tensor τ

τij = µ

(
∂wi
∂xj

+
∂wj
∂xi

)
+

(
λS −

2

3
µ

)
∂wk
∂xk

δij . (3.21)

The Stokes viscosity λS has been neglected and the dynamic viscosity has been computed by

Sutherland's law

µ =
C1T

3/2

T + S
, (3.22)

with C1 and S the constitutive air constants, shown in (3.25) and the temperature calculated from

equation (3.16). Such �uid for which the shear stress τ is linearly related to the velocity gradients

is called a Newtonian �uid.

The kinetic theory of gases, supported by experimental observations, indicates that the heat �ux

by thermal conduction in a �uid depends linearly on the temperature gradient. This is expressed

by Fourier's law

q̇i = −λ · ∂T
∂xi

, (3.23)

λ =
cpµ

Pr
(3.24)

where the thermal conductivity λ is computed from the speci�c heat at constant pressure cp and

the laminar Prandtl number, see (3.25). This Prandtl number is assumed constant over the entire

�ow �eld.

R = 286.9
J

kg ·K
, γ = 1.4 ,

cp = 29.19
J

mol ·K
, cv = 20.85

J

mol ·K
, (3.25)

C1 = 1.458 · 10−6 kg

m · s ·
√
K
, S = 110, 4K , Pr = 0.72 .
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3.3 Initial and Boundary Conditions

In order to solve the system (3.9)-(3.11) some suitable initial and boundary conditions have to

be speci�ed. Their number and character must re�ect the mathematical properties of the system

solved.

Mathematical Character of the Governing Equations

The character is best explained on the quasi-linear second order equation

a
∂2U

∂x2
i

+ b
∂2U

∂xi∂xj
+ c

∂2U

∂x2
j

= d , (3.26)

with U the general scalar function and a, b, c, d the general coe�cients (constants, non-linear

functions of coordinates, functions of U or functions of �rst derivatives of U ). Depending on the

sign of the discriminant function D =
(
b2 − 4ac

)
three di�erent classes can be de�ned:

• hyperbolic, D > 0, such equation (3.26) has two real characteristics. Any solution point X

then depends exclusively on the part of the boundary intersected by characteristics which

are trigered from the point X. Therefore the conditions must be speci�ed only at part of the

boundary representing an initial-value problem.

• eliptic, D < 0, such equation (3.26) has two complex characteristics. Any solution point X

depends completely on the surrounding domain, i.e. on all the boundaries. Therefore the

boundary conditions must be de�ned everywhere, representing a boundary-value problem.

• parabolic, D = 0, such equation (3.26) has one real characteristic. It is a mixture between

previous cases, representing a mixed initial- boundary-value problem.

The complete mathematical analysis can be found in [14, 35].

Unfortunatelly, the classi�cation of the Navier-Stokes equations (3.9), (3.10), (3.11) can not be

determined uniquely. In fact, they are in general a mixture of all three classes, depending on the

�ow conditions and on the geometry of the problem. The detailed description must therefore be

presented in a particular relation to the problem solved. Hence only the general conditions are

presented here.

Initial Conditions

The initial condition determines the �uid state at the initial time t = 0 or at the �rst step of an

iterative scheme. For the steady state problem, the closer the initial guess is, the faster the �nal

solution will be obtained, together with the reduced probability of the computation breakdown.

Regarding the usual fact that the solution is unknown, it is important that the initial solution

satis�es at least the governing equations and the additional thermodynamic relations. A common

practice consists of imposing freestream values of pressure, velocity and temperature components

in the whole �ow�eld.

p (0, ~x) = pinit

~w (0, ~x) = ~winit (3.27)

T (0, ~x) = Tinit
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Boundary Conditions

Di�erent conditions can be found on places where the boundary is exposed to the �uid. For

a viscous �ow governed by the Navier-Stokes equations (3.9)-(3.11), the appropriate boundary

condition is the zero velocity on the surface

~w (t, ~x)|Θ1
= 0 , (3.28)

if the surface Θ1 is at rest and

~w (t, ~x)|Θ2
= ~wB , (3.29)

if the surface Θ2 is moving at speed ~wB . Such conditions, directly imposing the value of the

variable, are called Dirichlet boundary conditions.

The conditions for the variables remaining are represented by Neumann boundary conditions

prescribing the variable's gradient. Based on the analysis of the two-dimensional boundary layer

at high Reynolds number, see [93], the pressure boundary condition reads

∂p (t, ~x)

∂n

∣∣∣∣
Θ1∪Θ2

= 0 . (3.30)

According to Fourier's law (3.23) the condition for temperature is

∂T (t, ~x)

∂n

∣∣∣∣
Θ1∪Θ2

= − q̇wall
λ(T )

, (3.31)

for the computations including the wall heat transfer. If the heat transfer is neglected (adiabatic

condition), the equation (3.31) simpli�es to

∂T (t, ~x)

∂n

∣∣∣∣
Θ1∪Θ2

= 0 . (3.32)

For an inviscid �ow governed by the Euler equations (3.13)-(3.15), the appropriate wall boundary

condition is to require tangential �ow to the surface

~w · ~n|Θ1∪Θ2
= 0 . (3.33)

Compatibility Constrain

In order to ful�ll the this constrain, in zones where the initial condition interferes with the bound-

ary conditions the actual value imposed by both conditions must be identical. This is usually

accomplished via a well-�tted initial condition.



Chapter 4

Turbulence

All the equations previously mentioned describe either an inviscid (equations (3.13)-(3.15)) or a

laminar (equations (3.9)-(3.11)) �ow model, with all their constitutive relations. Such systems

of equations create solvable sets, but due to the physical assumptions they have arisen from,

they unfortunately have very strong limitation for practical use. Most �ows in nature as well as

many real applications require a turbulent �ow model, which adds more transport equations and

constitutive relations to the current system.

The physical background of turbulent �ow, di�erences compared to the laminar �ow and new

demands caused by various turbulent models are explained in this chapter.

4.1 Physical Properties

Turbulence appears in all �uids and all velocity ranges: from a subsonic speed of the sea water

(|~w| ≈ 1m/s) to a hypersonic speed of air in many aeronautical applications (|~w| ≈ 1 000m/s),

see examples in the �gure 4.1. Turbulence comes into play anytime when the inertia or the volume

forces have grown su�ciently, with respect to the viscous forces.

When the critical ratio of inertia and viscous forces (the so called Reynolds number, Re = w·L
ν )

is exceeded, the current laminar �ow that has been dumping the respective �ow instabilities turns

into turbulent, which is characterized by rotational and vorticular movements.

Figure 4.1: Examples of turbulent motions: sea waves (left), re-entry of the Apollo module to the
atmosphere (right)

Despite more than a century lasting research of turbulence, a clear and unique de�nition of this

phenomenon has not been found yet. A question still to be answered is also the description and

understanding of all turbulent mechanisms, which task can only be resolved by both theoretical

and experimental observations.

Turbulence is not a property of a �uid (such as temperature, dynamic viscosity, etc.), but it

21
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rather is a property of the �ow. It is a�ected by the geometry of the domain, by the initial state,

by the boundaries and also by the nature of the �uid. Turbulence can be characterized by terms

as instability, unsteadiness, spatiality, nonlinearity, inordinance, rotation or di�usivity. The aim of

this work however is not to rigorously de�ne these terms or to build up a new turbulence theory.

Therefore references as [75, 103] are o�ered for closer explanations.

Regarding to the general observations, turbulence consists of a continuous spectrum of vortices

(eddies) ranging from largest to smallest. A turbulent vortex can be thought of as a local swirling

motion whose characteristic dimension is the local turbulence scale. Large eddies carry the smaller

ones, featuring a cascade process, whereby as the turbulence decays, its kinetic energy is transfered

from larger to smaller eddies. Ultimately, the smallest eddies dissipate into heat through the action

of molecular viscosity, concluding that any turbulent �ow is always dissipative.

From an engineering point of view the most important property of turbulence is the enhanced

di�usivity - often several orders of magnitude larger than in corresponding laminar �ows. It greatly

increases the transfer of mass, momentum and energy.

The large turbulent eddies have a relatively long lifespan inside the �ow�eld, which is why they

depend both on the local �ow parameters and also on their own history. The dissipation of the

turbulent energy is realized in smallest vortices, in which the molecular viscosity plays a major

role. The energy of these vortices is usually consumed within a single revolution and therefore the

rate of the dissipation is mainly driven by the speed of the energy relegation from large to smaller

eddies.

Scales of Turbulent Vortices

The turbulent eddies can be characterized by a size meassure l, the so-called integral length scale

(of turbulence). Unfortunately, this scale can not be directly measured and must be extracted

from the following relation (see [103])

l (x, t) =
3

16

ˆ ∞
0

Rii (~x, t; ~r)

k (~x, t)
dr , (4.1)

with ~x the position vector, ~r the displacement vector, Rij the two-point velocity correlation tensor

Rij (~x, t; ~r) = w′i (~x, t)w′j (~x+ ~r, t) , (4.2)

and k the total kinetic energy per unit mass of the �uctuating turbulent velocity

k = k (~x, t) =
1

2
Rii (~x, t; 0) . (4.3)

The time averaging operator X̄ on the right hand side and the velocity �uctuations w′i are explained

below by the equation (4.26). The integral time scale τl is de�ned analogically

τl (~x, t) =
1

2

ˆ ∞
0

Rτii (~x, t; t′)

k (~x, t)
dt′ , (4.4)

Rτij (~x, t; t′) = w′i (~x, t)w′j (~x, t+ t′) . (4.5)

The total kinetic energy per unit mass of the �uctuating turbulent velocity can now be expressed

asConsidering that turbulence has a continuous spectrum of scales, it is also possible to perform a

quantitative analysis via the spectral distribution of energy. In general, a spectral representation is
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a Fourier decomposition into wavenumbers κ, or wavelengths λ. If Ekdκ is the turbulence kinetic

energy between wavenumbers κ and κ+ dκ, then the equation (4.3) can also be written

k =

ˆ ∞
0

E (κ) dκ . (4.6)

With the de�nition made, the reciprocal of κ corresponds to the vortex size. An example of the

energy spectrum of the homogeneous turbulent �ow (balanced production and dissipation) is shown

in the �gure 4.2.

Figure 4.2: Example of energy spectrum for a turbulent �ow, �gure from [103]

Smallest Scales

The smallest eddies are responsible for the dissipation of the turbulent kinetic energy into heat

(through the molecular viscosity). Because this process occurs on a short time scale, it can be

reasonably assumed independent of the dynamics of the large eddies and of the mean �ow. There-

fore the motion at smallest scales depends only on the rate at which the larger eddies supply the

energy, ε = −dkdt =
[
m2 · s−3

]
, and on the kinematic viscosity ν =

[
m2 · s−1

]
.

According to Kolmogorov 's universal equilibrium theory (viz. [48]) the following (smallest)

length-, time- and velocity-scales are de�ned

η ≡
(
ν3

ε

)1/4

, τ ≡
(
ν
ε

)1/2
, v ≡ (νε)

1/4
. (4.7)

By means of these scales it can be shown that for the majority of engineering applications the

Kolmogorov lenght is much larger than the mean free path of the �uid particles and therefore the

turbulence can be assumed as a continuum phenomenon.

Large Scales

The relation between large eddies (integral lengthscale) and small eddies (Kolmogorov scale) can

be estimated with the relation
η

l
≈ Re−

1
4

T , (4.8)
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where the turbulent Reynolds number ReT is de�ned

ReT =

√
kl

ν
. (4.9)

Further on, the energy dissipated can be approximated as

ε = −dk
dt
≈
√
k3

l
. (4.10)

The relations (4.7) have presented the smallest scales which need to be captured for the complete

turbulent computations. Such solution is based only on the governing equations of the chapter 3

and therefore called the Direct Numerical Simulation (DNS). The advantage of the smaller number

of equations (compared to conventional turbulence models, see below) is balanced by the enormous

demands on computer resources.

The computational grid must capture even the smallest eddies, whose size is given by the

length-scale η. At least two computational cells are needed to describe any vortex, see the �gure

4.3, therefore the grid size is proportional to the Reynolds number. According to [75] the number

of grid elements scales with the power Re9/4.

Regarding that also the time-stepping must ful�ll the time-scale criteria, ∆t < τ , only the

(clusters of) super-computers are able to resolve turbulent �ows with DNS. Despite the annual

increase of the computers' power, the current limits of DNS simulations lie around Re ≈ 105,

which is still insu�cient for most technical applications.

Figure 4.3: Detail of the vortex core discretization

The direct numerical simulation is also complicated in terms of formulation of the initial and

boundary conditions, failures of any symmetry assumptions, careful numerical discretization (the

arti�cial viscosity of an inappropriate numerical scheme can completely ruin the result), etc. DNS

is however very useful for basic research, providing extremely detailed information about �ow

parameters, which are unavailable from any experiment otherwise.

Another approach to turbulence modelling is the statistical one. The foundational idea has

been introduced by O. Reynolds [79], who expressed all �ow quantities as the sum of mean and

�uctuating parts

A (~x, t) = Ā (~x) + a′ (~x, t) . (4.11)

When all the unknowns of the governing and their constitutive equations are replaced by (4.11),

the nonlinearity of the momentum equation causes the appearence of some new terms, acting as

apparent stresses throughout the �ow. These terms are unknown a priori and so the goal of all

turbulence models is to establish a su�cient number of equations for all of the unknowns. As will

be shown later, such equations use only the mean parts Ā (even to derive relations for �uctuations

a′). It creates a solvable system only for mean values of the �ow, �ltering out all information about

the �uctuations in fact. This price is paid as a trade o� for larger grid spacing and bigger time

steps, allowing to use current CPU power also for real engineering applications.
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4.2 Turbulence Averaging

The averaging concept for turbulent �ows has also been introduced by O. Reynolds in [79] (therefore

named Reynolds Averaging). The concept involves a variety of forms in general. The three most

frequent forms used for turbulence modelling are the time-averaging, equation (4.12), the spatial -

averaging, equation (4.13) and the ensemble-averaging, equation (4.14). According to the ergodic

hypothesis, the resulting values of these averages for a stationary and homogeneous turbulence are

equal and represent the mean value Ā of the equation (4.11).

Ft (~x) = lim
T→∞

1

T

ˆ t+T

t

f (~x, t) dt (4.12)

Fv (t) = lim
V→∞

1

V

ˆ
V

f (~x, t)dV (4.13)

Fe (~x, t) = lim
N→∞

1

N

N∑
n=1

fn (~x, t) (4.14)

The time averaging is appropriate for stationary turbulence. Such �ows do not vary with time

on the average. The de�nition of the spatial averaging is suitable for homogeneous turbulence,

where the average values are uniform in all directions (for a detailed description see [73]). The

last ensemble approach is the most general type of Reynolds averaging. It is mainly used for the

processing of many experimental meassurements fn of a single phenomenon with identical initial

and boundary conditions1.

Since the �ow inside the combustion engine strongly varies with time and space neither time-

nor spacial- averaging could be used in their original form (4.12) or (4.13). The ensemble approach

is not suitable, as the turbulence model would also include the intercyclic variations (low frequency

�uctuations of all mean values, with the period of the order of several working cycles), which are

not considered of a turbulent nature, viz [80].

For applications like a combustion engine the averaging needs therefore to be modi�ed, in order

to accomodate non-stationary e�ects of mean variables. The equation (4.12) is replaced by

F̄ (~x, t) =
1

T

ˆ t+T

t

f (~x, t) dt , (4.15)

with a time-scale constrain

τ ∼ T1 � T � T2 . (4.16)

As illustrated in the �gure 4.4, T1 is the time scale of the instantaneous �uctuation and T2 the

time scale characteristic of the slow variations in the �ow, not to be regarded as belonging to the

turbulence. The assumption of T1 and T2 di�ering by several orders of magnitude is very strong

and regrettably most of the engineering applications do not satisfy this condition (4.16). The

values of turbulent time scales in an internal combustion engine (with focus to the exhaust stroke)

are presented in the following subsection.

1As in the experiments it is di�cult to hold all parameters constant, the term identical represents close values
which statistical average ideally equals the mean value.
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Figure 4.4: Time averaging for non-stationary turbulence, �gure from [103]

Time Scale Estimation

The condition (4.16) can be rewritten and converted to

T2

T1
� 1 → f1

f2
� 1 , (4.17)

where f1,2 represents the frequency of the corresponding time scale

T =
1

f
. (4.18)

According to [98], the lowest frequency of non-turbulent motions f2 for a four-stroke engine can

be estimated from the engine revolutions n (in RPM) as

f2 =
n

4 · 60
. (4.19)

The frequency of a turbulent time scale f1 is estimated from the size of large-scale eddies with size

comparable to an integral scale l. The circumferential speed of such vortex can be approximated

by the �uctuating velocity component w′, see equation (4.11), and therefore

w′ = 2πf1l . (4.20)

The approximation of turbulent variables is done through equations

3

2
w′ =

1

2
Ckwv , (4.21)

l = ClL , (4.22)

with L the valve lift. The mean valve speed wv, according to the literature [41], can be de�ned as

wv = 2Lf2 . (4.23)

The order of magnitude of the proportionality constants can be found in literature Ck ≈ 10−1÷100

and Cl ≈ 10−2. The frequency ratio is then expressed and evaluated

f1

f2
=

√
Ck
3

1

πCl
≈ 5.81÷ 18.38 . (4.24)

Although the ratio ful�ls the inequality (4.17), the order of magnitude of the resulting ratio is not

very signi�cant (100÷1). The more accurate estimation can be extracted from particular numerical
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simulations, by evaluating the equation

f1

f2
=

1

2π

√
2

3
k

60

n · l
. (4.25)

From the precedent numerical studies of the high-pressure strokes [98], the development of f1
f2

inside the combustion chamber during the compression and exhaust stroke is observed. Some of

the typical results are shown in the �gure 4.5.

Figure 4.5: Development of time-scale ratio inside the combustion chamber during the compression
and expansion strokes, for di�erent turbulence models (left-right) in three �xed spatial points, �gure
from [98]

Suitable Averaging for Compressible Flows

For the conventional Reynolds averaging one reads

A = A+ a′ , (4.26)

with the mean value Ā computed as (4.15) and with the above discussed assumption (4.16). Further

important relations are:

a′ = 0 , (4.27)

A1 +A2 = A1 +A2 , (4.28)

A1 ·A2 = A1 ·A2 + a′1a
′
2 , (4.29)

Ā1 · a′2 = 0 . (4.30)

The original equations (3.3)-(3.5), with unknowns replaced by their average (4.26), are then under-

stood as transport equations of actual values. This approach however does not lead to a substantial

simpli�cation for the compressible �ows, due to non-vanishing density-related �uctuations ρw′i 6= 0.

Therefore a density-weighted averaging has been de�ned by A. Favre in [30]. The decomposition

into mean and �uctuation part denotes

A = Ã+ a′′ , (4.31)
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with the mean value de�ned through

F̃ ρ̄ =
1

T

ˆ t+T

t

f · ρdt = Fρ ,

F̃ =
Fρ

ρ̄
, (4.32)

implying similar important relations

ρa′′ = 0 , (4.33)

ρ (A1 +A2) = ρ
(
Ã1 + Ã2

)
, (4.34)

ρ ·A1 ·A2 = ρ̄ · Ã1 · Ã2 + ρa′′1a
′′
2 , (4.35)

ρÃ1 · a′′2 = 0 . (4.36)

Also Favre's averaging relies on the validity of the time scales di�erence (4.26). The quotable

di�erences of these approaches are summarized:

a′ = 0, ρa′ 6= 0 . . . for conventional averaging,

a′′ 6= 0, ρa′′ = 0 . . . for density weighted averaging.

4.3 U-RANS Equations

The acronym U-RANS stands for the unsteady Reynolds-averaged Navier-Stokes equations, which

describe an arbitrary turbulent �ow of a compressible �uid upon a moving domain. The system

has arisen from the original equations (3.3), (3.4) and (3.5). The decomposition (4.37) has been

applied �rst, followed by the averaging (4.15).

ρ = ρ̄+ ρ′ ,

p = p̄+ p′ ,

wi = w̃i + w′′i , (4.37)

T = T̃ + T ′′ ,

ρe ≡ ρ̄ẽ = ρ̄ũ+ ρ̄
w̃iw̃i

2
+
ρw′′i w

′′
i

2
.

The above mentioned operations lead to2

• averaged continuity equation. Except formal notation, the equation holds the original form,

with no new terms appeared.

d
dt

ˆ
Ω

ρ̄dΩ = −
ˆ
∂Ω

ρ̄ (w̃ − wB)~nd∂Ω. (4.38)

• averaged momentum equation. The turbulent stress tensor −ρw′′i w′′j appears on the right

2For an easier reading of averaged values, the vectorial mark~· will be skipped for the velocity vector. The variable
meaning remains untouched.
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hand side, due to the averaging.

d
dt

ˆ
Ω

ρ̄w̃idΩ = −
ˆ
∂Ω

ρ̄w̃i (w̃ − wB)~nd∂Ω +

ˆ
Ω

ρ̄gidΩ (4.39)

+

ˆ
∂Ω

(
−p̄δij + τ̄ij − ρw′′i w′′j

)
~nd∂Ω.

The tensor involves the product of velocity �uctuations, which by the de�nition (4.11) can

not be expressed by any combination of conservative variables. The tensor must therefore be

modelled separately, as described in the following subsection 4.3.2.

• averaged energy equation. Nonlinear terms of the original right hand side cause several

correlation of �uctuations to appear.

d
dt

ˆ
Ω

ρ̄ẼdΩ = −
ˆ
∂Ω

ρ̄ẽ (w̃ − wB)~nd∂Ω +

ˆ
Ω

ρ̄giw̃idΩ (4.40)

+

ˆ
∂Ω

(
−p̄δij + τ̄ij − ρw′′i w′′j

)
(w̃ − wB)~nd∂Ω

−
ˆ
∂Ω

(
¯̇qj + ρw′′j h

′′
)
~nd∂Ω

+

ˆ
∂Ω

(
τijw′′ −

1

2
ρw′′i w

′′
i w
′′
j

)
~nd∂Ω

+

ˆ
Ω

¯̇QdΩ−
ˆ

Ω

W̄dΩ.

Note that for ~wB ≡ 0 the so-called steady Reynolds-averaged Navier-Stokes equations can be

recovered.

4.3.1 Constitutive Relations

Analogically to section 3.1, also the equations (4.38), (4.39) and (4.40) must be completed by a

set of constitutive relations. For R=const. the state equation can be derived (after decomposition

and averaging)

p̄ = ρ̄RT̃ . (4.41)

The internal energy ẽ has already been de�ned by the equation (4.37). Other relations are derived

analogically to their non-averaged templates

τ̄ij = µ
(
T̃
)(∂w̃i

∂xj
+
∂w̃j
∂xi

)
+

(
λS −

2

3
µ
(
T̃
)) ∂w̃k

∂xk
δij , (4.42)

¯̇qi = −λ
(
T̃
)
· ∂T̃
∂xi

, (4.43)

although the validity of these new relations can not be proven in general. The original relations

(3.21), (3.23) are de�ned for the instantaneous values (see the equation (4.11)) and only by the

analogy assumption they are said valid also for the average values. This analogy has been assumed

both for the remaining constitutive relations (section 3.2) and for the initial and boundary con-

ditions (section 3.3). All the equations involved hold the formal notation, with the instantaneous

values just substituted by their averages.

On the contrary to section 3.1, these relations do not turn the original set of equations into a
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solvable system, because of the turbulent correlations which still remain unknown.

4.3.2 Turbulent Correlation Terms

The most important correlation term is the Reynolds stress tensor

τRij = −ρw′′i w′′j , (4.44)

which represents the in�uence of turbulent �uctuations on the momentum balance. Analogicaly

to the molecular heat �ux q̇, the corresponding correlation term in the energy equation (4.40) is

called the turbulent heat �ux

q̇turbi = ρw′′i h
′′. (4.45)

The terms τijw′′ and 1
2ρw

′′
i w
′′
i w
′′
j represent the molecular and turbulent transport of energy. As

the original energy equation (3.5) has been modi�ed with the equation (3.6), an analogical relation

is found for the turbulent case

−
ˆ

Ω

W̄dΩ =

ˆ
∂Ω

(
−p̄δij + τ̄ij + τRij

)
wB~nd∂Ω. (4.46)

Hence, the averaged energy equation reads

d
dt

ˆ
Ω

ρ̄ẽdΩ = −
ˆ
∂Ω

ρ̄ẽ (w̃ − wB)~nd∂Ω +

ˆ
Ω

ρ̄giw̃idΩ (4.47)

+

ˆ
∂Ω

(
−p̄δij + τ̄ij + τRij

)
w̃~n d∂Ω

−
ˆ
∂Ω

(
¯̇qj + q̇turbj

)
~nd∂Ω +

ˆ
Ω

¯̇QdΩ

+

ˆ
∂Ω

(
τijw′′ −

1

2
ρw′′i w

′′
i w
′′
j

)
~nd∂Ω.

This equation (4.47), together with (4.38) and (4.39), provides the system of governing equations,

based on the time averaging, for modelling turbulent �ows in the combustion engine.

Namely the terms (4.44) and (4.45) increase the tranport properties (momentum and energy)

against the laminar system. The turbulent terms τRij and q̇turbi are usually larger (sometimes by

several orders of magnitude) than their molecular counterparts τij and q̇i. This fact �rstly con�rms

the dominant role of the inertial forces to the viscous ones, secondly emphasizes the importance of

careful modelling of these turbulent terms.

4.3.3 Turbulent Transport Equations

Equation of the Kinetic Energy of Mean Motion

Assume the steady averaged momentum equation (eq. (4.39) with ~wB ≡ 0). The equation of the

ith momentum component is multiplied by w̃j and vice versa. The sum of these cross-multiplied

equations gives

∂

∂t
(ρ̄w̃iw̃j) +

∂

∂xk
(ρ̄w̃iw̃jw̃k) = −w̃j

∂p̄

∂xi
− w̃i

∂p̄

∂xj
(4.48)

+w̃j
∂

∂xk

(
τ̄ik − ρw′′i w′′k

)
+ w̃i

∂

∂xk

(
τ̄jk − ρw′′jw′′k

)
.
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For i=j the relation (4.48) turns into the equation of the kinetic energy of the mean motion

∂

∂t

(
ρ̄
w̃iw̃i

2

)
+

∂

∂xk

(
w̃kρ̄

w̃iw̃i
2

)
= −w̃i

∂p̄

∂xi
I

+w̃i
∂τ̄ik
∂xk
II

−w̃i
∂

∂xk

(
ρw′′i w

′′
k

)
III

, (4.49)

where the left-hand-side terms represent the time change and advection, term I the work provided

by pressure forces and II the dissipation due to viscosity. The term III can be splitted into

−w̃i
∂

∂xk

(
ρw′′i w

′′
k

)
= − ∂

∂xk

(
w̃iρw′′i w

′′
k

)
IIIa

+ ρw′′i w
′′
k

∂w̃i
∂xk

IIIb

, (4.50)

with IIIa the energy transport via turbulent �uctuations and IIIb the energy production at the

expense of the mean motion.

Transport Equation of Reynolds Stresses

This equation is derived from the momentum conservation law (3.10). Here the sum of the cross-

multiplied equations gives

∂

∂t
(ρwiwj) +

∂

∂xk
(ρwiwjwk) = −wj

∂p

∂xi
− wi

∂p

∂xj
+ wj

∂τik
∂xk

+ wi
∂τjk
∂xk

. (4.51)

The density-weighted decomposition (4.31) and time averaging (4.15) leads to

∂
∂t

(
ρ̄w̃iw̃j + ρw′′i w

′′
j

)
+ ∂
∂xk

(
ρ̄w̃iw̃jw̃k + w̃kρw′′i w

′′
j + w̃iρw′′jw

′′
k + w̃jρw′′i w

′′
k + ρw′′i w

′′
jw
′′
k

)
=

−w̃j ∂p̄∂xi − w
′′
j
∂p′

∂xi
− w̃i ∂p̄∂xj − w

′′
i
∂p′

∂xj
+ w̃j

∂τ̄ik
∂xk

+ w′′j
∂τ ′ik
∂xk

+ w̃i
∂τ̄jk
∂xk

+ w′′i
∂τ ′jk
∂xk

.

(4.52)

The tranport equations of Reynolds stresses (RS) is found when the equation (4.48) is subtracted

from (4.52)

∂

∂t

(
ρw′′i w

′′
j

)
+

∂

∂xk

(
w̃kρw′′i w

′′
j

)
= Pij +Dij + Πij + Cij + ρ̄εij . (4.53)

The left-hand-side terms represent the time change and advection of RS. Other terms correspond

to

• production Pij - generation of the RS by the interaction with the mean �ow

Pij = −ρw′′i w′′k
∂w̃j
∂xk

− ρw′′jw′′k
∂w̃i
∂xk

. (4.54)

• turbulent di�usion Dij - tranport of the RS through the pressure and velocity �uctuations

Dij = − ∂

∂xk
ρw′′i w

′′
jw
′′
k −

∂

∂xk

[
p′
(
δjkw′′i + δikw′′j

)]
. (4.55)

• redistribution Πij - equalizing the normal components of the RS

Πij = p′
(
∂w′′j
∂xi

+
∂w′′i
∂xj

)
. (4.56)
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• viscous di�usion Cij - transport of the RS through the molecular viscosity. This term is

negligible for high Reynolds number �ows.

Cij =
∂

∂xk

[
µ

ρ̄

∂

∂xk

(
ρw′′i w

′′
j

)]
. (4.57)

• dissipation εij - destruction of the RS due to the molecular viscosity.

εij = 2µ
∂w′′i
∂xk

∂w′′j
∂xk

(4.58)

Other terms, which has arisen due to the density weighted averaging, are not shown as they are

generaly negligible, viz. [75].

Transport Equation of Turbulent Kinetic Energy

The importance of the equation (4.53) consists in its form for i=j which derives the transport

equation of the turbulent kinetic energy

k =
1

2

ρw′′i w
′′
i

ρ̄
. (4.59)

This variable is computed as the sum of the normal components of the RS tensor. With some

algebra involved, the �nal equation reads

∂

∂t

(
1

2
ρw′′i w

′′
i

)
+

∂

∂xj

(
w̃j

1

2
ρw′′i w

′′
i

)
= −ρw′′i w′′j

∂w̃i
∂xj
− ∂

∂xj

(
w′′j

1

2
ρw′′i w

′′
i + δijp′w′′i

)
(4.60)

+
∂

∂xj

[
µ

ρ̄

∂

∂xj

(
1

2
ρw′′i w

′′
i

)]
− µ∂w

′′
i

∂xj

∂w′′i
∂xj

.

The redistribution term Πii does not appear in (4.60), hence it only a�ects the redistribution of k

among the normal components of the tensor (tendency of isotropy).

Because the dissipation happens exclusively in the smallest (isotropic) turbulent vortices the

tensor εij is often replaced by

εij = δijε , (4.61)

with ε the turbulent dissipation rate.

Transport Equation of Turbulent Dissipation Rate

For compressible �ows the turbulent dissipation rate ε is expressed

ρ̄ε = µ
∂w′′i
∂xj

∂w′′i
∂xj

. (4.62)

The exact transport equation for ε can be derived from the transport equation of the instantateous

�uctuation velocity. The �nal equation is however quite complex, involving many unknown terms.
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In [38] the simpler form of the tranport equation of ε for the incompressible �ow has been published

∂ρε

∂t
+
∂w̄kρε

∂xk
= − ∂

∂xk

(
µw′k

∂w′i
∂xj

∂w′i
∂xj

+
2µ

ρ

∂p

∂xi

∂w′i
∂xk
− µ ∂ε

∂xk

)
(4.63)

−2µ
∂w̄i
∂xk

(
∂w′i
∂xj

∂w′k
∂xj

+
∂w′j
∂xi

∂w′j
∂xk

)
+ 2µw′k

∂w′i
∂xj

∂2w̄i
∂xj∂xk

−2µ
∂w′i
∂xj

∂w′k
∂xj

∂w′i
∂xk
− 2

µ2

ρ

(
∂2w′i
∂xk∂xj

)
,

with many unknown turbulent correlations which are di�cult to model.

Based on the dimensional analysis and empirical presumptions, the simpli�ed transport equa-

tion of ε is constructed as an analogy to the transport equation of the turbulent energy, viz [37].

4.4 Hierarchy of Turbulence Models

The system of U-RANS equations can not be directly completed by the transport equation of

the Reynolds stresses, as this equation (4.53) contains other unknown pressure and velocity �uc-

tuations. Therefore it is essential also to model these �uctuation terms remaining. The general

method of the RANS closure is shown in the �gure 4.6, on which basis the turbulence models can

be divided into

1st order turbulence model - approximates directly the Reynolds stresses, subsection 4.4.1,

2nd order turbulence model - approximates the correlations inside the RS transport equations,

subsection 4.4.2.

Figure 4.6: Methods of RANS equations closure

Based on section 4.2, it can be deduced that a universal turbulence model which would �t all the

regimes and �ow conditions cannot be constructed. Despite this, each turbulence model shall ful�ll

at least the following conditions (viz. [98])

• all the approximations of compressible �ow tend to corresponding incompressible terms as

the Mach number tends to zero,

• all the density �uctuations tend to zero as the Mach number tends to zero,

• the approximation terms are domain (geometry) independent,

• all the approximations are dimensionally consistent and invariant against a Galileo transfor-

mation.
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4.4.1 1st Order Turbulence Models

These models are based on the analogy between molecular and turbulent transport of momentum.

Similarly to Newton's law (its generalized form written in the equation (3.21)), J. Boussinesq

has proposed in [15] a relation between the velocity gradient and the Reynolds stresses of a 2D

incompressible boundary layer

−ρw′iw′j = µt
∂w̄i
∂xj

. (4.64)

The parameter µt is the so-called turbulent (eddy) viscosity. This original Boussinesq hypothe-

sis (4.64) has been extended by Harlow and Nakayama in [?, ?] to a general multi-dimensional

turbulent �ow

−ρw′′i w′′j = µt

(
∂w̃i
∂xj

+
∂w̃j
∂xi
− 2

3
δij
∂w̃k
∂xk

)
− 1

3
δijρw′′kw

′′
k . (4.65)

For transparency purposes, equation (4.65) can be written in terms of the mean-strain-rate tensor

Sij and the mean-rotation tensor Ωij , respectively de�ned by

Sij =
1

2

(
∂w̃i
∂xj

+
∂w̃j
∂xi

)
, Ωij =

1

2

(
∂w̃i
∂xj
− ∂w̃j
∂xi

)
. (4.66)

The Reynolds stress tensor (4.44) then reads

τRij ≡ −ρw′′i w′′j = 2µt

(
Sij −

1

3
δij
∂w̃k
∂xk

)
− 2

3
δijρk . (4.67)

Even the last relation does not close the system of equation, as the unknown tensor τRij has only

been replaced by the unknown scalar µt. According to the dimensional analysis the eddy viscosity

shall be expressed as a product of a velocity term and a length term - often called the velocity and

the length scale.

Algebraic Models

The simplest turbulence models contain only transport equations of the conservative variables and

relates the eddy viscosity with the values of the mean �ow. The relations are often based on the

Prandtl mixing layer theory, published in [74]

µt = Cρl2mix

∣∣∣∣εijk ∂wk∂xj

∣∣∣∣ , (4.68)

where C, lmix are model constants and
∣∣∣εijk ∂wk∂xj

∣∣∣ is the size of the vorticity vector. Although it

might be shown that the analogy between molecular and turbulent transport (that mostly arises

from the formal analogy of the terms involved) is not physically correct, the constants C and lmix
could be tuned so that the computational results correspond to experimental ones. Such agreement

is found mainly (only) for the equilibrium turbulent �ows with weak �uctuations and small changes

in time.

One Equation Models

Such models use only one tranport equation for a suitable turbulent variable. The most often

quantity balanced is the turbulent kinetic energy k, because its square root can directly be used as

a velocity scale. The length scale is then usually determined by an algebraic relation lt = lt (xj),

which limits the use of such models rather to the equilibrium turbulent �ows.
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A general k transport equation and the eddy viscosity can be written as

∂

∂t
(ρ̄k) +

∂

∂xj
(w̃j ρ̄k) = τRij

∂w̃i
∂xj
− ρ̄ε+

∂

∂xj

[(
µ+

µt
σk

)
∂k

∂xj

]
, (4.69)

µt = ρ̄

√
k

lt
. (4.70)

The turbulent dissipation rate is settled by dimensional analysis

ε = CD
k3/2

lt
. (4.71)

In order to build up an e�cient and robust model, the parameters CD, σk were suggested constant,

which often turns insu�cient and unacceptable in practice.

Models with Transport Equation for Eddy Viscosity

In a strict sense these models still belong to the previous group. Nonetheless they are usually

excluded due to their di�erent nature. The models have been developed following the concept of

a simple and robust tool for many aerodynamic applications. The original model has been derived

by B. S. Baldwin and T. J. Barth in [8] from the k − ε model (see below). Later it has been

modi�ed by P. R. Spalart and S. R. Allmaras in [90], supplying the equation with some additional

di�usive terms.

Despite µt or νt, respectively are the �ctitious (directly immeasurable) variables, their empirical

transport equation recognizes advection, production, di�usion and dissipation terms, similarly to

the other transport equations. Currently, there are several classes of this equation, corresponding

to the target application of the simulation. Although infringing its original idea, the S-A model pro-

vides better robustness and accuracy among the one-equation models together with lower demands

compared to the two-equations models.

Two Equations Models

Most models of the statistical approach belong to the family of two transport equations, each one

characterizing a di�erent turbulence scale. The velocity scale is again extracted from the transport

equation of the turbulent kinetic energy, such as equation (4.69). The second transport equation

characterizes the length scale or its equivalent.

With the assumption of local isotropy of the smallest vortices, the lenght scale can be extracted

from equation (4.71), with the balanced variable the turbulent dissipation rate ε. This approach

has founded the family of k − ε turbulence models. The later research suggested the transport

equations for another preferable variable balanced:

• the length scale lt, or its product k · lt. Published by [85], the so-called k − l models.

• the speci�c dissipation rate ω = ε/k. Published by [49], the k − ω models.

• the turbulent dissipation time τ . Published by [91], the k − τ models.

Depending on the variable chosen, the eddy viscosity µt is recovered from

µt ∼ ρ̄
k2

ε
∼ ρ̄
√
klt ∼ ρ̄

k

ω
∼ ρ̄kτ . (4.72)
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Although the two-equations models have proven large improvements against the one-equation

models, there is still no fundamental reason why µt should depend only upon turbulence parameters

such as k, l, ε or ω. In general, the ratio of the individual Reynolds stresses to mean strain rate

components, depends on both the mean-�ow and the turbulence scales. Thus, these models can

still perform inaccurately for many non-equilibrium turbulent �ows.

4.4.2 2nd Order Turbulence Models

RSM

For complex non-equilibrium turbulent �ows the turbulence models with equations for Reynolds

stresses are assumed more suitable than the 1st order models. Recall the transport equation of the

Reynolds stresses, which has already been shown above in the equation (4.53)

∂

∂t

(
ρw′′i w

′′
j

)
+

∂

∂xk

(
w̃kρw′′i w

′′
j

)
= −ρw′′i w′′k

∂w̃j
∂xk

− ρw′′jw′′k
∂w̃i
∂xk

− ∂

∂xk
ρw′′i w

′′
jw
′′
k −

∂

∂xk

[
p′
(
δjkw′′i + δikw′′j

)]
+p′

(
∂w′′j
∂xi

+
∂w′′i
∂xj

)
+ 2ρ̄µ

∂w′′i
∂xk

∂w′′j
∂xk

,

with the right-hand side terms describing in turn the production, di�usion, redistribution and

dissipation. Note that only the production term can be solved directly, whereas the other terms

require next approximations.

Further transport equations can be derived for each particular correlation term in theory, but

such equations contain correlations of higher order, which does not allow the closure desired.

Therefore the transport equations for the Reynolds stresses, eq. (4.53), are used at the most in

practice. Hence, the 2nd order models are called the Reynolds Stress Models (RSM ).

The unknown correlations are approximated by means of the average values, Reynolds stresses

ρw′′i w
′′
j and turbulence scales. The characteristic scales are again computed from the transport

equations for the turbulent kinetic energy and a suitable lenght scale equivalent.

ARSM

Beyond the conservation laws of density (1 equation), momentum (2-3) and energy (1), the full

RSM requires another 5-8 partial di�erential equations to be solved, which notably increases the

memory demands as well as prolongates the computational time.

Therefore the full RSM are sometimes simpli�ed, substituting the di�erential equations for the

Reynolds stresses by algebraic relations (the Algebraic Reynolds Stress Models, ARSM ). Based

on the observation of (nearly) constant ratio of a turbulent shear stress to a turbulent kinetic

energy across a thin shear layer, the original transport equations can be transformed into algebraic

relations for an anisotropy tensor

aij =
ρw′′i w

′′
j

ρ̄k
− 2

3
δij . (4.73)

A universal relation has been derived in [83] in a shortened form

∂

∂t

(
ρw′′i w

′′
j

)
+

∂

∂xk

(
w̃kρw′′i w

′′
j

)
= Pij +Dij + Πij − εij , (4.74)

∂

∂t
(ρ̄k) +

∂

∂xk
(w̃kρ̄k) = Pk +Dk − ε . (4.75)
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The weak equilibrium assumption is expressed as

∂

∂t

(
ρw′′i w

′′
j

ρ̄k

)
+

∂

∂xk

(
w̃k

ρw′′i w
′′
j

ρ̄k

)
≈ 0 ,

which turns into an implicit algebraic relation for the anisotropy tensor

ρw′′i w
′′
j

ρ̄k
(Pk − ε) = Pij + Πij − εij . (4.76)

EARSM

After the approximation of Πij and εij , equation (4.76) leads to an implicit nonlinear set of equa-

tions. Due to the lack of any difusive and/or damping terms the whole system is numerically

unstable and unusable for cases with complex boundary conditions. The way out is through an

explicit relation for the entries of aij , as published in [99], leading to the class of Explicit Algebraic

Reynolds Stress Models (EARSM ).

This class requires only two extra di�erential equations (for turbulent scales) beside the con-

servation laws, thus having a potential of an accurate and e�cient model which disposes the linear

dependency between the turbulent stresses and the strain rate tensor, without an enormous increase

in the CPU demands or the model complexity.

4.4.3 Recapitulation

The current development of �uid dynamics is strongly conditioned by the development of CPU

technologies. The more powerful processors and larger memories allow to capture enhanced math-

ematical models and more complex geometries.

The models of turbulence are however limited by their physical nature, prefering simpler and

concrete correlations rather than series of equations for abstract variables. As mentioned above the

transport equations for turbulent correlations are not able to close the entire system themselves,

always needing some empirical approximations, likely based on experimental observations.

A proper turbulence model is therefore a compromise between the number of equations em-

ployed and a rational chance to approximate the unknown correlations contained inside.

4.5 Models Used

This section describes all the turbulence models used within this work. For tranparency reasons

the models are presented in a di�erential form, together with all the constitutive relations required

for their numerical realization.

Because the goal of this work is not to develop an own turbulence model, all the models

presented have been taken up from the literature. The initial and boundary conditions are described

in the last part of this section, in 4.5.6.

4.5.1 One Equation Spalart-Allmaras Model

This model has been published in [90] and belongs to the group of the models with the transport

equation for the eddy viscosity, introduced in section 4.4.1. This model has been implemented for
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2D and its only transport equation de�ned for the turbulent kinetic viscosity νt = µt/ρ̄ reads

Dν̃t
Dt

= Cb1ν̃tS̃ + Cb2
1

σ

∂ν̃t
∂xj

∂ν̃t
∂xj

+
1

σ

∂

∂xj

[
(ν + ν̃t)

∂ν̃t
∂xj

]
− Cw1fw

(
ν̃t
d

)2

. (4.77)

The left hand side uses the so-called substantial derivation

D
Dt

=
∂

∂t
+ wi

∂

∂xi
(4.78)

The correction

νt = ν̃tfν1 , fν1 =
χ3

χ3 + C3
v1

, (4.79)

is used for the low Reynolds number (near wall) regions. The damping function fv1 de�ned by the

equation (4.79) tends to 1, with increasing distance from the wall, causing the modi�ed viscosity

ν̃t to tend to νt. The parameter χ = ν̃t/ν de�nes the turbulent Reynolds number. Similarly the

production term uses the modi�ed vorticity

S̃ = S +
ν̃t
κ2d2

fν2 , S =
√

2ΩijΩij , (4.80)

fν2 = 1− χ

1 + χfν1
(4.81)

with the original vorticity Ωij de�ned by the equation (4.66) and d the wall distance. The damping

function fw for the dissipation term has been chosen

fw = g

(
1 + C6

w3

g6 + C6
w3

)1/6

, g = r + Cw2

(
r6 − r

)
, (4.82)

r =
ν̃t

S̃κ2d2
, (4.83)

using the mixing length L ≡
√
ν̃t/S̃ as the lenght scale for the inner part of the boundary layer.

In the logaritmic layer r = fw = 1 and for the outer regions r decreases to 0. The model constants

used are

Cν1 = 7.1 , Cb1 = 0.1355 , Cb2 = 0.622

Cw1 = 3.238 , Cw2 = 0.3 , Cw3 = 2 , (4.84)

σ = 0.667 .

4.5.2 Two Equations Menter's Models

After many two equations models tested, F. Menter has designed and published [64] two universal

models which combine the advantages of the precedent two equations models. Namely, he combines

the k − ω models near the surfaces and the k − ε model in rest of the domain.

For an easier numerical realization, the k − ε model is rewritten to a form of the k − ω model,

with the ε-terms plugged throughout a function F1. This blending function then takes the value
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F1 = 1 in the near wall regions and F1 = 0 outside. The transport equations are given by

D (ρ̄k)

Dt
= τij

∂w̃i
∂xj
− β∗ρ̄kω +

∂

∂xj

[
(µ+ σ∗µt)

∂k

∂xj

]
, (4.85)

D (ρ̄ω)

Dt
=

γ

νt
τij
∂w̃i
∂xj
− βρ̄ω2 +

∂

∂xj

[
(µ+ σµt)

∂ω

∂xj

]
(4.86)

+2ρ̄ (1− F1)
σ2

ω

∂k

∂xj

∂ω

∂xj
.

The blending function is used also for the model constants

φ = F1φ1 + (1− F1)φ2 , (4.87)

with φ1/2 corresponding constants of the k−ω/k− ε model. The eddy viscosity is then computed

from

µt = ρ̄
k

ω
. (4.88)

Baseline Model

The baseline model (BSL) was designed to perform like the k − ω model without the strong

freestream sensitivity. The blending takes place in the wake region of the boundary layer through

the function

F1 = tanh
(
Γ4
BSL

)
. (4.89)

with

ΓBSL = min (max (Γ1; Γ3) ; Γ2) , (4.90)

Γ1 =
500ν

ωd2
, Γ2 = 4ρσ2k

d2CD
, Γ3 =

√
k

β∗1ωd
. (4.91)

The variable d represents the wall distance and the cross-di�usion term CD is de�ned as

CD = max

(
ρ

2σ2

ω

∂k

∂xj

∂ω

∂xj
; 10−20

)
. (4.92)

The inner/outer model constants are

β∗1/2 = 0.09 , σ∗1/2 = 0.5/1.0 , κ = 0.41

γ1/2 =
5

9
/0.44 , σ1/2 = 0.5/1.0 , β1/2 =

γ1/2 +
σ1/2κ

2√
β∗1/2

β∗1/2 (4.93)

Shear Stress Transport Model

Numerous experiments have proven that the turbulent shear stress τRij is proportional to the tur-

bulent energy k in a dominant part of the boundary layer. Nevertheless the classical formulation

of the eddy viscosity, see the equation (4.88), does not take the shear stress transport (SST ) into

account.
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Bradshaw [16] has therefore used a relation

τRij
ρ

= a1k , (4.94)

and Menter [64] has lately suggested a modi�ed eddy viscosity de�nition

νt = min

(
a1k

F2Ω
;
k

ω

)
. (4.95)

The �rst term arises from the assumption

τRij = νt

∣∣∣∣ ∂w̃∂xj
∣∣∣∣ , (4.96)

with the velocity gradient being substituted by the absolute value of vorticity Ω for more general

cases. The term required is then recovered from the equation (4.94) and the blending function

F2 = tanh
(
Γ2
SST

)
, (4.97)

ΓSST = max (Γ1 ; 2 · Γ3) .

The second term of the equation (4.95) prevents the model from singular behaviour for Ω = 0.

The model constants are

β∗1/2 = 0.09 , σ∗1/2 = 0.85/1.0 , κ = 0.41 , a1 = 0.31 ,

γ1/2 =
5

9
/0.44 , σ1/2 = 0.5/0.857 , β1/2 =

γ1/2 +
σ1/2κ

2√
β∗1/2

β∗1/2 . (4.98)

The �gure 4.7 shows the behaviour of the blending functions F1, F2 across the boundary layer for

various velocity pro�les. The variable U represents the velocity component in x direction, Ue the

shear-layer edge velocity and δ the boundary layer thickness.

Figure 4.7: Blending functions behaviour, a �gure from [75]

4.5.3 Two Equations Wilcox k − ω Model

The original k − ω model proposed by D. Wilcox has been published in [102] in 1988. This work

deals with its revised version [104], published in November 2008. The new model incorporates two

key modi�cations
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• the addition of a cross-di�usion term,

• a built-in stress-limiter modi�cation.

The transport equations for the k and ω are

D (ρ̄k)

Dt
= ρ̄τij

∂w̃i
∂xj
− β∗ρ̄kω +

∂

∂xj

[(
µ+ σ∗

ρ̄k

ω

)
∂k

∂xj

]
, (4.99)

D (ρ̄ω)

Dt
= α

ω

k
ρ̄τij

∂w̃i
∂xj
− βρ̄ω2 + σd

ρ̄

ω

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[(
µ+ σ

ρ̄k

ω

)
∂ω

∂xj

]
, (4.100)

with the eddy viscosity de�ned as

µt =
ρ̄k

ω̃
, ω̃ = max

ω; Clim

√
2S̄ijS̄ij
β∗

 . (4.101)

The constitutive relations and closure coe�cients are

S̄ij = Sij −
1

2

∂wk
∂xk

δij , Clim =
7

8
,

α =
13

25
, β∗ =

9

100
, σ =

1

2
, σ∗ =

3

5
, PrT =

8

9
, (4.102)

σd =

0, for ∂k
∂xj

∂ω
∂xj
≤ 0

σdo, for ∂k
∂xj

∂ω
∂xj

> 0
, σdo =

1

8
, (4.103)

β = βofβ , βo = 0.0708 , fβ =
1 + 85χω
1 + 100χω

, (4.104)

χω ≡

∣∣∣∣∣ΩijΩjkŜki(β∗ω)
3

∣∣∣∣∣ , Ŝki = Ski −
1

2

∂wm
∂xm

δki . (4.105)

Note that the di�usion terms in the equations (4.99) and (4.100) (terms multiplied by σ∗ and σ)

are proportional to ρ̄k/ω rather than to the eddy viscosity.

The term proportional to σd in the equation (4.100) is called the cross-di�usion. In free shear

�ows the cross-di�usion term enhances production of ω, which in turn reduces the net production

of k. Close to the solid surface boundary (k increases, while ω decreases) the cross-di�usion term

is suppressed because of the splitting (4.103). The new model therefore simpli�es the complicated

blending functions (4.89), (4.97) of the Menter models to a neccessary minimum.

The stress limiter (4.101) makes the eddy viscosity a function of k, ω and the ratio of the

turbulence-energy production to the turbulence-energy dissipation, resolving also the shear stress

transport. In [43] it has been shown, that by limiting the magnitude of µt when the energy

production exceeds the dissipation, a strong improvement for incompressible and transonic �ows

predictions is acquired.

4.5.4 Two Equations Kok's TNT Model

Another member of the family of the k − ω models, has been published by J. Kok in [47]. His

advantage is the insensitivity to the turbulent variables of the mean �ow and the new model
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constants. The transport equations are

D (ρ̄k)

Dt
= P − β∗ρ̄kω +

∂

∂xj

[
(µ+ σ∗µt)

∂k

∂xj

]
, (4.106)

D (ρ̄ω)

Dt
= α

ω

k
P − βρ̄ω2 +

∂

∂xj

[
(µ+ σµt)

∂ω

∂xj

]
+ CD , (4.107)

with P the production and CD the cross-di�usion term

P = τij
∂ui
∂xj

, CD =
1

2

ρ

ω

(
∂k

∂xj

∂ω

∂xj
; 0

)
. (4.108)

The eddy viscosity and the model constants are

µt = α∗ ρ̄kω , (4.109)

α = 0.553 , α∗ = 1.0 , β = 0.075 , β∗ = 0.09 ,

σ = 0.5 , σ∗ = 2
3 , Prt = 0.9 .

The transport equations (4.106), (4.107) have mainly been used for the velocity and time scale

extraction, required by the following EARS model.

4.5.5 EARSM

This model, based on [99] disposes the linear dependency between the turbulent stresses and the

strain rate tensor by introducing the anisotropy tensor (4.73) in a form

aij = β4

(
S∗ikΩ∗kj − Ω∗ikS

∗
kj

)
. (4.110)

The Reynolds stresses and the eddy viscosity are then computed as

τRij = 2µtSij −
2

3
δij ρ̄k − ρ̄kaij , (4.111)

µt = −1

2
β1ρ̄kτ . (4.112)

The deformation and rotation tensors Sij , Ωij are de�ned by the equations (4.66), with their

normalized clones S∗ij , Ω∗ij
S∗ij = τSij , Ω∗ij = τΩij , (4.113)

with τ the turbulent time scale

τ = max

(
1

β∗ω
; Cτ

√
µ

β∗ρ̄kω

)
. (4.114)

The coe�cients β1 in the equation (4.112) and β4 in the equation (4.110) are computed from

β1 = −6

5

N

N2 − 2IIΩ
, (4.115)

β4 =
β1

N
, (4.116)
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with IIΩ the invariant of the rotation tensor () and the parameter N

N =


C′1
3 +

(
P1 +

√
P2

) 1
3 + sign

(
P1 −

√
P2

) (∣∣P1 −
√
P2

∣∣) 1
3 for P2 ≥ 0

C′1
3 + 2

(
P 2

1 − P2

) 1
6 cos

[
1
3 arccos

(
P1√
P 2

1−P2

)]
for P2 < 0

(4.117)

P1 =

(
C ′1
27

+
9

20
IIS −

2

3
IIΩ

)
C ′1 (4.118)

P2 = P 2
1 −

(
C ′21
9

+
9

10
IIS +

2

3
IIΩ

)3

(4.119)

The invariants IIS and IIΩ and the model constants are

IIS = tr
{
S∗ikS

∗
kj

}
, IIΩ = tr

{
Ω∗ikΩ∗kj

}
. (4.120)

C ′1 = 1.8 , Cτ = 6.0 . (4.121)

For determination of the velocity and the time scales this model uses the above shown transport

equations of the TNT turbulence model (4.106) and (4.107).

4.5.6 Initial and Boundary Conditions

Transport Equation of νt

According to [75] the Spalart-Allmaras model, which uses a transport equation for the eddy vis-

cosity, is insensitive to the initial value of νt, therefore the initial �ow�eld has been �lled with one

of these options

νinitt =

0

ν∞t

(4.122)

The inlet condition is de�ned

νinlett = Cνν
∞
t , (4.123)

with the model constant Cν = 10−(1÷3). The outlet condition (as for all other models used) does

not require any value prescribed. The condition for the solid surfaces is realized by

νwallt = 0 . (4.124)

Transport Equation of k

The �ow�eld gets initialized by the value kinit de�ned by the equation (4.125) for the velocity

winlet. The inlet value is related to the inlet velocity as

kinlet = Ckν
∞
t

winlet

L
., (4.125)

where L is the reference length, νt the eddy viscosity given by (4.123) and Ck = 100÷1 the constant

chosen. The condition for the solid surfaces is again trivial

kwall = 0 . (4.126)
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Transport Equation of ω

The initial value ωinit is set to

ωinit =
winlet

L
, (4.127)

with an identical meaning to the equation (4.125). The inlet value uses winlet with the same

equation (4.127). According to [65], the condition for solid surfaces is modeled by

ωwall = Cω ·
6ν

β∗1d
2
, (4.128)

with the constant β∗1 = 0.09, d the distance to the �rst gridpoint and Cω0 = 10 the adjustable

constant.

In [102] it is pointed out that the k−ω models give the correct smooth wall sublayer behaviour

if

ωwall >
100 · u2

τ

ν
, (4.129)

which is satis�ed due to the equation (4.128) as long as y+ < (∼ 3).



Chapter 5

Numerics

Although the Navier-Stokes (resp. RANS, resp. U-RANS) equations are investigated by mathe-

maticians for many decades, any analytical solution have not been obtained due to their complexity

yet, except for the most simple cases. Thus, the numerical mathematics must be introduced to the

problem, in order to acquire a relevant and physically acceptable result.

As there is a large variety of numerical methods, this chapter will introduce the numerical

procedures and numerical tools particularly used for the sake of this work.

5.1 Mathematical Formulation

The system of U-RANS equations (4.38), (4.39), (4.40) can be written in a vectorial form for an

arbitrary volume Ω with a surface ∂Ω

d
dt

ˆ
Ω

W dΩ = −
˛
∂Ω

(
F Ij − FVj

)
nj d∂Ω +

ˆ
Ω

Q dΩ . (5.1)

W is the vector of conservative unknowns, F I/V the inviscid/viscous �uxes and Q the source

term. The general form of the vectors mentioned for a general 3D unsteady compressible �ow on

a moving domain with the Spalart-Allmaras turbulence model 4.5.1 follows

W =
[
ρ̄; ρ̄w̃1; ρ̄w̃2; ρ̄w̃3; ρ̄Ẽ; ν̃t

]T
, (5.2)

F Ij =



ρ̄ (w̃j − wBj)
ρ̄w̃1 (w̃j − wBj) +

(
p̄+ 2

3 ρ̄k
)
δ1j

ρ̄w̃2 (w̃j − wBj) +
(
p̄+ 2

3 ρ̄k
)
δ2j

ρ̄w̃3 (w̃j − wBj) +
(
p̄+ 2

3 ρ̄k
)
δ3j

ρ̄ẽ (w̃j − wBj) +
(
p̄+ 2

3 ρ̄k
)
w̃iδij

ν̃t (w̃j − wBj)


, (5.3)

45
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FVj =



0

(µ+ µt)
(
∂w̃1

∂xj
+

∂w̃j
∂x1
− 2

3
∂w̃k
∂xk

δ1j

)
(µ+ µt)

(
∂w̃2

∂xj
+

∂w̃j
∂x2
− 2

3
∂w̃k
∂xk

δ2j

)
(µ+ µt)

(
∂w̃3

∂xj
+

∂w̃j
∂x3
− 2

3
∂w̃k
∂xk

δ3j

)
(µ+ µt)

[(
∂w̃i
∂xj

+
∂w̃j
∂xi

)
w̃i − 2

3
∂w̃k
∂xk

δij

]
+
(
µ+ µt

σk

)
∂k
∂xj

+
(
λ+ µtcv+r

Prt

)
∂T̃
∂xj

1
σ (ν + ν̃t)

∂ν̃t
∂xj


,(5.4)

Q =



0

ρ̄g1

ρ̄g2

ρ̄g3

ρ̄gkw̃k + ¯̇Q

Cb1ν̃tS̃ + Cb2
1
σ
∂ν̃t
∂xj

∂ν̃t
∂xj
− Cw1fw

(
ν̃t
d

)2


. (5.5)

The respective modi�cations for other turbulence models or simpli�cations for 2D, laminar or

inviscid �ow model are straight forward. The set of equations (5.1) is appended by the equation of

state (3.20), the Sutherland resp. Fourier law (3.22), resp. (3.23) and the last equation of (4.37).

Together with a proper initial condition of a type (3.27) and boundary conditions of type (3.29),

(3.30) and (3.31) a complete system is created, containing su�cient number of equations.

Despite a persistent mathematical e�ort, the existence and the uniqueness of solution of such

system has not been proven yet. Nonetheless all the numerical computations performed and

presented here have assumed such solution to exist and to be uniquely determined by the choice

of the �ow model, initial and boundary conditions.

5.2 Spatial Discretization Methods

Any computational domain Ω has been discretized by a �nite number of disjoint volumes ωi, such

that ⋃
i

ωi = Ω , (5.6)

ωi ∩ ωj = 0 , ∀i, j : i 6= j .

Depending on the dimension, each volume consists of several nodes which are connected by faces

creating together an element. In the �gure 5.1 the most frequent elements are shown.
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Name Dimension Nodes Faces
Triangle (T) 2D 3 3

Quadrilateral (Q) 2D 4 4
Tetrahedron 3D 4 4T
Pyramid 3D 5 4T+1Q
Prism 3D 6 2T+3Q

Hexahedron 3D 8 6Q

Figure 5.1: The most frequent planar and spatial volumes

For the above-constructed computational grid, three main spatial discretization methods can

be distinguished for most of the CFD simulations.

5.2.1 Finite Di�erence Method (FDM)

The computational domain is �lled with regularly spaced grid points and the derivatives are ap-

proximated using Taylor series expansion. The higher order of accuracy can be obtained from

the extended Taylor expansions, but these require extended stencils and have a tendency to an

oscillatory behaviour.

The main advantage of the FDM is its simplicity. On the other hand, the computational

domains are limited to simple geometries, restraining the use of FDM for complex applications.

5.2.2 Finite Element Methods (FEM)

The solution is approximated using a continuous function belonging to a �nite element space,

de�ned on the computational domain. The solution is assumed in a form

W (t, ~x) =

nodes∈ω∑
i

NiWi , (5.7)

with Ni the nodal shape function de�ned at node i and Wi the solution at node i. The shape

functions are either de�ned locally for each element (Galerkin method) or globally (collocation

method). The method can be easily extended to higher accuracy orders by increasing the order of

the shape functions.

For the advection (-dominated) �ows oscilatory solutions can appear. In order to overcome these

instability problems, the streamline-upwind Petrov-Galerkin (SUPG) methods (see [70], [95]) and
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residual distribution (RD) methods (see [27], [81]) have been developed.

5.2.3 Finite Volume Method (FVM)

Nowadays, this method is probably the most widely used for solving high-Reynolds number �ows

and complex �ow problems. This work is based on the FVM, thus it will describe the method

in more detail. Out of many references on the FVM, the works by [14] and [54] are considered

particularly complete.

In the cell-centered �nite volume framework, the discrete solution is de�ned at the centroid of

the element and remains constant over the element. The solution �eld is therefore discontinuous

on the computational domain. The balance equation (5.1) is constructed for each volume ωi and

due to its (relatively) small size, the mean value theorem (5.8) is applied on the original integral

equation. The �uxes over the cell faces and the volume sources by approximated by

Fmean =

´
∂ωi,f

F d∂ωi,f´
∂ωi,f

d∂ωi,f
, Qmean =

´
ωi
Qdωi´

ωi
dωi

. (5.8)

The subscript f represents a face of the volume ωi. The equation (5.1) is then transformed into

d
dt

(Wmeanω) = −
∑
f

(
F Ij
∣∣
mean,f

− FVj
∣∣
mean,f

)
nj,f Sf +Qmeanω , (5.9)

where

ω =

ˆ
ωi

dωi , Sf =

ˆ
∂ωi,f

d∂ωi,f . (5.10)

The spatial discretization residual is computed by summing the contributions of the �uxes1 along

the faces of the element. The inviscid and viscous �uxes F are described by the physical model,

see equations (5.3) and (5.4). In the FV approach the so-called numerical �uxes F̃ have to be

evalutated at the element faces, using the information from the neighbouring cells, leading to∑
f

Fj · nj |mean,f =
∑
f

F̃j · nj
∣∣∣
f
. (5.11)

In the simplest case, the numerical �ux through a face f is obtained by an arithmetic averaging

of the physical �uxes FL and FR that are computed from the cell values on both sides of the face,

see the �gure 5.2,

Figure 5.2: The �ux between neigbouring cells

1Note, that the Einstein sum rule does not apply to the subscript f here.
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FL/R = F
(
WL/R

)
(5.12)

F̃ =
FL + FR

2
.

Similarly to FDM, this centered �ux is however known to be oscillatory for advection �ows, viz. [77],

[95] and requires a stabilization term and/or algorithms (e.g. blending with other numerical �uxes).

The numerical �uxes at the cell interfaces are therefore often computed using exact or approximate

mono-dimensional Riemann solvers along the face normal, see [54]. Among the schemes used for

computation of compressible �ows, the van Leer scheme [97], the Roe scheme [84], and the family

of AUSM schemes [55], [57], [60] must be mentioned at minimum. The �ux used in this work is

described in section 5.4.

5.3 Numerical Codes Used

Two di�erent in-house numerical codes have been used in this work. Both are based on the FVM

but having a completely di�erent internal structure. Their basic description follows.

MUSA

MUSA2 is a numerical code being developed exclusively by the author, for the sake of this work.

Due to the limited manpower the code features are not as enhanced as in the second solver and

therefore the MUSA solver has mainly been used for the lighter computations in order to acquire

the reference solutions.

COOLFluiD

COOLFluiD3 is a numerical framework, being developed by a team of engineers centralized at the

VKI. The solver deals with many applications related to �uid dynamics. It uses the advantages of

unstructured grids, parallel computing and multiphysics modelling. New features can be added to

the code through its interfaces and due to high modularity of the code, see the �gure 5.3.

Figure 5.3: The COOLFluiD solver

2Musa is the ancient goddess who inspired the creation of all arts in the greek mythology. The name is also an
anagram of the AUSM numerical scheme.

3Computational Object Oriented Library for Fluid Dynamics.
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Apart from a perfect gas aerodynamics, the solver can deal with ICP (inductively coupled

plasma), MHD (magneto-hydrodynamics), CNEQ (chemical non-equilibrium) �ows and others,

continuously widening its capabilities. See [1] for precise information about the current state of

the solver.

Some general characteristics of both codes are presented in the table 5.1. Note that the following

sections 5.4-5.11 belong to both numerical codes if not explicitly said otherwise.

MUSA COOLFluiD

Developers 1 >35
Developed since 2003 2001
Dominant
programming
language

C C++

Flow models inviscid, laminar,
turbulent

inviscid, laminar,
turbulent

Dimensionality 2D (quads),
3D (hexahedrons)

2D, 3D (hybrid)

Grid structure multi-block,
structured

unstructured

Turbulence models S-A (only 2D) S-A, k− ε, k−ω, BSL,
SST, TNT, EARSM

Parallelization OpenMP MPI
Time integration explicit explicit, implicit

Table 5.1: Comparison of solvers used

5.4 Inviscid Fluxes

The inviscid �uxes F I can be evaluated using either centered type schemes, based on the equation

(5.12), or upwind schemes. The space centered schemes are robust and easy to implement, however

as mentioned here-above, these schemes depend on the arti�cial dissipation coe�cients which are

neccessary to prevent undesired oscillations. Due to this dependence, the centered schemes add an

arti�cial dissipation which deteriorates the quality of the solution.

According to [26], [54] and others the upwind schemes are recommended for advection domi-

nated �ows, because of their smaller dissipation in a sense that they do not require the adjunction

and tuning of an arti�cial viscosity. As a matter of fact, the upwind schemes also possess a nat-

ural arti�cial viscosity to avoid oscillations and can also be re-written as a centered scheme with

an additional anti-di�usive component. However, compared to the centered schemes, the upwind

schemes di�erentiate the physical propagation of waves which re�ects the mathematical properties

of the RANS equations.

AUSM scheme

The AUSM4 is an upwind-based numerical scheme, developed for compressible �ows. According

to [13], this scheme is e�cient, has a high resolution shock capturing and is enthalpy conservative.

Several variations of this scheme have been chosen and tested within this work. The references cite

to their original papers, whereas a compact summary of the AUSM-family schemes can be found

in [58].

4abbreviation of Advection Upstream Splitting Method.
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For the sake of clarity, consider the 1D Euler equations in a di�erential form

∂W

∂t
+
∂F

∂x
= 0 , (5.13)

W = [ρ, ρw, ρE]
T
,

F =
[
ρw, ρw2 + p, ρwH

]T
,

where E = e + 1
2w

2 = H − p
ρ . The basic principle of any AUSM scheme is the splitting of an

inviscid �ux F in two physically distinct parts, namely the convective and the pressure part

F = w ·

 ρ

ρw

ρH

+

 0

p

0

 . (5.14)

The advective term can be considered as passive scalar quantities which are being convected by a

suitably de�ned velocity w at the cell interface. By the contrary, the pressure terms are governed

by the acoustic wave speeds.

(original) AUSM scheme, [55]

According to the �gure 5.2, FI ≡ F̃ ≡ Fi+1/2 denotes a �ux across an interface between states L

and R. The advective term of the equation (5.14) can be rewritten as

FI = wI ·

 ρ

ρw

ρH


L/R

= MI ·

 ρa

ρaw

ρaH


L/R

= MI · ΦI , (5.15)

with MI the interface Mach number and a the speed of sound. The convected quantities are

upwinded as

ΦI =

 ΦL

ΦR

if MI > 0,

if MI < 0.
(5.16)

The subscripts L/R indicate the state the actual value is taken from. The choice of the advective

velocity allows to de�ne a whole family of schemes. One option is to represent this velocity as a

combination of the wave speeds travelling towards the interface I from the adjacent states L and

R, as

MI = M+
L +M−R . (5.17)

The splitting Mach number polynoms are de�ned as

M± =

 ± 1
4 (M ± 1)

2

1
2 (M ± |M |)

if |M | ≤ 1,

otherwise.
(5.18)

By the same principle, the pressure part is constructed as

pI = p+
L + p−R . (5.19)
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The pressure splitting is weighted using the polynomial expansion of the characteristic speeds

(M ± 1). The splitting polynoms are expressed as

p± =


p
4 (M ± 1)

2
(2∓M)

p
2

(M±|M |)
M

if |M | ≤ 1,

otherwise.
(5.20)

The Mach number and pressure (for p = 1) splitting polynoms are visualized in the �gure 5.4.

Figure 5.4: Splitting polynoms of the Mach number (left), pressure (right)

Note that the above equations can be cast in a form ρw

ρw2 + p

ρwH


I

= MI ·
1

2


 ρa

ρaw

ρaH


L

+

 ρa

ρaw

ρaH


R

 (5.21)

−1

2
|MI |∆I +

 0

p+
L + p−R

0

 ,

∆I =

 ρa

ρaw

ρaH


R

−

 ρa

ρaw

ρaH


L

. (5.22)

The �rst term is an average of L and R states weighted by the Mach number, whereas the second

term is the numerical dissipation, rendering the �ux formula upwinding.

AUSM-D, AUSM-V, [56]

These variations have been designed in order to remove overshoots behind shocks, with D and

V denoting a �ux-di�erence-splitting-biased scheme and a �ux-vector-splitting-biased scheme, re-

spectively. Both schemes decompose the inviscid �ux as

FI = (ρw)I ·

 1

w

H


L/R

+

 0

p

0


I

= ṁI ·ΨI + pI , (5.23)
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allowing to rewrite the equation (5.21) to ρw

ρw2 + p

ρwH


I

= ṁI ·
1

2
(ΨL + ΨR)− 1

2
|ṁI | ∆̂I +

 0

p+
L + p−R

0

 , (5.24)

∆̂I = ΨR −ΨL .

Compared to the original AUSM scheme, the mass �ux ṁI is biasing the L and R values rather

then the interface velocity wI or the Mach number MI = wI
a in the equation (5.15). Note that the

original AUSM scheme can still be recovered, using the relations

ṁI =
1

2
[wI (ρL + ρR)− |wI | (ρR + ρL)] , (5.25)

MI =
w+
L

aL
+
w−R
aR

= M+ +M−, (5.26)

wI = MI · aI , (5.27)

aI =
1

2
(aL + aR) , (5.28)

withM± being evaluated from the equations (5.18). The present modi�cations de�ne the interface

mass �ux as

ṁI = w+
LρL + w−RρR , (5.29)

where the velocity splittings w± are de�ned

w± =

 α
[
± 1

4am
(w ± am)

2 − 1
2 (w ± |w|)

]
+ 1

2 (w ± |w|)
1
2 (w ± |w|)

if |w|am ≤ 1,

otherwise,
(5.30)

αL/R =
2 (p/ρ)L/R

(p/ρ)L + (p/ρ)R
,

am = max (aL, aR) .

The splitting (5.30) is designed to capture stationary and/or moving contact discontinuities. The

pressure �ux re-uses the relation (5.19), with

p± =


p
4

(
w
am
± 1
)2 (

2∓ w
am

)
p
2

( w
am
±| wam |)
w
am

if |w|am ≤ 1,

otherwise.
(5.31)

Both schemes presented follow the equation (5.24) for the mass and the energy conservation. The

di�erence is found in the formulation of the interface momentum �ux
(
ρw2

)
I
, or (ρw)I ·w = ṁI ·w

respectively. For the AUSM-D scheme

ṁI · w|AUSM−D =
1

2
[ṁI (wL + wR)− |ṁI | (wR − wL)] , (5.32)

whereas the AUSM-V scheme uses

ṁI · w|AUSM−V = ṁL · w+
L + ṁR · w−R . (5.33)
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In order to determine whether AUSM-D or AUSM-V was preferable, several numerical experiments

have been carried out in [56]. Apparent oscillations have been observed for both the original AUSM

and the AUSM-D schemes. The AUSM-V scheme has provided a better shock capturing capability,

however in other testcases, this scheme has produced spurious oscillations (especially for contact

discontinuities).

Hence a hybrid AUSM-DV scheme has been de�ned, which blends the previous formulations

into

ṁI · w|AUSM−DV =

(
1

2
+ s

)
(ṁI · w)AUSM−V +

(
1

2
− s
)

(ṁI · w)AUSM−D , (5.34)

with s a switching function, based on the pressure gradient

s =
1

2
min

(
1, K

|pR − pL|
min (pL, pR)

)
.

The parameter K has been taken as 10.

AUSM+, [57]

The previous AUSM-DV scheme improves the robustness in the strong shock capturing, however,

it still su�ers by the carbuncle phenomenon. Moreover, the AUSM-DV scheme does not capture

exactly a stationary shock. Hence the AUSM+ scheme is de�ned, having following properties: exact

resolution of a stationary normal shock or contact discontinuity, positivity-preserving, accuracy

improvement, simplicity and easy generalization to other conservation laws.

This new algorithm uses

ML =
wL
aI

, (5.35)

MR =
wR
aI

, (5.36)

In order to unify the velocity and the Mach number splittings, the interface speed of sound has

to be unique, rather than using aL and aR. Several de�nitions are suggested in [57, 59], out of

which the arithmetic average, eq. (5.37), the geometric average, eq. (5.38), or the relation (5.39)

have been used.

aI =
1

2
(aL + aR) , (5.37)

aI =
√
aL · aR . (5.38)

aI = min (āL, āR) (5.39)

ā =
a2
crit

max (acrit, |w|)

acrit =

√
2 (γ − 1)

γ + 1
H

The sensitivity of results to the aI de�nition is shown in the �gure 6.5.

The inviscid �ux F I is again splitted as in (5.14) and (5.15), with

MI = M+
L +M−R , (5.40)

pI = p+
L + p−R . (5.41)
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The splitting polynoms are then

M± =

 ± (M ± 1)
2 ± β

(
M2 − 1

)2
1
2 (M ± |M |)

if |M | ≤ 1,

otherwise,
(5.42)

p± =


p
4 (M ± 1)

2
(2∓M)± αpM

(
M2 − 1

)2
p
2

(M±|M |)
M

if |M | ≤ 1,

otherwise.
(5.43)

The parameters α, β are said to be

−3

4
≤ α ≤ 3

16
, − 1

16
≤ β ≤ 1

2
. (5.44)

From the experimental studies, the values suggested are α = 3
16 and β = 1

8 .

AUSM+up, [60]

This extension allows the compressible �ow solver to reliably predict the �ows with all speed

ranges. The main di�culties occur with the low speed regions that cause an extremely slow or

stalled convergence and/or grossly inacccurate solutions.

The slow convergence originates at the continuum level, being associated with the disparity of

convective and acoustic speeds as M → 0. Turkel, Choi and Merkle, Weiss and Smith and Van

Leer et al. (citation to be found in [60]) devised a local preconditioner which modi�es the structure

of eigenvalues and alters the characteristics of the governing equations.

The accuracy de�ciency is inherently tied to the �ux scheme employed. As the speed slows down

to zero the pressure term dominates the �ow �eld. Hence, a proper scaling of pressure di�erences

must be re�ected by the numerical scheme, so that the small perturbation in the pressure �eld

a�ects accordingly the velocity �eld. Such behaviour can be saturated with a numerical speed

of sound viz. [29]. This concept heals the accuracy problem, but introduces a singularity to the

pressure splittings at stagnation point, M = 0. This singularity is overcome by the introduction

of the cut-o� Mach number Mco.

Most schemes based on the concept of the numerical speed of sound set the Mco empirically,

e.g. like

Mco = max

(
0.3,

1

2
M∞

)
, (5.45)

with 0.3 the conventional compressibility limit and M∞ the freestream Mach number. It is, how-

ever, desired to avoid this preset value and to scale the cut-o� Mach number directly with the

freestream value, Mco = O (M∞), rather than being bounded from below 0.3. The AUSM+up

scheme is therefore based on the asymptotic series expansion for low M to derive proper scales

required in the pressure and velocity di�usion terms.

The complete analysis and algebra involved can be found in [60], with an outputting result.

The Mach number is de�ned as

ML/R =
wL/R

aI
, (5.46)

with the interface speed of sound de�ned by one of the equations (5.37), (5.38), or (5.39). The
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mean local Mach number M̄ and the reference Mach number Mo are de�ned as

M̄2 =
w2
L + w2

R

2a2
I

, (5.47)

M2
o = min

[
1, max

(
M̄2, M2

∞
)]
, (5.48)

with the scaling factor

fa = Mo (2−Mo) . (5.49)

The interface Mach number then consists of splitting contributions and a correction term

MI = M+
L +M−R +Mcorr , (5.50)

where

M± =

 ±
1
4 (M ± 1)

2
[
1∓ 4β

(
∓ (M ∓ 1)

2
)]

1
2 (M ± |M |)

if |M | ≤ 1,

otherwise,
(5.51)

Mcorr = 2 ·Kp max
(
1− σM̄2, 0

) pL − pR
(ρL + ρR) a2

I

. (5.52)

Similarly, the pI reads as

pI = p+
L + p−R + pcorr , (5.53)

where

p± =

 ±
p
4 (M ± 1)

2
[
(±2−M) + 4 · α ·M (M ∓ 1)

2
]

p
2M (M ± |M |)

if |M | ≤ 1,

otherwise,
(5.54)

pcorr = Ku · p+ · p− · (ρL + ρR) · fa · aI · (wL − wR) . (5.55)

The parameters α, β, Kp, Ku and σ had to ful�l certain requirements, upon which their values

have been set to

−3

4
≤ α ≤ 3

16
→ α =

3

16

(
−4 + 5f2

a

)
,

− 1

16
≤ β ≤ 1

2
→ β =

1

8
,

0 ≤ Kp ≤ 1 → Kp =
1

4
,

0 ≤ Ku ≤ 1 → Ku =
3

4
,

σ ≤ 1 → σ = 1 .

According to upwind principle the interface mass �ow is de�ned

ṁI = aIMI

 ρL

ρR

if MI ≥ 0,

otherwise.

The whole �ux then reads

FI = ṁI

 ΨL

ΨR

+ pI
if ṁI ≥ 0,

otherwise,
(5.56)
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using the notation of the equation (5.23). Note, that for fa = 1 the original AUSM+ scheme can

be recovered.

AUSM for ALE

The arbitrary Lagrangian-Eulerian formulation (ALE), as it is described later in section 5.9.1, is

used for computations on domains with moving boundaries. For completeness sake, the modi�ca-

tions to the AUSM scheme are however presented here. According to [20, 89], the inviscid �ux for

the ALE is de�ned

FI, ALE =

 ρwR

ρwRw + p

ρwRH + pwB

 , (5.57)

wR = w − wB , (5.58)

with w the conventional �ow velocity, wB the speed of the boundary movement and wR the

relative velocity. The �ux (5.57) is again splitted into a convective and a pressure part, similarly

to equations (5.15) and (5.23)

FI, ALE = MR · a ·

 ρ

ρw

ρH

+

 0

p

pwB

 or FI, ALE = ṁR · a ·

 1

w

H

+

 0

p

pwB

 ,(5.59)

FI, ALE = MI,R · aI · ΦI +

 0

1

wB

 pI or FI, ALE = ṁI,R · aI ·ΨI +

 0

1

wB

 pI .(5.60)

The local Mach number, resp. local mass �ux, is substituted by the relative local Mach number,

resp. relative local mass �ux. The pressure part contains an extra term that depends on the mesh

velocity.

The interface variables are again expressed as a suitable combination of left/right-hand state

values, depending on the AUSM branch selected.

Extension of AUSM to Multi-dimensions

All the AUSM variants have been presented for the case of 1D Euler equations (5.13). Due to

the rotation invariance, the 2D and 3D �uxes FI can be rotated into a normal direction to the

interface, re-creating the local 1D �ux between left- and right-hand state.

Consider 3D Euler equations

∂W

∂t
+
∂Fi
∂xi

= 0 , (5.61)

W = [ρ, ρw1, ρw2, ρw3, ρE]
T
,

F1 =
[
ρw1, ρw

2
1 + p, ρw1w2, ρw1w3, ρw1H

]T
,

F2 =
[
ρw2, ρw1w2, ρw

2
2 + p, ρw2w3, ρw2H

]T
,

F3 =
[
ρw3, ρw1w3, ρw2w3, ρw

2
3 + p, ρw3H

]T
,

and ~n = (n1, n2, n3) the vector pointing from left to right state and perpendicular to the interface.
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Then

Fi · ni = wini


ρ

ρw1

ρw2

ρw3

ρH

+ p


0

n1

n2

n3

0

 = Mn · a · Φ + p


0

n1

n2

n3

0

 , (5.62)

Mn =
w1n1 + w2n2 + w3n3

a
.

Terms Mn, Φ (resp. ṁn, Ψ), a, p are now subject to the splitting algorithms of the AUSM.

AUSM scheme for RANS

As far as the splitting is concerned, the turbulence quantities are treated in the exactly same way

as the �ow primary variables. In case of the two-equation k − ω model

Φ = [ρ, ρwi, ρH, ρk, ρω]
T
,

Ψ = [1, wi, H, k, ω]
T
.

5.5 Accuracy Improvement

The AUSM scheme presented is �rst order accurate in space since it only depends on the states of

the immediate �rst neighbours of the interface. The solution is considered piecewise constant on

each cell. In order to increase the spatial accuracy, the computational molecule (stencil) needs to

be enlarged and the solution to be reconstructed. Depending on the solver used (thereby the grid

structure), di�erent types of reconstruction are recognized.

5.5.1 Reconstruction on Structured Grids (MUSA)

Each structured grid is characterized with an ordered sequel (1D), pair (2D) or trinity (3D) of

indices, describing position of each grid element. Hence the spatial reconstruction can be easily

built in several (index-oriented) 1D directions, with no actual computational costs for searching

the neighbouring elements.

Figure 5.5: Local indexing of a quad within structured grid

The extrapolation of the cell centered values to the interface is often called MUSCL5. According

5Monotone Upstream-centered Schemes for Conservation Laws.
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to [96], the linear extrapolation in one direction on an arbitrary quadrilateral i, j (see the �gure 5.5

for schematic description) is de�ned as

WA = Wi,j + ωA (Wi,j −Wi,j+1) , (5.63)

WC = Wi,j + ωC (Wi,j −Wi,j−1) ,

with ω the weighting functions which account the di�erent size of neighbouring cells

ωA =
|xA − xi,j |

lA
, ωC =

|xC − xi,j |
lC

. (5.64)

For a regular cartesian grid the weights simplify to ωA = ωC = 1
2 . The introduction of piecewise

linear reconstruction (5.63) generates oscillations near discontinuities and requires reverting the

scheme to the �rst order accuracy near shocks, viz. [40]. This is done through the use of various

limiters which bound the overshoots near shocks.

Another approach uses an interpolated slope ΛAC that is computed from both sides of the

element as

ΛAC = max [0, min (ΛA; ΛC)] , (5.65)

ΛA =
Wi,j −Wi,j−1

lA
, ΛC =

Wi,j+1 −Wi,j

lC
.

The equation (5.65) incorporates theminmod limiter in fact and can be substituted by any equation

(5.67)-(5.69). The interface values are then reconstructed

WA = Wi,j −
1

2
ΛAC

lA + lC
2

, (5.66)

WC = Wi,j +
1

2
ΛAC

lA + lC
2

.

Limiters As mentioned above, the limiters prevent the higher order reconstruction to deteriorate

the quality of the solution by undesired oscillations. The �gure 5.6 demonstrates the behaviour of

a linear reconstruction along the 1D discontinuity (between cells i and i+1 ). The sketches shown:

Figure 5.6: Limiter impact on the higher order reconstruction

�g. 5.6 a) piecewise constant (i.e. �rst order) solution;

�g. 5.6 b) reconstruction ignoring the right neighbouring value. Such approach leads to over-
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shoots and oscillations behind a shock;

�g. 5.6 c) reconstruction ignoring the left neighbouring value. Oscillations and an overshoot

occur in front of a shock;

�g. 5.6 d) linear reconstruction with a minmod limiter. This limiter always chooses the milder

reconstruction, or zero.

Λminmod =


ΛL

ΛR

0

if |ΛL| ≤ |ΛR|

if |ΛL| > |ΛR|

if ΛL · ΛR < 0

(5.67)

It is a robust limiter preventing any oscillations, therefore often used in MUSA, for higher

order computations.

�g. 5.6 e) linear reconstruction with a superbee limiter.

Λsuperbee = maxmod [minmod (ΛL, 2 · ΛR) , minmod (2 · ΛL, ΛR)] , (5.68)

maxmod (ΛL, ΛR) =

 ΛL

ΛR

if |ΛL| > |ΛR|

if |ΛL| < |ΛR|

This reconstruction allows steeper gradients, but can also generate oscillations near in�ection

points.

�g. 5.6 f ) linear reconstruction with a monotonized-central (MC) limiter.

ΛMC = minmod [ΛC , minmod (ΛL, ΛR)] , (5.69)

ΛC =
Wi,j+1 −Wi,j−1

lA + lC
.

This limiter incorporates the advantages of minmod and superbee limiters, allowing steeper

gradients but denying any oscillations.

Many other limiters can be found in [9, 52, 54]. Note, that reconstruction in other directions

(WB-WD, etc.) are de�ned analogically.

5.5.2 Reconstruction on Unstructured Grids (COOLFluiD)

Each element of an unstructured grid is described by a single number i, independently to grid

topology and dimension, i=1, 2, ... N, with N the overall number of elements. The previous

reconstruction technique is therefore unacceptable, due to excessive computational demands and

universal impracticability (no unique identi�cation of left and right neighbouring elements).

The cellwise gradient ∇W is therefore computed with a least square approach [9, 11], as a

result of the linear system

L · ∇Wi = f . (5.70)

The matrix L is built as a product of a weight ωj and a distance between a centroid of the current
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cell and centroids of its σ neighbours, belonging to the computational stencil

L =


ω1∆x1|1 ω1∆x2|1 ω1∆x3|1
ω2∆x1|2

...
...

...
...

...

ωσ∆x1|σ ωσ∆x2|σ ωσ∆x3|σ

 . (5.71)

The linear weights are at easiest based on the inverse of distances

ωj =
1

|∆xj |
. (5.72)

The vector f is computed as

f =


ω1 (W1 −Wi)

ω2 (W2 −Wi)
...

ωσ (Wσ −Wi)

 . (5.73)

The equation (5.70) is solved in a least squares sense with an orthogonalization technique

LT · L · ∇Wi = LT · f ,

∇Wi =
(
LT · L

)−1 ·
(
LT · f

)
. (5.74)

The resulting system (5.74) is not necessarily well-posed and a su�ciently large stencil is needed

to prevent singularities. The importance of the computational stencil to the solution accuracy and

robustness has been studied in [53].

Figure 5.7: Computational stencils for unstructured grids

In the �gure 5.7, some of the possibilities are shown.

Face the stencil includes only the face neighbours of each cell, �g. 5.7 a);

Face-Vertex the stencil includes all cells sharing at least one vertex, �g. 5.7 b);

Face-BVertex the stencil includes the face neighbours for internal faces and vertex neighbours

for the boundary faces, �g. 5.7 c);

Face-Edge the stencil includes all cell neighbours sharing at least one edge (in 3D).

The Face and Face-BVertex options are cheap from the computational point of view, but do not

provide enough robustness and accuracy, especially in 2D. The remaining options yield the best

results and therefore they have been chosen for 2D (Face-Vertex approach) and 3D (Face-Edge as

it avoids excessively large stencils) simulations.
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With the knowledge of a cellwise gradient ∇W , the interface values are computed as

WA = Wi +∇Wi · (xA − xi) , (5.75)

with xA the interface mid point and xi the centroid of the i -th cell. To avoid oscillations caused

by the reconstruction (remind the �gures 5.6 b) or c)) a suitable limiter is again required. The

equation (5.75) therefore changes to

WA = Wi + ψ · ∇Wi · (xA − xi) . (5.76)

The parameter ψ ∈< 0; 1 > can be computed according to various recipes.

Barth-Jespersen's limiter, [9]

This multidimensional limiter ensures that all extrapolated interface values �t among the mini-

mal and maximal values of all face neighbours, Wmin to Wmax. Denoting the increment (resp.

decrement) against the original centered value

∆WA = ∇Wi · (xA − xi) , (5.77)

the parameter ψ is expressed as

ψ = min


min

[
1, Wmin−Wi

∆WA

]
, if ∆WA < 0

min
[
1, Wmax−Wi

∆WA

]
, if ∆WA > 0

1, if ∆WA = 0

(5.78)

Venkatakrishnan's limiter, [101]

This limiter overcomes some de�ciencies of the previous limiter, namely the degradation of accuracy

in nearly smooth �ow regions. On the other hand, its implementation becomes more intricated.

The limiter is based on the similar splitting equation as (5.78)

ψ = min


ψV

(
Wmin−Wi

∆WA

)
, if ∆WA < 0

ψV

(
Wmax−Wi

∆WA

)
, if ∆WA > 0

1, if ∆WA = 0

(5.79)

where

ψV (a) =
a2 + 2a

a2 + a+ 2
. (5.80)

In order to maintain the accuracy in almost �at regions, where ∆Wmin ≈ ∆Wmax ≈ 0 , the

function ψV is rewritten to

ψV (a) =
∆W 2

max + 2 ·∆Wmax ·∆Wmin + ε

∆W 2
max + ∆Wmax ·∆Wmin + 2 ·∆W 2

min + ε
. (5.81)

The term ε requires a scalling from negligible in non-smooth �ow regions and dominant in uniform

parts. Thus

ε = KW 2
0

(
h

L

)3

, (5.82)
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where W0 ' O (|W |) along whole domain, h is a local characteristic length (e.g. the average

distance between the neighbouring cells), L is a local characteristic solution length in the smooth

�ow regions and K ≈ O (1) is a user-de�ned constant.

According to [66] these parameters can corrupt solution if wrongly chosen, therefore the higher

order accuracy computations have mainly used the Barth-Jespersen's limiter, that does not require

any tunning.

5.5.3 Reconstruction on Boundaries

The boundary faces require a special treatment, due to an incomplete computational stencil. In

both codes, the boundary conditions have been realized via the ghost-state approach, creating a

virtual cell located symmetrically to each internal boundary state. The ghost-variables WG are

then imposed or extrapolated, depending on the boundary condition type chosen.

For structured grids, (according to the �gure 5.5, assuming the edge between cells i, j and i,

j-1 being the boundary interface) the interface values are computed as

WA =
ωAWi,j + ωGWG

ωA + ωG
, (5.83)

with ωA and ωG the distance weights, de�ned by the equation (5.64). For a symmetric ghost-

cell, as the ghost state has been designed, the weights are equal to ωA = ωG = 1
2 , reducing the

previous equation into an arithmetic average. The ghost-cell is however allowed to shrink, in order

to maintain the ghost-values in reasonable bounds, e.g. positive pressure. In such cases ωA 6= ωG.

For unstructured grids, the stencil of a cellwise gradient ∇W includes also the face ghost-

neighbours.

5.5.4 Historical Modi�cation

For higher order accuracy simulations, the magnitude of the residual tends to drop by few orders

and to start oscillating, with no further decrease of the residual. In order to improve such conver-

gence the historical modi�cation, see [23], has been used. The parameter ψ of the equation (5.76)

is then chosen from

ψni = min
(
ψn−1
i , ψni

)
, (5.84)

with ψn−1
i the parameter for a cell i, which has been computed in the previous iteration. This

approach improves the convergence nature for many testcases, but requires a su�ciently long

starting period without using the equation (5.84) on the other hand. It also increases the memory

storage demands that may turn substantive, see [52], for very large grids with complex �ow model,

e.g. 3D multi-species reactive �ow.

5.6 Viscous Fluxes

The viscous terms FV are usually well-behaved in a scope of computational manipulation. Due

to their physical nature, a central di�erence scheme is usually appropriate in the discretization

procedure of those terms. For an arbitrary control volume the average value of the gradient of a

scalar quantity can be computed according to the relations (5.8) and (5.9) as

˛
∂Ω

FV · n d∂Ω ≈
∑
f

FV
∣∣
mean,f

nf Sf , (5.85)
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with various techniques of the computational stencil construction, see the �gure 5.8. Any of the

stencils shown requires an interpolation of variables onto the face midpoints (and other important

locations). Rather than rendering the stencils cell-wise it is more e�cient to �ll up all the stencil

points within one loop. This loop creates a virtual dual -computational grid in fact.

Figure 5.8: Di�erent approaches of 2D dual grids

5.6.1 Structured Dual Grid

The MUSA solver operates on structured grids, hence uses the dual grid from the �gure 5.8 a).

Each dual element consists of eight edges connecting the centroids and faces' midpoints. Values

at nodes A, C, E, G are given directly; their average de�nes the cell-vertex values. The remaining

nodes B, D, F, H are interpolated from these vertex values as indicated in the �gure.

The gradient of an arbitrary variable q expressed in this stencil then reads

∇q =
1

Area

[
1

2
(qA + qB)~n1 +

1

2
(qB + qC)~n2 + . . . (5.86)

. . .+
1

2
(qG + qH)~n7 +

1

2
(qH + qA)~n8

]
,

with ~n1,2,...8 the outward normals to the dual element faces.

A simpli�ed approach replaces the arithmetic averages 1
2 (qA + qB), 1

2 (qB + qC) (and their

variations) by one-sided approximations

1

2
(qA + qB) ≈ qA (5.87)

1

2
(qB + qC) ≈ qC

which transform the equation (5.86) into

∇q =
1

Area
[qA · ~n1 + qC · ~n2 + . . . (5.88)

. . .+ qG · ~n7 + qA · ~n8] .

Note, that this equation no longer requires the interpolated values which reduces the computational

costs. Furthermore, the usage of the equation (5.88) leads to negligible solution di�erences even

for grids with strongly non-uniform elements, as shown in the later section 7.4.4.

The derivatives (5.86) or (5.88) are then distributed from the dual elements (vertex-points of

the primar grid) onto the faces by an arithmetic average. The method can be easily extended to

three-dimensional grids.
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5.6.2 Unstructured Dual Grid

A popular dual elements on unstructured grids are diamond-shaped volumes, viz [24], as depicted

in the �gure 5.8 b). They are built around the face considered, involving all face nodes and the

left and right state values. The gradient discretized reads similarly to (5.86)

∇q =
1

Area

[
1

2
(qA + qB)~n1 +

1

2
(qB + qC)~n2 (5.89)

+
1

2
(qC + qD)~n3 +

1

2
(qD + qA)~n4

]
.

The vertices of the diamond volume are read directly (vertices A, C) or interpolated from all

neighbouring states, using the weighted average

qB =

∑
i qB,i · ωi∑

i ωi
, (5.90)

with i representing all states that share the vertex B (see the �gure 5.8 b)). The weights ωi can

be based on the distance (5.91), volume (5.92), or other relations, see [24]

ωi =
1

‖x (qB,i)− xB‖
, (5.91)

ωi =
1

Ω (qB,i)
. (5.92)

Due to a superior robustness, the distance-based approach has been prefered for most simulations.

The diamond elements technique is universal, with a straight-forward extension to 3D.

5.6.3 Dual Grid on Boundaries

Because the boundary conditions are realized for both solvers by the ghost-state approach (ex-

plained in the section 5.5.3), the internal boundary faces have a complete stencil, not requiring

any special modi�cations.

Problems, however, may occur for border boundary faces which are shared by di�erent topolog-

ical surfaces, e.g. inlet and wall. In these corner vertices the contribution from ghost states of only

one boundary is considered, neglecting the ghost states of remaining boundaries. The supremacy

of individual boundaries is user de�ned.

5.7 Source Terms

The last right hand side term of the governing equation (5.1) is the source term (5.5). Its dis-

cretization is based on the cell-centered values in a given element

ˆ
Ωi

Q dΩi ≈ Q (Wi) · Ωi . (5.93)

The derivatives (if present) are computed with the Gauss theorem (3.7), directly on the cell Ωi

∇q =
1

Ωi

ˆ
Ωi

∇q dΩi =
1

Ωi

˛
∂Ωi

q · ~nd∂Ωi .

The later approximation of the last integral is identical to the equation (5.85).
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5.8 Time Integration

The equation (5.1) can be formally rewritten to

dW
dt

= −R (W ) , (5.94)

with W representing the vector of conservative unknows and R (W ) gathering both inviscid and

viscous �uxes and the source terms.

5.8.1 Explicit Scheme

An explicit scheme is a straight forward technique to discretize the equation (5.94). The MUSA

solver uses the explicit forward Euler time discretization that reads

Wn+1 −Wn

∆t
= −R (Wn) . (5.95)

The solution in a new time level n+1 is thus simply given by

Wn+1 = Wn −∆t · R (Wn) . (5.96)

This scheme is a �rst order �nite di�erence scheme in fact and therefore it is only �rst order

accurate in time. Such scheme is suitable for steady �ow simulations, for whose

lim
n→∞

Wn+1 −Wn

∆t
= 0 . (5.97)

Time Step

The simplicity of the scheme is balanced by the limitation on the time step ∆t. It has been derived

in [110], that the time step of a stable explicit method for Euler equations must ful�ll the condition

∆tE ≤ min
i

Ωi∑
f [(~w · ~n+ a) ·∆x]f

, (5.98)

with Ωi the volume of the i -th element, a the speed of sound and ∆x the meassure of the face.

The denominator bracket is summed over faces of the i -th element. For Navier-Stokes equations

the condition tightens up to

∆tNS ≤ min
i

Ωi∑
f

[
(~w · ~n+ a) ·∆x+

(
∆x2

Re·Ωi

)]
f

, (5.99)

Both inequalities connect the time step to the size of the smallest face

∆tE ∼ O
(

1

∆x

)
, ∆tNS ∼ O

(
1

∆x2

)
.

which leads to a strong time step limitations and elongation of the overall computational time,

especially for re�ned grids for viscous simulations.

For stability reasons the right hand side expressions are furthermore multiplied by a positive

coe�cient C < 1, typically C ∈ 〈0.01 ; 0.9〉.
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5.8.2 Implicit Scheme

If the right hand side residual of (5.94) is taken from the new time level

Wn+1 −Wn

∆t
= −R

(
Wn+1

)
. (5.100)

the relation obtained de�nes an implicit backward Euler (BE) time stepping. Similarly to (5.95),

the backward Euler method is �rst order accurate in time, thus suitable for the steady �ow com-

putations only.

For simulations where the time accuracy is required the Crank-Nicolson (C-N) scheme

Wn+1 −Wn

∆t
= −1

2

[
R
(
Wn+1

)
+R (Wn)

]
, (5.101)

or the two-step backward di�erentiation formula (BDF2)

3Wn+1 − 4Wn +Wn−1

2∆t
= −R

(
Wn+1

)
, (5.102)

are used, as they both yield the second order accuracy. In practise, the simulations usually combine

the C-N scheme for the �rst iteration and the BDF2 scheme, when two consecutive time levels

(Wn−1, Wn) are known.

In order to evaluate the term R
(
Wn+1

)
, the residual needs to be linearized on the time level

n, so that (
I

∆t
+
∂R
∂W

)
∆W = −R (Wn) , (5.103)

Wn+1 = Wn + ∆W ,

where ∂R
∂W is the Jacobian matrix. In general it is a sparse non-symmetric matrix. Its numerical

realization is described in the next subsection. As the time step increases, the term I
∆t tends

to zero, recovering Newton's method in fact. Each linear system arising from (5.103) has been

solved in COOLFluiD (note that MUSA does not allow implicit time stepping) with a third party

mathematical library, such as PETSc, Trilinos or SAMG.

Among several options the generalized minimal residual method (GMRES, viz [86]) has been

prefered, together with the restricted additive Schwarz [17] or the incomplete L-U factorization

preconditioner. The algorithm approximates the solution of the linear system given by the vector

in a Krylov subspace with the minimal residual.

Both the method and preconditioners have been provided by the PETSc library [5], which was

incorporated to the solver and treated as a black box.

Numerical Realization of the Jacobian Matrix

According to [52], the equation (5.94) can be transformed to

R̃
(
W̃
)

=
∂W

∂t
+R

(
W̃
)
, (5.104)
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with R̃ the pseudo-steady residual, W the conservative variables and W̃ the variables in which the

solution is stored and updated. The Jacobian matrix then consists of

∂R̃
∂W̃

= Jt + Jx , (5.105)

where Jt gathers the time-dependent terms and Jx the terms related to the spatial discretization.

Depending on the implicit scheme chosen

JBEt =
Ωi
∆t

∂W

∂W̃
, JBEx =

∂R
∂W̃

, (5.106)

JC−Nt =
Ωi
∆t

∂W

∂W̃
, JC−Nx =

1

2

∂R
∂W̃

, (5.107)

JBDF2
t =

3

2

Ωi
∆t

∂W

∂W̃
, JBDF2

x =
∂R
∂W̃

, (5.108)

where ∂W/∂W̃ represents the transformer matrix between di�erent variable sets (conservative, prim-

itive, natural, etc.).

Term ∂R/∂W̃ is composed of two parts, corresponding to �uxes and sources. The �ux part is

obtained from a loop over all faces, in order to assemble contributions from the convective and

di�usive �uxes, given by equations (5.3) and (5.4). The source part arises from another loop over

all cells.

The Jacobian matrix is computed numerically, approximating each partial derivative with a

�nite di�erence formula
∂R
∂W̃

∣∣∣∣
i

≈ R (W + εi)−R (W )

εi
, (5.109)

with i referencing the system equation and εi a perturbation of the current variable. According to

[44, 52], the perturbations are computed as

εi = sign (Wi) ·max
(
|Wi| ; Ŵi

)
· δ , (5.110)

where Ŵi is a user-de�ned value, whose magnitude is of the order O (Wi) and δ ≤ 10−5.

On the boundary faces, viz [27], only the internal state is perturbed and the ghost state is

recomputed in order to satisfy the numerical boundary condition for the perturbed state. The

ghost state entries are therefore not included in the Jacobian matrix.

The source term contribution perturbs only the state value, neglecting the contributions from

neighbouring states. Hence, the source term Jacobian part only contributes to the block diagonal

of the global matrix and can be easily calculated within a separate loop over cells. According to

[100], each source term Q is decomposed into a production and a destruction part, according to

its physical meaning, see the section 4.5.

Q = Q+ +Q− . (5.111)

Due to various nature of the source term (especially in the case of sti� behaviour, [95]) the robust-

ness and stability is improved by setting

∂Q+

∂W
= 0 ,

∂Q−

∂W
=

Q (W + ε)−Q (W )

ε
.
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It means that only the destruction part is treated implicitly and the production part explicitly.

5.8.3 Dual Time Stepping

This approach has been used for all time-accurate computations presented. The idea behind the

dual time stepping technique is to have two iteration loops:

outer time stepping loop for a real time-accurate time step ∆t using a fully implicit scheme,

inner time stepping loop with a �ctitious time step to solve the system at each real time step.

For the BDF2 method (5.102) it can be constructed as

Wn+1,α+1 −Wn+1,α

τ︸ ︷︷ ︸
inner loop

+
3Wn+1,α+1 − 4Wn +Wn−1

2∆t︸ ︷︷ ︸
outer loop

= (5.112)

−R
(
Wn, Wn+1,α, Wn+1,α+1

)
,

with τ the �ctitious time step and superscript α distinguishing the inner/outer loops.

Due to the A-stability (see [35]) the dual time stepping approach is highly more e�cient than

other techniques, like an explicit Runge-Kutta scheme. The main bene�t is that the time step

∆t can be chosen accordingly to the physical problem rather than being governed by a restrictive

numerical CFL condition.

5.9 Moving Geometries

The MUSA solver does not have a veri�ed approach to the unsteady simulations on moving grids,

thus they have been realized only within the COOLFluiD framework. Due to large grid displace-

ments, the Arbitrary Lagrangian-Eulerian (ALE) formulation has been used.

5.9.1 ALE Formulation

The conservative equations are usually solved on a �xed domain where Ω (t) ≡ Ω (t0). This

approach is called an Eulerian formulation of the equations. If the domain Ω (t) follows the �uid

the formulation is called Lagrangian. For the intermediate cases in which the computational domain

is deformed independently from the �ow pattern, an arbitrary Lagrangian-Eulerian formulation [42]

is required.
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Figure 5.9: 1D example of a) Eulerian, b) Lagrangian, c) ALE grid and particle motion, �g.
from [28].

For better transparency, assume Euler equations (3.13)-(3.15). The governing equations in a

moving frame can be expressed as

ˆ
Ω(t)

∂W

∂t
dΩ = −

˛
∂Ω(t)

F Ij nj d∂Ω +

ˆ
Ω(t)

QdΩ , (5.113)

with

W =

 ρ

ρ~w

ρE

 , F I · ~n =

 ρ · ~w · ~n
ρ · ~w · (~w · ~n) + p · ~n

ρ · ~w · ~n ·H

 = W · ~w · ~n+

 0

p · ~n
p (~w · ~n)

 .(5.114)
Using the Reynolds transport theorem (3.2), the time derivative is expanded into

ˆ
Ω(t)

∂W

∂t
dΩ =

d
dt

ˆ
Ω(t)

WdΩ−
˛
∂Ω(t)

W · (~wB · ~n) d∂Ω , (5.115)

where ~wB represents the boundary velocity (velocity of ∂Ω (t)). Hence, the equation (5.113) is

transformed to

d
dt

ˆ
Ω(t)

W dΩ = −
˛
∂Ω(t)

W (~w − ~wB) · ~n+

 0

p · ~n
p (~w · ~n)


 d∂Ω +

ˆ
Ω(t)

QdΩ . (5.116)

The last equation explores that the rate of change of W in Ω (t) is due to

• convection through ∂Ω (t) by the relative velocity ~wR = ~w − ~wB ,

• pressure surface terms,

• source terms.

For a �xed Ω(t) the equation (5.116) reverts into Eulerian formulation, when Ω(t) follows the �uid

into Lagrangian one. For a �nite volume method, the change term is approximated by a sum of
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numerical �uxes along the boundaries of the element Ω

˛
∂Ω(t)

W (~w − ~wB) · ~n+

 0

p · ~n
p (~w · ~n)


 d∂Ω ≈

∑
i∈∂Ω(t)

F I, ALE · ~n
∣∣
i
. (5.117)

The form and the numerical treatment of the �ux F I, ALE has already been described in the

section 5.4.

5.9.2 Grid Update Procedures

The main advantage of the ALE formulation is a universal combination of the classical Lagrangian

and Eulerian descriptions. The numerical implementation is, however, strongly linked to a grid

update procedure that determines the velocity or displacement of each mesh point at each time

step. This procedure is user-de�ned, according to the suitability to the particular test case. Two

main strategies may be identi�ed

• a grid regularization - this approach keeps the computational mesh as regular as possible,

usually requiring a full or partial remeshing during the computation.

• a grid adaptation - the adaptation consists of movement and/or deformation of the mesh,

without changing its structure and connectivity.

Grid Regularization

The objective of the regularization is of a geometrical nature. Its goal is to avoid excessive dis-

tortions and squeezing of the computing zones and preventing mesh entanglement. The technique

decreases the numerical errors due to mesh distortion, but on the other hand it is therefore lim-

ited by small grid deformations, or computational costs of the remeshing algorithm and later the

accuracy of the solution interpolation.

In order to avoid a big burden with a manual grid re-creation, the geometry considered shall

allow a parameterization. This fact either insulates the regularization technique from complex

geometries or puts laboured demands on linkage between an advanced grid generator and the

solver.

Grid Adaptation

The adaptation technique optimizes the computational mesh to achieve an improved accuracy,

preferably at low computing cost. The total number of elements in a mesh remains constant

throughout the computation, as well as the element connectivity. Mesh re�nement is typically

carried out by moving the nodes towards zones of strong solution gradient.

The simplest approach is a purely algebraic grid deformation [109], that explicitly prescribes a

movement of each mesh point. This approach is generally suitable only for very simple geometries

or as a pre-processing step to other methods.

Most of the advanced adaptation approaches can be classi�ed as equivalents of mechanical

systems.

In the spring analogy approach [108], the grid is considered as a net of interconnected linear

springs, represented by the element edges and torsional springs placed in the element nodes. This

approach tends to smear the nodes uniformly over the domain, see the �gure 5.10. As indicated,
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this e�ect might lead to an inevitable grid deformation for test cases with anisotropic grids (e.g. grid

in the boundary layer zone with high aspect ratio).

Figure 5.10: Mesh around the NACA0012 pro�le: a) original, b) deformed using the spring analogy,
�g. from [105].

In the solid analogy [92, 105], the mesh is considered as an elastic body. According to the

literature this approach is more robust than the spring model and the volume positivity preserving.

Thus, it has been used for all test cases which have operated on the moving grids and therefore it

will be described in more detail.

Elastic Body Analogy

The mesh is considered to be an elastic body which is deformed accordingly to the displacement

imposed at its boundaries. The analogical mechanical system would be described

K ·∆x = F , (5.118)

with K the sti�ness matrix, ∆x the node displacements and F the external forces. This system

can be solved using a classical �nite element approach. In a mechanical analogy, viz. [67], the

deformation is described by means of the Hooke's law

∆l =
F · l
E

, (5.119)

with ∆l the shift of the edge lenght, l the original length and E the Young modulus. The pa-

rameter E then a�ects the nodal distribution over the domain and allows a preservation of the

grid anisotropy. Its magnitude is based on the initial geometry, distinguishing the anisotropic

(preferably preserved) and isotropic (free to deform) regions. Generally it is a function depending

on a cell volume Ω, a distance to the nearest wall y0, a cell quality, etc. However, according to

[106, 105], the consideration of just the cell volume or the wall distance

E =
1

Ω
or E =

1

y0
(5.120)

turns out to be su�ciently robust. The �gure 5.11 compares the mesh deformation for a homo-

geneous sti�ness 5.11 a), b), the volume based sti�ness 5.11 c) and the distance based sti�ness

5.11 d). The last two methods have indeed resulted in a satisfactory deformation near the trailing

edge with a simultaneous preservation of the grid anisotropy along the pro�le and therefore they

have been used for the test cases presented in the chapters 6 and 7.
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Figure 5.11: Deformed mesh around the NACA0012 pro�le using the elastic body analogy: a), b)
homogeneous, c) volume based, d) distance based sti�ness, �g. from [105].

5.9.3 Solution Interpolation

Figure 5.12 shows the contours of the exhaust valve at the TDC and BDC positions. Despite the

clearance gap at the TDC, the total displacement is too big to be captured by a single computational

mesh of a reasonable quality. Thus, several grids with a successive lift have had to be generated

and the current solution has been interpolated among them. This approach links the previously

described techniques of a mesh adaptation and regularization in fact.

Figure 5.12: Exhaust valve at the TDC (left) and BDC (right) positions.

The interpolation of the solution has been accomplished with Shepard 's method, viz. [88]. This

method interpolates the value at a given position through a distance-weighted average from a cloud

of points as

Wi =

∑N
j=1

Wj

‖xj−xi‖2∑N
j=1

1
‖xj−xi‖2

, (5.121)

where Wi is the interpolated value, xi its position, Wj the old mesh values, xj their positions

and N the number of points in a radius of in�uence. The main advantage of this technique

is the treatment of the mesh as a cloud of disconnected points, not requring the knowledge of

the connectivity neither of the old nor the new mesh. It improves the method robustness and

reduces the memory demands, however, the main de�ciencies are the smearing of local extremities,

appearance of oscillations for a small interpolation stencil and no guarantee of conservation.
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5.10 Boundary Conditions

All boundary conditions have been realized by means of the ghost cell approach, in which a virtual

cell is created by mirroring the internal cell along the boundary face. The values at the ghost state

are prescribed such that the boundary condition is respected, as illustrated in the �gure 5.13. The

boundary faces are therefore treated identically as the internal ones, with no need of modi�cations

of the numerical scheme on boundaries.

During initiation phase this approach might, however, lead to substantial contradictions. As

schematized in the �gure 5.13 a), an extrapolation from the internal and boundary value can set a

negative value in the ghost state. This causes troubles especially for inherently positive variables,

such as pressure, temperature, density, etc. In such cases, following the technique developed in [71],

the position of the ghost node is adapted (usually attracted towards the boundary face) in order

to maintain the variable positivity, see the �gure 5.13 b).

For positive variables requiring zero on the boundary (turbulent kinetic energy k), an arbitrarily

small value ≈ 10−9 is imposed on the boundary face, allowing the ghost state to remain yet positive.

Figure 5.13: 1D scheme of the ghost state adaptation to avoid negative ghost state pressure; a)
before, b) after adaptation.

Five di�erent boundary conditions have appeared within all the test cases presented.

Mirror The normal velocity across the boundary is forced to be zero ~wn = 0. All other quantities

are extrapolated from the interior cell. This condition can also be called a non-permeability

condition and is used for inviscid �ow models instead of the wall condition.

Wall The velocity is set to the speed of the boundary ~w = ~wB (~wB ≡ 0 for non-moving bound-

aries). For an adiabatic wall the temperature gradient along the boundary is set to zero
∂T/∂n = 0. For an isothermal wall the temperature Twall is imposed.

Far-�eld Depending if the �ow is locally subsonic or supersonic and if the �ow is entering or

leaving the domain, the number of variables to impose for a well-posed problem varies and

are determined from the characteristic theory, viz. [76]. The local value of the normal Mach

number Mn has been used to distinguish the four di�erent regimes:

- supersonic outlet, Mn < −1: all characteristics exit the domain, hence all values are

extrapolated.

- subsonic outlet, Mn ∈ 〈−1; 0〉: one characteristic approaches the boundary from inside,

others exit the domain. From here, one value is imposed with the rest being extrapolated.

The typically imposed value is pressure.

- subsonic inlet, Mn ∈ 〈0; 1〉: inversely to the subsonic outlet, one value is extrapolated

(typically pressure), with the rest being imposed (velocity and temperature).

- supersonic inlet,Mn > 1: all characteristics enter the domain, hence all values are imposed.
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Inlet This condition will appear only in subsonic regimes, thus the total pressure, the total tem-

perature and the incidence angle are imposed.

Outlet Identically to the far-�eld condition, the pressure is either imposed (subsonic) or extrap-

olated (supersonic). The variables remaining are extrapolated.

The turbulent variables are treated according to the model chosen, as described in the section 4.5.6.

5.11 Computation Parallelization

With increasing complexity of �ow models and larger computational grids the demands on the CPU

power are increasing. Desktop machines are no longer capable to resolve large scale simulations in

a real time horizon. Such simulations require the use of distributed or parallel computing.

The MUSA solver allows the parallelization by means of the OpenMP interface, [18]. The

OpenMP works with a shared memory and allows a direct multi-threaded parallel operation, as

illustrated in �gure 5.14. The approach is therefore suitable for multi-core machines with shared

RAM memory, availing more e�ciently its resources than a serial job. The main asset is the im-

plementation simplicity and the computational speed-up, while the problem size remains bounded

by the size of the shared memory (typically the memory of a single desktop station).

Figure 5.14: Scheme of the OpenMP parallelization, �gure from [18].

The COOLFluiD framework provides a standard message passing interface, MPI, [69]. It is a

communication protocol used for parallel programs running on computer clusters with high costs

of accessing the non-local memory. Its assets are the high performance, scalability and portability,

thus MPI is suitable for computations on clusters composed of several standalone CPU's. The

complete algorithm has been implemented by A. Lani and has not been the subject of this thesis.

For further description and implementation details therefore refer to [52, 69].
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Chapter 6

Reference Test Cases

As mentioned earlier, previous investigations on the �ow around an exhaust valve (as it is the main

aim of this thesis) do not provide many data for comparison. Both codes used, section 5.3, have

therefore been developed in several successive steps allowing a consecutive control of the correct

functionality. The accuracy and the in�uence of di�erent model formulations have been pursued

on several test cases with a reference solution. Some substantial test cases with an increasing

complexity are presented in this chapter.

6.1 Inviscid Flow Model

This simplest �ow model is described by the Euler equations (3.13), (3.14) and (3.15). This system

has no viscous terms (i.e. zero right hand side) and together with the equation of state (3.20) it

creates a complete set of equations to be solved. The model does not put any extra demands on

the grid �neness near the wall.

6.1.1 Laval Nozzle

A Laval nozzle is a convergent-divergent nozzle that is used for a gas acceleration to a supersonic

speed, see its scheme in �gure 6.1. The �ow-�eld topology varies according to the ratio of an inlet

and an outlet pressure, see the appendix A.

convergent

section divergent

section

throat

subsonic

M<1

supersonic

M>1

M=1

Figure 6.1: The Laval nozzle.

In a design condition the out�ow is purely supersonic. For a milder ratio the shock-wave appears

in the divergent section or the �ow remains entirely subsonic.

77
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Figure 6.2: The Mach number evolution for typical regimes of the Laval nozzle.

Figure 6.2 shows a usual Mach number evolution along the nozzle axis for each situation. Due

to the presence of the shock the transonic regime is convenient for testing the solver accuracy. The

di�erences among the various AUSM schemes, described in the section 5.4, have been studied.

Computation Setup

The results have been acquired by the MUSA code. The pressure ratio has corresponded to an

isentropic outlet Mach number M2,i = 0.5 as

p2

p0
=

(
1 +

γ − 1

2
M2

2,i

) γ
1−γ

, (6.1)

with p0 the reservoir and p2 the outlet pressure. The linear reconstruction with a minmod limiter

has been used, together with an explicit time integration.

Results Discussion

Figure 6.3 shows contours of the Mach number for the original AUSM scheme. All the AUSM

variants tested converge to a similar solution, with the bigger di�erences observed on the Mach

number distribution along the nozzle axis.

The graph 6.4 compares the results of the AUSM, AUSM+up and AUSM-DV scheme. For the

AUSM+up scheme the in�uence of the choice of the interface speed aI has been tested. The option

A1 corresponds to the choice given by the equation (5.39), A2 to the arithmetic average, eq. (5.37)

and A3 to the geometric average, eq. (5.38).

The table 6.1 compares the characteristics of the shock-wave for di�erent schemes, namely the

maximal Mach number, the shock-wave position and resolution. The position is given by the x -

coordinate for which M=1. The resolution shows the number of grid points required for the shock

capturing. Figure 6.5 presents a detailed view on the shocks for di�erent schemes.



6.1. INVISCID FLOW MODEL 79

AUSM max M s-w position s-w resolution

original 1.3202 0.733267 4
A1 1.2974 0.715247 3

+up A2 1.2898 0.711325 4
A3 1.2898 0.711325 4

D 1.3080 0.733691 5
V 1.2851 0.721183 6
DV 1.2879 0.721501 6

Table 6.1: The Laval nozzle, shock-wave characteristics

Only small di�erences have appeared in the front part of the convergent section. The subsonic

acceleration and later expansion perfectly overlaps for all schemes. The original AUSM scheme

predicts the strongest shock, however, it lacks to capture the second local maximum behind the

wave. The best performance has been registered for the AUSM+up (A1) scheme, being the only

alternative which has computed this extremity. On the other hand, no di�erences have been found

between the choices A2 and A3.

The remaining scheme AUSM-DV has shown an immoderate di�usivity that leads to a smeared

shock-wave.
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Figure 6.3: Contours of the Mach number in a transonic regime of the Laval nozzle.
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Figure 6.4: The Mach number distribution for di�erent variants of the AUSM scheme.
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Figure 6.5: The detailed view of the shock-wave resolution for di�erent variants of the AUSM
scheme.

6.1.2 Transonic Channel

This test case represents a channel with a circular bump on the lower wall, see �gure 6.6.

wall

wall

3

11

0.1

1

Figure 6.6: The transonic channel.

For a benchmark pressure ratio a supersonic region develops on the bump. The reference

solution is then quanti�ed by the �ow-�eld topology and the Mach number pro�le along the walls;

see the reference solution in �gure 6.7.
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Figure 6.7: The reference solution on the transonic channel. Flow topology with highlighted sonic
line (upper), Mach number distribution along lower and upper wall. Figures from [10]

According to the literature (see e.g. [10, 34]) the maximal Mach number on the lower wall

should reach Mmax ≈ 1.36− 1.38, with another local maximum appearing behind the shock-wave,

the so-called Zierep singularity.

Due to the simple geometry, many reference solutions exist also for non-benchmark regimes.

Although not explicitly transonic, they are also presented within this section.

Computation Setup

The results have been acquired by the MUSA and the COOLFluiD codes. As shown in the table 6.2,

several pressure ratios have been tested, in order to study the robustness of di�erent schemes, the

sensitivity to the grid density and the accuracy of di�erent limiters. The pressure ratio is linked

with the isentropic Mach number by the equation (6.1).

M2,i bump height
deep subsonic 0.020 10%

subsonic 0.200 10%
benchmark 0.675 10%
supersonic 1.400 4%

Table 6.2: Flow regimes for the channel test case

The in�uence of the grid density has been studied on two grids, noted as coarse and �ne, shown

in �gure 6.8. All the results presented have been obtained by the scheme with a higher order

accuracy and a limiter. Depending on the code used the explicit (MUSA) or implicit (COOLFluiD)

time integration has been used.
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Figure 6.8: Computational grids of channel with 10% bump (coarse and �ne) and 4% bump

Bump heigth Grid Size Elements Points along bump
10% coarse 90× 30 2 700 30
10% �ne 200× 80 16 000 80
4% 150× 50 7 500 50

Table 6.3: Description of computational grids

Results Discussion - Benchmark Regime

Figure 6.9 compares the solutions for di�erent numerical schemes. The results have been obtained

for the benchmark pressure ratio on �ne grid. For this nominal regime, all schemes have converged

to a qualitatively identical result which is in an agreement with the reference solution. Minor

di�erences are observed only on the Mach number distributions.

Figure 6.9: Transonic channel, M2,i = 0.675, di�erent numerical schemes. Iso-Mach lines (upper),
distribution of M along the upper (lower left) and lower (lower right) wall.

A detailed view on the shock-wave structure (�gure 6.10) discovers higher accuracy of the

AUSM+up scheme, capturing the Zierep singularity even on the coarse mesh. On the other hand

the AUSM-DV scheme performs inaccurately in this aspect. This scheme adds excessive numerical

dissipation to the regions with steep gradients, leading to the smearing of the shock, similarly to

the Laval nozzle test case.

The maximal Mach number for the benchmark regime for all simulations done is summarized

in the table 6.4.
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Figure 6.10: Detail of a shock wave, M2,i = 0.675, di�erent numerical schemes.

Supersonic Regime

In a supersonic �ow, all information propagates only downstream. As mentioned in the section 5.10,

it implies a change in the inlet-outlet boundary conditions and it also simpli�es the upwind-based

numerical schemes (e.g. see the form of splitting polynoms for |M | > 1, in section 5.4).

The reference solution [82] has been computed in the channel with 4% bump with theM2,i = 1.4.

The computational grid (unstructured, 3318 elements) and the solution are shown in �gure 6.11.

Figure 6.11: Reference grid and solution for M2,i = 1.40, contours of the Mach number, �gure
from [82].

The current numerical codes have been tested on the structured grid with approximately twice

more elements, see �gure 6.8 right. The solution for di�erent schemes is shown in �gure 6.12. The

solutions are in excellent agreement with each other and with the reference solution, proving their

suitability for supersonic �ows.
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Figure 6.12: Channel with 4% bump, M2,i = 1.40, di�erent numerical schemes. Iso-Mach lines
(upper), distribution of M along the upper (lower left) and lower (lower right) wall.

Subsonic Regime

In purely subsonic regimes the solution is expected to be symmetric, see the reference solution in

�gure 6.13, taken from [10].

Figure 6.13: The reference subsonic solution on the channel with a circular bump, �gure from [10].

However, according to the splitting polynoms (5.18) and (5.20) the convergence properties of the

original AUSM scheme deteriorate asM∞ → 0. Problems start occuring around the compressibility

border, approximatelly M∞ < 0.3.



6.1. INVISCID FLOW MODEL 85

Figure 6.14 presents the solution on a channel with 10% bump, at M2,i = 0.200 for di�erent

AUSM variants. All computations have converged to a nearly symmetric pattern. The AUSM+up

scheme has performed the best, with other schemes showing already a visible wake behind the

bump.

Figure 6.14: Channel with 10% bump, M2,i = 0.200, di�erent numerical schemes. Iso-Mach lines
(upper), distribution of M along the upper (lower left) and lower (lower right) wall.

The di�erences are further emphasized for a deep subsonic regime M2,i = 0.020 at the same

channel. The solution expected is again symmetric, similarly to the reference solution 6.13. The

schemes without correction terms for low speed, however, turns into unstable central schemes, as

the splitting polynoms of p and M become independent of an actual Mach number. This has

been proven by �gure 6.15 where the solution for di�erent AUSM schemes is shown. Only the

AUSM+up scheme has converged to a reasonable solution, with the rest being inapplicable for the

very low speed �ows.

Figure 6.15: Channel with 10% bump, M2,i = 0.020, di�erent numerical schemes. Distribution of
the Mach number.

In�uence of Computational Grid and of Limiter

The accuracy and robustness of di�erent limiters have been tested on a channel with 10% bump

at benchmark regime M2,i = 0.675. Two di�erent grids have been tested, shown in �gure 6.8,

described in the table 6.3. Due to previous ascertainments, the AUSM+up scheme has been used

for further studies.
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As there are only negligible di�erences in the �ow �eld pattern, the Mach number distribution

along the lower wall is only shown for comparison.

The MUSA solver has tested four di�erent limiters, �gure 6.16 and COOLFluiD has tested

two limiters. Note the di�erence at internal grid handling (structured for MUSA, unstructured for

COOLFluiD). The accuracy of di�erent limiters is evaluated in the table 6.4.

Figure 6.16: Mach number distribution along a lower wall, the MUSA solver, AUSM+up scheme,
di�erent limiters.

The minmod limiter has shown the best performance, even on the coarse grid. Regarding the

maximal Mach number, on the �ne grid this limiter has predicted the value expected, 〈1.36 ; 1.38〉.
Other limiters have had di�culties to capture the Zierep singularity on the coarse mesh. The MC

and Barth limiters have also under-estimated the maximal Mach number.

The COOLFluiD solver has worked very well on the �ne grid. For both limiters tested, the

results are in excellent agreement with the reference solution. On the coarse grid they have,

however, smeared the shock wave much more than the MUSA solver. Also the resolution of the

Zierep singularity is inacceptable (on the coarse grid).
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Figure 6.17: Mach number distribution along a lower wall, the COOLFluiD solver, AUSM+up
scheme, di�erent limiters.

Coarse grid Fine grid
Solver Scheme Limiter max M Z. s. max M Z. s.
MUSA AUSM 1st order 1.1209 5 1.2495 5

AUSM minmod 1.3199 3 1.3727 2
AUSM-DV minmod 1.3007 4 1.3565 4
AUSM+up minmod 1.3255 1 1.3677 1
AUSM+up superbee 1.3501 4 1.3807 1
AUSM+up MC 1.3587 4 1.3594 1
AUSM+up Barth 1.3128 4 1.3463 2

COOLFluiD AUSM+up 1st order 1.1211 5 1.2502 5
AUSM+up Barth 1.3140 5 1.3673 1
AUSM+up Venkata. 1.3024 4 1.3692 1

Table 6.4: Benchmark regime, maximal Mach number, quality of the Zierep singularity capturing
(1-excellent, 2-very good, 3-good, 4-inaccurate, 5-inacceptable)

Code Comparison

The results of the numerical codes MUSA and COOLFluiD have been compared to each other for

the benchmark, the subsonic and the deep subsonic regimes. The AUSM+up scheme has been

used for both codes, with a minmod (MUSA) and a Barth (COOLFluiD) limiter. The results are

shown in �gures 6.18, 6.19 and 6.20

Small di�erences have been observed for the deep subsonic regime. In the benchmark and the

subsonic regime an excellent agreement has been found. As shown in the table 6.4, the maximal

Mach number predicted for the benchmark regime is also nearly identical: 1.3677 (MUSA) and

1.3673 (COOLFluiD).
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Figure 6.18: M2,i = 0.675, Mach number distribution along an upper wall (left) and a lower wall,
di�erent numerical codes.

Figure 6.19: M2,i = 0.200, Mach number distribution along an upper wall (left) and a lower wall,
di�erent numerical codes.

Figure 6.20: M2,i = 0.020, Mach number distribution along an upper wall (left) and a lower wall,
di�erent numerical codes.
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6.1.3 Transonic Channel in 3D

This test case is based on the 2D channel whose contour has been extruded to a third dimension

in four di�erent ways:

1. pure extrusion (�gure 6.21 a) )

2. sweep shift (�gure 6.21 b) )

3. variable bump height (�gure 6.21 c) )

4. variable bump length and height (�gure 6.21 d) )
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Figure 6.21: Various modi�cations of a transonic channel in 3D.

Computation Setup

The results have been acquired by the MUSA and the COOLFluiD codes and have been compared

to a reference solution from [33]. Despite varying geometry the grid topology and regime has been

kept constant for all modi�cations.

reference MUSA COOLFluiD
computational grid 180× 35× 12
points along bump 60

regime M2,i = 0.675
numerical �ux AUSM AUSM+up

limiter TVD MUSCL minmod Barth

Table 6.5: Setup of 3D transonic channel

Results Discussion - Pure Extrusion

The results expected correspond to a 2D reference solution (�gure 6.7).
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a) b) c)

Figure 6.22: Pure extrusion. Contours of the Mach number, di�erent channel planes. a) reference
solution, b) MUSA, c) COOLFluiD

a)

b) c)

Figure 6.23: Pure extrusion. Mach number distribution along an upper wall and a lower wall,
di�erent numerical codes. a) reference solution, b) MUSA, c) COOLFluiD

As shown in �gure 6.22 all codes used have converged to a quasi-2D solution. The �ow �eld

pro�le in three particular planes (z=0, z=0.5, z=1 ) perfectly overlaps for each code, which is also

demonstrated in the comparison of the Mach number distribution along walls, see �gure 6.23.



6.1. INVISCID FLOW MODEL 91

A numerical dissipation in the transverse direction causes a slightly smaller maximal Mach

number on the lower wall than in 2D, see the table 6.6. For the COOLFluiD solver, due to the

fully spatial reconstruction (the solver handles the computational grid in an unstructured manner,

see the section 5.5.2), the maximum has been further lowered. Also the Zierep singularity behind

the shock wave has worse resolution, compared to the MUSA solver. Both results are, however, in

a good agreement with the reference solution and with each other.

reference MUSA COOLFluiD
z = 0
z = 0.5 1.3587 1.3352 1.2969
z = 1

Table 6.6: Pure extrusion. Maximal Mach number on the lower wall.

Sweep Shift

At this con�guration the circular bump has been extruded and swept with the angle 26.5◦. The

bump height is constant and the domain has been prolongated by 0.5 length unit. Figure 6.24

compares the �ow �eld and �gure 6.25 the Mach number distribution along walls for di�erent

codes.

According to the table 6.7, the COOLFluiD solver predicts lower maximum of the Mach number

on the lower wall. A very good agreement is, however, found in the planar cut z=0.5. The

di�erences in the cuts z=0 and z=1 can be a�ected by the numerical realization of the boundary

condition.

a) b) c)

Figure 6.24: Sweep shift. Contours of the Mach number, di�erent channel planes. a) reference
solution, b) MUSA, c) COOLFluiD
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a)

b) c)

Figure 6.25: Sweep shift. Mach number distribution along an upper wall and a lower wall, di�erent
numerical codes. a) reference solution, b) MUSA, c) COOLFluiD

reference MUSA COOLFluiD
z = 0 1.2533 1.2564 1.2038
z = 0.5 1.2409 1.2249 1.2237
z = 1 1.2388 1.2142 1.1693

Table 6.7: Sweep shift. Maximal Mach number on the lower wall.

Variable Bump Height

The height of the circular bump varies from 16% (z=0 ) to 10% (z=1 ) of the channel height.

Figure 6.26 compares the �ow �eld and �gure 6.27 the Mach number distribution along walls for

di�erent codes.

Although the channel pro�le at z=1 corresponds to a benchmark geometry the �ow �eld is

a�ected by the higher bump section, leading to a stronger shock wave and a larger supersonic

region, compared to the 2D solution 6.9. The MUSA solver has provided a solution that is in

excellent agreement with the referential one and has even better resolution of the Zierep singularity

at z=1. The solution by the COOLFluiD shows again lower maximums of the Mach number.
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a) b) c)

Figure 6.26: Variable bump height. Contours of the Mach number, di�erent channel planes. a)
reference solution, b) MUSA, c) COOLFluiD

a)

b) c)

Figure 6.27: Variable bump height. Mach number distribution along an upper wall and a lower
wall, di�erent numerical codes. a) reference solution, b) MUSA, c) COOLFluiD
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reference MUSA COOLFluiD
z = 0 1.6072 1.6202 1.5460
z = 0.5 1.5488 1.5494 1.5204
z = 1 1.5099 1.5054 1.4837

Table 6.8: Variable bump height. Maximal Mach number on the lower wall.

Variable Bump Length and Height

The bump shape at this con�guration mimics an airplane wing. The bump curvature at z=1 is

very high which leads to a �ow instabilities. Figure 6.28 compares the �ow �eld and �gure 6.29

the Mach number distribution along walls for di�erent codes.

The supersonic regions correspond very well to the reference solution and to each other. The

distinct di�erences have only appeared at a plane z=1. According to the Mach number distribution

each code predicts a completely di�erent wake. The conformity of both codes used on this test

case is, however, very satisfying.

a) b) c)

Figure 6.28: Variable bump length and height. Contours of the Mach number, di�erent channel
planes. a) reference solution, b) MUSA, c) COOLFluiD
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a)

b) c)

Figure 6.29: Variable bump length and height. Mach number distribution along an upper wall and
a lower wall, di�erent numerical codes. a) reference solution, b) MUSA, c) COOLFluiD

reference MUSA COOLFluiD
z = 0 1.5141 1.4733 1.4314
z = 0.5 1.6745 1.5952 1.5065
z = 1 1.8295 1.6839 1.5694

Table 6.9: Variable bump length and height. Maximal Mach number on the lower wall.

6.2 Laminar Flow Model

This model is described by the Navier-Stokes equations (3.9)-(3.11). A well-posed system of equa-

tions is assembled when the equation of state and a relation for a dynamic viscosity (typically the

Sutherland's law, eq. (3.22) ) are plugged.

Due to the molecular viscosity, the velocity on a (non-moving) wall is equal to zero and �uid

next to a boundary is subjected to large shear. The velocity w1 accelerates to a freestream value

w∞ along a so-called laminar boundary layer pro�le. This pro�le is de�ned with a boundary layer

thickness δ (x1) for which

w1 (x2) = 0.99 · w∞. (6.2)

According to [22] the laminar boundary layer growth can be derived as

δ (x1) = 4.91

√
µ · x1

ρ · w∞
, (6.3)

as indicated in �gure 6.30.
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Figure 6.30: The laminar boundary layer scheme.

For a thin boundary layer at steady state the laminar boundary layer equations have been

�rstly derived by H. Blasius (also demonstrated at [22]), leading to a so-called Blasius laminar

velocity pro�le.

x2

√
w∞/νx1 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

w1/w∞ 0.0000 0.3298 0.6298 0.8460 0.9555 0.9915 0.9990 0.9999

Table 6.10: Blasius laminar velocity pro�le

For such velocity pro�le the wall shear stress coe�cient cf is expressed as

cf =
τw

1
2ρw

2
∞

=
0.664√
Rex

, (6.4)

with the shear stress and the length Reynolds number given by

τw = µ
∂w1

∂x2

∣∣∣∣
x2=0

and Rex =
ρw∞x1

µ
. (6.5)

The laminar boundary layer growth (6.3) can then be recovered as

δ (x1) ≈ 4.91
x1√
Rex

. (6.6)

6.2.1 Flat Plate

The basic test case is a boundary layer attached to a �at plate which is held in an oncoming

unidirectional �ow.
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plate

11

2

boundary layer

Figure 6.31: The �at plate.

In �gure 6.31 the computational domain is shown. In order to overcome the issues with the

boundary conditions in the corner (as explained in the section 5.6.3) the domain contains a bu�er

zone in front of the plate. The height of the domain has been set to a double plate length so to

avoid an interference from the upper boundary.

Computation Setup

The boundary condition on the plate has been realized by an adiabatic no-slip condition, the bu�er

and the upper wall by the mirror condition and the subsonic inlet and outlet on the respective

remaining boundaries. The freestream parameters of the working medium have been set to w∞ =

70m/s, T0 = 273.15K, Re = 2 · 105, based on the plate length (L=1 ). The results have been

acquired by the MUSA and the COOLFluiD codes and have been compared to a theoretical Blasius

solution.

Results Discussion

Regarding the velocity pro�le, both codes have shown an excellent agreement with the theoretical

Blasius pro�le, as shown in �gure 6.32 a). Some di�erences are visible from the skin friction

distribution along the plate. As shown in �gure 6.32 b) both codes overestimate the skin friction

near the leading edge and underestimate near the trailing edge. The overall di�erences are, however,

very small, as shown in the table 6.11.



98 CHAPTER 6. REFERENCE TEST CASES

a) b)

Figure 6.32: The laminar �ow over a �at plate, code comparison. a) velocity pro�le, b) distribution
of the skin friction coe�cient.

x2 ∆ w
w∞

[%]
[ m ] MUSA vs. Blasius COOLFluiD vs. Blasius
0.0025 -0.46 0.21
0.0050 -1.49 -0.66
0.0075 -0.97 -0.29

x1 ∆cf [%]
[ m ] MUSA vs. theory COOLFluiD vs. theory
0.25 -7.48 -3.92
0.50 -10.95 -4.53
0.75 -13.46 -5.09

Table 6.11: Comparison of numerical results against theoretical pro�les.

6.2.2 Oscillating Airfoil

An impulse to solve this test case has been given by the study [46] (parametric study of an oscillating

airfoil). This work provides results of unsteady computations on a (relatively) simple geometry.

The oscillating airfoil under investigation is a symmetrical pro�le of NACA 0015. This is an airfoil

with maximum thickness 15% of its chord whose contour is described by the analytical expression

(taken from [3])

y = ± t

0.2
c

(
0.2969 ·

√
x

c
− 0.1260 · x

c
− 0.3516 ·

(x
c

)2

(6.7)

+0.2843 ·
(x
c

)3

− 0.1015 ·
(x
c

)4
)
,

where c is the chord length, t is the maximum thickness and x ∈ 〈0 ; c〉.

Figure 6.33: Scheme of imposed heaving and pitching motions. Evolution in time (�gure from[46]).

According to [46], a �apping wing is an airfoil experiencing simultaneous pitching θ (t) and

heaving h (t) motion, as shown in �gure 6.33. Restricting to a pitching axis located on the chord
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line at xp = c
3 from the leading edge, the airfoil motion is expressed as

θ (t) = θ0 sin (γt) , (6.8)

h (t) = H0 sin (γt+ φ) , (6.9)

with θ0 and H0 the pitching and heaving amplitudes, γ = 2πf the angular frequency and φ the

phase di�erence between the two motions. Later, the adimensional frequency of oscillation (of a

period T ) has been de�ned as

f∗ =
f · c
U∞

, (6.10)

f =
1

T
. (6.11)

Computation Setup

The computations have been performed only by the COOLFluiD solver (the MUSA solver does not

contain methods for solving unsteady simulation on moving mesh) using the arbitrary Lagrangian-

Eulerian formulation and the dual time-stepping technique.

In �gure 6.34 the computational grid is shown. The size of the grid has been 75×70 · c and this

mesh has consisted of 45 456 triangles (214 points on the pro�le). Concerning the mesh movement,

the grid has been splitted into three zones:

Figure 6.34: The computational grid for an oscillating airfoil. Left: initial state, right: deformed
state.

1. inner zone - cells located closer than 8 ·c from the pitching axis. All cells follow the movement

imposed as a rigid body.

2. outer zone - cells located further than 30 · c from the pitching axis (at t = 0) with no

deformation allowed.

3. bu�er zone - intermediate zone, accomodating both the pitching and heaving motions of the

inner zone.

Due to large airfoil displacements, this strategy has been implemented so as to avoid a degenerative

grid quality near the airfoil within several cycles.
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According to [46], the �ow regime has been de�ned by the freestream values Min = 0.3, Tin =

300K, α = 0◦ and Re = 1100. For these parameters, three oscillation regimes have been computed

(see the table 6.12).

Regime θ0
H0/c f∗ φ

R1 76.33◦ 1 0.14 90.0◦

R2 60.0◦ 1 0.18 90.0◦

R3 60.0◦ 1 0.06 90.0◦

Table 6.12: Oscillation regimes.

Results Discussion

a)

b)

c)

Figure 6.35: Contours of the pressure coe�cient (∆cP = 0.05) for di�erent regimes: a) R1, b) R2,
c) R3. Solution in time t/T = 0; 0.25; 0.50; 0.75.

Figure 6.35 shows the results for the regimes R1, R2 and R3. The snapshots have been taken each

quarter period and the contours represent the pressure coe�cient cP , where

cP =
p− p∞
1
2ρ∞w

2
∞
. (6.12)

All the solutions have shown a nearly symmetric behaviour over one period. For the regime R1,

the referential paper [46] allows the comparison of pressure coe�cient at t/T = 0.25 (shown in

�gure 6.36) and the overall development of the horizontal and vertical force coe�cient (shown in

�gure 6.37).

Regarding the pressure coe�cient, the pattern on the lower surface has advanced further along

the pro�le, thus the cP distribution evinces milder peaks. Similar di�erences can be found also in

the forces distribution. Nevertheless, both result show a good qualitative agreement.
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a)

b)

Figure 6.36: Pressure coe�cient distribution (∆cP = 0.05) a) ref. solution (�gure from [46]), b)
solution by COOLFluiD. Regime R1, solution time t/T = 0.25.
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a)

b)

Figure 6.37: Forces coe�cients over a periodic cycle, regime R1, a) ref. solution (�gure from [46]),
b) solution by COOLFluiD.

Time steps cx cy ∆cx ∆cy
Solver Cells /cycle [ - ] [ - ] [ % ] [ % ]

R1 ad. [46] 253 000 4000 2.019 1.942
COOLFluiD 45 456 2000 1.946 1.855 -3.62 -4.48

R2 ad. [46] 253 000 4000 0.692 1.256
COOLFluiD 45 456 2000 0.673 1.209 -2.69 -3.70

R3 ad. [46] 253 000 4000 1.257 2.032
COOLFluiD 45 456 2000 1.189 1.932 -5.37 -4.94

Table 6.13: Comparison with the referential data.

The table 6.13 compares the mean horizontal force coe�cients cx and peak vertical force coe�-

cient cy with the values computed in [46]. Upon the computations performed a satisfying agreement

has been found, con�rming the abilities of the COOLFluiD solver to resolve accurately unsteady

problems with moving grids.

6.3 Turbulent Flow Model

The general governing equations are described in the section 4.3. Due to the unbalanced number of

unknowns and equations the classical set of conservation laws and constitutive relations (as for the

laminar model) is completed by transport equations for various turbulent variables, as described

in chapter 4.

The target of the thesis deals mainly with turbulent �ow, therefore several reference test cases

have been examined for the sake of code veri�cation. It has been mentioned in section 5.3 that

the COOLFluiD code uses a wider range of turbulence models. Moreover, thanks to the implicit

time integration method it obtaines the solution in shorter time and acts in a more stable manner.

Therefore all turbulent computations presented beneath have been acquired by the COOLFluiD

code, unless indicated otherwise.

Apart from the di�erent mechanisms of momentum and energy transport, the di�erences be-
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tween the turbulent and the laminar �ow model can be clearly observed inside the boundary layer.

Compared to the laminar boundary layer (BL, described in the section 6.2), the turbulent BL

grows with x4/5
1 compared to x1/2

1 for the laminar BL. Its thickness is de�ned as

δ (x1) ≈ 0.382
x1

5
√
Rex

, (6.13)

and also has a di�erent structure, see [94]. By means of an adimensional velocity w+
1 and an

adimensional wall distance x+
2 three di�erent regions inside the turbulent boundary layer can be

distinguished:

1. the laminar sublayer, x+
2 < 5, where w+

1 = x+
2 , i.e. linear behaviour;

2. the turbulent (logarithmic) layer, x+
2 > 30, where w+

1 = 1
κ ln x+

2 +B;

3. the bu�er layer, which creates a smooth transition between layers 1 and 2.

The von Kármán constant is κ = 0.41 and B = 5.1.

The adimensional velocity (often called u+) is de�ned as

w+
1 ≡ w1

w∗
, (6.14)

w∗ =

√
τw
ρ
,

with w1 the local velocity and w∗ the friction velocity. The wall sheer stress τw is de�ned by

equation (6.5). The adimensional wall distance (often called y+) is de�ned as

x+
2 ≡

w∗x2

ν
, (6.15)

with x2 the distance to the nearest wall and ν the kinematic viscosity. The typical adimensional

velocity pro�le can be seen in �gure 6.38.

Figure 6.38: Di�erent regions of the turbulent boundary layer.

According to theory (e.g. [94, 103]) a defect layer can be found further from the wall. The

velocity pro�le of the defect layer is de�ned as

w+
1 =

1

κ

(
ln x+

2 + 3η2 − 2η3
)

+B , (6.16)

η =
x2

δ
,
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where η is the length scale and δ the momentum thickness of the BL. For the turbulent boundary

layer, the analytical skin friction coe�cient has been derived (e.g. see [103])

cf =
0.0592
5
√
Rex

.

6.3.1 Flat Plate

This is again the basic test case to validate the models implemented. The geometry and general

setup of the case remains the same as for the laminar �ow, see �gure 6.31.

Experiments have con�rmed that after a certain length of �ow a laminar boundary layer turns

unstable and becomes turbulent. Although this transition can be modeled nowadays, it signi�cantly

increases both the model complexity and the CPU demands. Hence, a fully developed turbulent

�ow is assumed, for which only a set of RANS equations is used.

Computation Setup

The boundary condition on the plate has been realized by an adiabatic no-slip condition, the bu�er

and the upper wall boundaries by the mirror condition and the subsonic inlet and outlet on the

respective remaining boundaries. The freestream parameters of the working medium have been

set to M∞ = 0.35, T0 = 273.15K, Re = 7 · 107. The freestream turbulent variables have been

acquired from the equations (4.123), (4.125) and (4.127), using the main �ow values.

Results Discussion

Figure 6.39 compares the velocity pro�les for di�erent turbulence models. All models used �t

perfectly in the laminar sublayer, with minor di�erences in the logarithmic and defect layers. The

biggest de�ection from the theoretical curves has been observed for the Spalart-Allmaras model,

whereas the best agreement has been found for the EARSM model. Only small di�erences could

be found among other models.

Concerning the skin friction coe�cient (�gure 6.40) most models underestimate the friction

in the frontal part of the plate. Due to large pressure gradients at the leading edge a �ner grid

spacing can improve the agreement. However, at the rear part of the plate all models converge to

the value expected. The best �t at the rear part has been found for the S-A model, the overall

best performance can possibly be awarded again to the EARSM model.

Figure 6.39: Adimensional velocity pro�le. Comparison of di�erent turbulent models with a theo-
retical pro�le.
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Figure 6.40: Distribution of the skin friction coe�cient. Comparison of di�erent turbulent models
with a theoretical curve.

6.3.2 Airfoil Pro�les

Similarly to the �at plate test case, the purpose here is to provide a validation case for turbulence

models. Unlike veri�cation, which seeks to establish that a model has been implemented correctly,

validation compares CFD results against data in an e�ort to establish a model's ability to reproduce

physics.

Two widely spread airfoils have been tested in particular: NACA 0012 and RAE 2822. If

possible, the results are compared to the data from experiments.

NACA 0012 - Computation Setup

This is a symmetrical airfoil with maximum thickness 12% of its chord. The contour is again

given by the analytical expression (6.7). The computational grid has consisted of hybrid triangles,

containing ≈ 30 000 elements with a pro�le resolved by 175 points. The size of the domain has been

40× 40 chord. Along the airfoil a thin layer of structured triangles has been built, see �gure 6.41.

Figure 6.41: The computational grid of the NACA 0012. Details of the grid around the pro�le
(upper) and detail of structured triangular grid (lower).
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According to the reference [3], the turbulent NACA 0012 pro�le should be run at essentially

incompressible conditions. Hence, the in�ow conditions have been de�ned by Min = 0.15, T =

288.15K, Re = 1.5 · 106 and the angle of incidence α = 0◦. At this regime, the boundary layers

should be fully turbulent over most of the airfoil. The in�ow conditions for the turbulence variables

have been set by equations (4.125) and (4.127).

The boundary condition on the pro�le has been realized by an adiabatic no-slip condition, with

the rest being treated as a far-�eld (see the section 5.10).

NACA 0012 - Results Discussion

At the regime given, the solution to expect is smooth and symmetrical. Figures 6.42 and 6.43

show the contours of the pressure coe�cient cP and isolines of velocity. All the turbulence models

tested have achieved an identical pattern of the �ow �eld. The only di�erence can be observed in

the wake behind the pro�le, but in general a very good agreement has been found.

Furthermore, the distribution of cP has been compared with the experimental data (obtained

from [3]) in �gure 6.44. Regarding the incidence angle α = 0◦ (i.e. symmetrical regime) the contours

of cP from lower and upper side perfectly coincide into a single curve. For each turbulence model

the distribution of the pressure coe�cient matches very well the experimental values.

a)

b)

Figure 6.42: Contours of pressure coe�cient (left) and isolines of velocity (right). Di�erent turbu-
lence model: a) BSL, b) SST.
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a)

b)

c)

Figure 6.43: Contours of pressure coe�cient (left) and isolines of velocity (right). Di�erent turbu-
lence model: a) Wilcox, b) TNT, c) EARSM.

a) b)

Figure 6.44: Distribution of the pressure coe�cient along the pro�le for di�erent turbulence models.
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RAE 2822 - Computation Setup

The second airfoil tested has been a supercritical pro�le RAE 2822. The coordinates of this pro�le

are de�ned pointwise (see e.g. [4]), in �gure 6.45 the contour is shown. The table 6.14 presents the

two �ow regimes tested.

Figure 6.45: The pro�le RAE 2822.

freestream conditions Min Tin Re α

subsonic 0.604 288.15 6.0 · 106 2.12◦

transonic 0.734 288.15 6.5 · 106 2.79◦

Table 6.14: Freestream regimes.

The results obtained have been compared with the experimental data from [19].

The size of the computational domain has been again 40 × 40 chord. The computational grid

consisted of hybrid triangles, containing ≈ 16 000 elements with a pro�le resolved by 150 points.

The grid structure can be seen in �gure 6.46.

Figure 6.46: The computational grid of the RAE 2822. Details of the grid around the pro�le
(upper) and detail of structured triangular grid (lower).

RAE 2822 - Results Discussion

In �gure 6.47 the contours of the pressure coe�cient cP and the Mach number for the subsonic

regime is shown. Similarly to the NACA 0012 test case the subsonic regime results in a smooth
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solution with no shock-waves. Note that, due to the asymmetrical shape and non-zero angle of

incidence the �ow is not symmetric any longer.

For all the turbulence models tested the numerical results are in good agreement with each

other and with the experimental data. The graph 6.48 compares the distribution of the pressure

coe�cient along the pro�le. The biggest di�erences can be found near the leading edge, however,

they all �t into an acceptable range.

a)

b)

c)

Figure 6.47: Contours of pressure coe�cient (left) and isolines of the Mach number (right) for a
subsonic regime. Di�erent turbulence model: a) BSL, b) Wilcox, c) EARSM.
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Figure 6.48: Distribution of the pressure coe�cient for a subsonic regime. Di�erent turbulence
models.

For the transonic regime a shock-wave appears on the upper side of the pro�le. The position

of the wave has been observed, with respect to the turbulence model used. Figures 6.49 and 6.50

present the �ow-�eld contours, respectively the comparison with the experiments. The main �ow

characteristics have been captured reliably. Some di�erences against the experiment have occured

near the leading edge and on the cP magnitude near the shock-wave. Its position has been, however,

determined well by all models. The closest agreement has been observed for the EARSM model.
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a)

b)

c)

Figure 6.49: Contours of pressure coe�cient (left) and isolines of the Mach number (right) for a
transonic regime. Di�erent turbulence model: a) BSL, b) Wilcox, c) EARSM.

Figure 6.50: Distribution of the pressure coe�cient for a transonic regime. Di�erent turbulence
models.
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The di�erences observed have been caused by the large grid spacing in a chordwise direction. As

distinct from the common practice of re�ning meshes at steep gradient zones (typically: di�erent

regime requires di�erent grid) the grid with a single spacing has been used for both regimes.

Regarding the results obtained for this single grid approach, the COOLFluiD solver gains very

good agreement for shock-free �ows and is su�ciently accurate also for the cases involving shocks

(despite very few cells across a shock-wave). Considering the target geometry (the exhaust valve)

with no obvious shock-wave positioning such a robust tool has been demanded.

Figure 6.51 plots the history of convergence for the regimes and models tested. Although

the results obtained by the BSL model evince the biggest errors (still being reasonably accurate

though) it usually requires the smallest number of iterations (shortest time) to converge. For

the more complicated transonic regime the BSL model claims a quarter-iteration need from other

models, nominating itself as an ideal solution initializer for more advanced turbulence models.

a) b)

Figure 6.51: Convergence plot for di�erent turbulence models. a) subsonic regime, b) transonic
regime.

6.3.3 Deléry Channel

This test case deals with the shock/boundary layer interaction and has been experimentaly realized

by J. Deléry, [25]. The goal is again to assess the behaviour of the turbulence models implemented.

Computation Setup

The geometry of the channel is shown in �gure 6.52. The �ow conditions have been de�ned by

the inlet Mach number Min = 0, 615, the total inlet pressure pt,in = 96 kPa, the temperature

Tin = 300K and the Reynolds number Re = 10, 96 · 106. The computational grid is shown in

�gure 6.53.

The geometry of the channel is nozzle-like. The convergent part of the channel allows the

�ow to accelerate to supersonic. The widening behind the throat then induces a separation of the

boundary layer, forming a lambda shock structure (see the experimental result in �gure 6.54).

In the experiments a second throat has been placed downstream to adjust the position of the

shock. For the numerical computations the outlet pressure has been tuned to �t the correct location

of the shock. The in�uence of the outlet pressure is shown in �gure 6.55. The �nal value has been

set to pout = 61.5 kPa.
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Figure 6.52: Geometry of the Deléry channel (�gure from [95])

Figure 6.53: Computational grid for the Deléry channel

Figure 6.54: Interferogram in the region of interest - lambda shock (�gure from [95])



114 CHAPTER 6. REFERENCE TEST CASES

Figure 6.55: Isolines of the Mach number. Di�erent outlet pressure pout = {40; 60; 65} kPa (top
to bottom)

Results Discussion

Figure 6.56: Deléry channel, isolines of the Mach number (∆M = 0.025). Solution from [95]

For the sake of comparison �gure 6.56 shows isolines of the Mach number of the numerical solution

from [95]. The result has been obtained with the solver THOR, using the BSL turbulence model

(see the reference for more details).

Next �gures 6.57 and 6.58 show the results of COOLFluiD which have been obtained by di�erent

turbulence models. Apart of isolines of the Mach number, the contours of density have been plotted

in the area of the lambda shock.

The BSL model predicts the weakest lambda shock. The �ow�eld, however, corresponds well to

the solution in �gure 6.56, that has been computed with a di�erent solver but the same turbulence

model. Other models have shown a much stronger shock. The closer agreement can be found

between SST and EARSM models and between Wilcox and TNT models. Those of the second

group model the position of the boundary layer separation slightly further downstream.
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a)

b)

Figure 6.57: Comparison of di�erent turbulence models: a) BSL, b) SST. Whole channel - isolines
of the Mach number (∆M = 0.025). Detail of the lambda shock - isolines of density (∆ρ = 0.015).

a)

b)

c)

Figure 6.58: Comparison of di�erent turbulence models: a) Wilcox, b) TNT, c) EARSM. Whole
channel - isolines of the Mach number (∆M = 0.025). Detail of the lambda shock - isolines of
density (∆ρ = 0.015).

The experimental data have provided a pressure distribution along the channel walls. Fig-

ures 6.59 and 6.60 present the comparison for the lower wall, resp. for the upper wall.

It turns out that the BSL model is unable to capture the in�ection point behind the separation

(analogy to the Zierep singularity for the GAMM channel) on the lower wall. On the upper

wall the BSL model predicts the position of the shock-wave precisely, but su�ers by an overshoot

downstream.

Both the SST and EARSM models are in best agreement with the experiments out of all models

tested. The remaining models, Wilcox and TNT, show inaccuracies in localizing the shock-wave
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position on both walls, but capture well main features of the �ow. Regarding their o�set from

the experiment on both sides, the better agreement could potentially be found for a more �nely

adjusted outlet pressure (this option is possible due to the ambiguous experimental setup).

In front of the shock-wave a very good agreement has been found for all models.

Figure 6.59: Comparison of pressure distribution along the lower wall of the channel.

Figure 6.60: Comparison of pressure distribution along the lower wall of the channel.



Chapter 7

Flow around an Exhaust Valve

As mentioned in chapter 2, the main target of this work has been to solve the �ow around an

exhaust valve inside a reciprocating engine. Chapter 3 describes a mathematical model to be

solved. Since no su�ciently robust solver has been available in the initial phase of the project, the

development has had to be accomplished in several consecutive steps.

Although the �nal results comply with the highest complexity demanded, the results of simpler

models do not lack an interest. Due to their lower requirements on the grid quality and CPU

devices, they have an irreplaceable role in the initial inspection of an a priori unknown phenomenons

and in a disclosure of its basic principles.

This chapter will therefore be structured mostly in a chronological order, reproducing the facts

and knowledge revealed in the order of their exposure.

7.1 Test Matrix

To give a transparent overview of the work done, the test matrix in the table 7.1 recaps the

simulations done. All results have been sorted according to three attributes

• the �ow model (inviscid/laminar/turbulent),

• the dimensionality (2D/3D),

• the time resolution (stationary/unsteady).

For each �positive� combination also the solver used (M/CF - MUSA/COOLFluiD) is indicated.

Note, that certainly not all results and comparisons available are presented.

INVISCID LAMINAR TURBULENT

STAT. UNST. STAT. UNST. STAT. UNST.
2D M, CF CF 2D M, CF - 2D M, CF CF
3D M - 3D M, CF - 3D CF CF

Table 7.1: Test matrix of the test case of the exhaust valve

7.2 Exhaust Channel Geometry

The original shape of the exhaust channel and the exhaust valve is shown in �gures B.1 and B.2.

According to the drawings, both components can be considered axisymmetric in the region of

117
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interest, see �gure 7.1. For the convenience sake, the original con�guration has been rotated (90◦

clockwise), so that the �ow passes the channel from left to right.

Due to the symmetry mentioned all 2D (planar) computations have been solved on one half of

the domain. Figure 7.2 shows two alternatives of the computational domain setup.

Figure 7.1: Scheme of the region of interest.

Figure 7.2: Di�erent construction approaches of the computational domain.

The computational domain for a 3D model has been constructed by an axisymmetric extru-

sion of the planar cut. The mathematical model has, however, stuck to a fully 3D formulation

(not axisymmetric) allowing an eventual involvement of other (non-symmetric) parts in the valve

vicinity. To prevent mesh singularities near the symmetry axis the extrusion core has been meshed

di�erently, as shown in �gure 7.3.
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Figure 7.3: Scheme of a 3D grid construction.

Apart from the original geometry, for some �ow models two other shapes of the exhaust valve

have been tested: G1 with the bigger curvature and G2 with milder curvature. All geometries are

presented in �gure 7.4.

a) b) c)

Figure 7.4: Di�erent exhaust valve geometries: a) G1, b) original, c) G2.

7.3 Inviscid Flow Model

The very �rst simulations have been made using the inviscid �ow model. The goal was to explore

the �ow �eld characteristics.

The practical experiences have indicated aerodynamically choked �ow around the exhaust valve

and a subsonic outlet velocity. However, no experimental data could provide the values to get

imposed on the boundaries. The initial estimate of an operating regime has therefore been based

on the 1D analysis for the Laval nozzle (to be found in [45, 110] or in the appendix A).

From the geometrical size of the throat and outlet sections the isentropic outlet Mach number
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M2,i = 0.4 has been proposed. The pressure ratio p2/p0 has been extracted from equation (6.1).

The numerical results have, however shown an impropriety of this approach, with all solutions

standing far from the regime with the aerodynamical blokage (as will be demostrated later).

The isentropic outlet Mach number has been further increased to M2,i = 0.95. Even for this

value the transonic regime desired has not been reached. As shown later, the signi�cant non-

isentrophy of the �ow causes the relation (6.1) to be misguiding (typical values needed for the

transonic regimes would be M2,i ≈ 1.7). Hence, the regimes computed will be characterized with

the pressure ratio p2/p0 itself.

Computation Setup

If not stated otherwise, all the results presented have been obtained by the MUSA solver, using

the AUSM+up scheme (section 5.4), explicit time integration, piece-wise linear reconstruction of

the spatical discretization and the minmod limiter (section 5.5). The valve lift has been �xed to

4 mm. Further speci�cs will be appended to particular simulations.

The quantitative analysis of results consists of

• the mass �ow rate, ṁ = ρwA;

• the average outlet Mach number;

• the maximal Mach number in the �ow �eld.

The mass �ow rate and the outlet Mach number are the essential values for any further technical

analysis. The maximal Mach number then roughly characterizes the �ow �eld. It has also been

found the most convenient variable to be used across all the models/regimes/geometries tested.

Computational Grids

The MUSA solver operates exclusively on structured grids. Thus, due to a complex shape of the

exhaust channel, the multi-block grid has been used. The initial grid used is shown in �gure 7.5.

Due to its coarseness (namely in the throat region) a �ner mesh has been constructed, see �gure 7.6.

a) b)

Figure 7.5: First structured multi-block grid on the exhaust channel: a) overview, b) zoom of the
seat region.
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a) b)

Figure 7.6: Re�ned structured multi-block grid on the exhaust channel: a) overview, b) zoom of
the seat region.

The COOLFluiD solver operates on unstructured grids, therefore a single block mesh has been

used, see �gure 7.7. The extra corner in the inlet part has been removed, together with the

replacement of the horizontal by the radial inlet boundary condition.

a) b)

Figure 7.7: Unstructured grid on the exhaust channel: a) overview, b) zoom of the seat region.

The detailed grid description can be found in the table 7.2.

Grid Coarse Fine Triang
No. of blocks 2 2 1

Size 54× 21 65× 25 4892 elem.
107× 17 133× 33

Pts. across throat 16 32 20
Solver MUSA COOLFluiD

Table 7.2: Computational grids for 2D Inviscid �ow simulations.

7.3.1 2D Geometry, Stationary Simulations

Pressure Ratio 0.896

Based on the 1D analysis, the �rst simulations have been perfomed for the pressure ratio p2/p0 =

0.896 (corresponding to M2,i = 0.4). Figures 7.8 and 7.9 show the results obtained on the coarse

and �ne mesh.
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a) b)

Figure 7.8: Inviscid �ow simulation on the coarse mesh, the MUSA solver, p2/p0 = 0.896. a) Isolines
of the Mach number, b) velocity streamlines.

Figure 7.10 presents the analogous result by the COOLFluiD solver on the unstructured grid.

From the streamlines plots two large separation zones can be identi�ed. These zones appear

despite their physical unjusti�cation (inviscid �ow model very unlikely models recirculation). The

�ow separates behind sharp corners on both sides of the channel, reducing an actual cross-section.

Hence, the supersonic expansion expected is supressed, dropping the above-mentioned analogy

with the Laval nozzle.

a) b)

Figure 7.9: Inviscid �ow simulation on the �ne mesh, the MUSA solver, p2/p0 = 0.896. a) Isolines
of the Mach number, b) velocity streamlines.

A closer look reveals a strong sensitivity to grid quality. Rough grid spacing for the coarse

mesh a�ects the �ow topology behind the throat. This di�erence also in�uences the position and

the size of the separation zones, together with the structure of the out�ow. Comparison between

the numerical codes has, however, led to a very good agreement with the �ne grid result.

a) b)

Figure 7.10: Inviscid �ow simulation on the triangular mesh, the COOLFluiD solver, p2/p0 = 0.896.
a) Isolines of the Mach number, b) velocity streamlines.

Despite the signi�cant grid topology di�erences, the quantitative comparison (table 7.3) has

detected only minor changes among all results. The result on the �ne grid has been assumed as

referential. The di�erence in the outlet Mach number for the coarse mesh is caused by the strong

recirculation zone, passing the outlet boundary.
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Grid Fine Coarse Triang
Abs. Di� [%] Abs. Di� [%] Abs. Di� [%]

Max. Mach number 0.403 0.0 0.391 -3.0 0.388 -3.7
Avg. outlet Mach number 0.120 0.0 0.098 -18.3 0.116 -3.3

Mass �ow rate 1.028 0.0 1.025 -0.3 1.026 -0.2

Table 7.3: Inviscid �ow simulation, p2/p0 = 0.896. In�uence of the grid coarseness.

Pressure Ratio 0.559

Since the �rst simulations did not reach the transonic regime, the pressure ratio has been intuitively

decreased to p2/p0 = 0.559 (corresponding to M2,i = 0.95). The results are presented analogically

to the �rst pressure ratio. Figures 7.11 and 7.12 present the contours of the Mach number and the

velocity streamlines. The next �gure 7.13 compares the �ow �elds in the critical throat section.

The quantitative comparison is tabulated in the table 7.4.

a) b)

Figure 7.11: Inviscid �ow simulation on the coarse mesh, the MUSA solver, p2/p0 = 0.559. a)
Isolines of the Mach number, b) velocity streamlines.

a) b)

Figure 7.12: Inviscid �ow simulation on the �ne mesh, the MUSA solver, p2/p0 = 0.559. a) Isolines
of the Mach number, b) velocity streamlines.

Having an identical setup for both simulations, the strong sensitivity to the grid coarseness has

again been noticed. The discretization of the throat section a�ects the �ow resolution, which is

then crucial for the entire downstream �ow.

Furthermore, with a decreased pressure ratio (i.e. increased mean velocity) the di�erences in

the mass �ow rate become bigger and non-negligible. As for the other quantities monitored, the

di�erences are much stronger due to the notably di�erent �ow �elds.
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a) b)

Figure 7.13: Detail of the channel throat on a) coarse mesh, b) �ne mesh. Isolines of the Mach
number.

Grid Fine Coarse
Abs. Di� [%] Abs. Di� [%]

Max. Mach number 1.378 0.0 1.160 -15.8
Avg. outlet Mach number 0.362 0.0 0.283 -21.8

Mass �ow rate 1.913 0.0 1.856 -2.9

Table 7.4: Inviscid �ow simulation, p2/p0 = 0.559. In�uence of the grid coarseness.

Figure 7.13 also shows that the solution on the coarse mesh is unable to capture correctly the

separation on the upper1 seat. Same behaviour is observed also for the pressure ratio 0.896.

The solutions on both grids evince the back�ow through an outlet boundary. This phenomenon

is examined in one of the next subsections.

Pressure Ratio 0.250

With a further decrease of the pressure ratio, a strong aerodynamical choking has been expected.

Such a transonic �ow is very sensitive to both the geometry of the channel and the numerical

methods used. On that account this regime has been selected for examination of the in�uence of

the numerical scheme and to measure di�erences between the codes used.

Figure 7.14 compares the results obtained by the MUSA solver for the original AUSM and

the AUSM+up scheme. Figure 7.15 shows the result obtained by the COOLFluiD, using the

AUSM+up scheme.

1Regarding the picture orientation: upper seat is located on the channel wall, lower seat on the valve.
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a1) b1)

a2) b2)

Figure 7.14: Inviscid �ow simulation, the MUSA solver, p2/p0 = 0.250. a) isolines of the Mach
number, b) velocity streamlines. a1), b1) AUSM scheme, a2), b2) AUSM+up scheme.

a) b)

Figure 7.15: Inviscid �ow simulation, the COOLFluiD solver, p2/p0 = 0.250, AUSM+up scheme.
a) isolines of the Mach number, b) velocity streamlines.

In order to compare the �ow �elds (due to the complicated geometry) the variables along a

central streamline2 have been extracted. The development of the Mach number along the streamline

is shown in �gure 7.16.

2The central streamline is released from the geometrical mid-point of the throat.
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Figure 7.16: The Mach number distribution along the central streamline for di�erent numerical
schemes and di�erent numerical codes.

For all three alternatives tested a similar supersonic expansion behind the throat has been

observed. The solution by the COOLFluiD solver has predicted a later recirculation near the

upper wall and therefore a slightly stronger expansion. This expansion has been terminated by

a normal shock-wave. Due to the recirculation zone mentioned, the actual cross-section has been

converging-diverging again, creating a second throat and allowing the �ow to re-accelerate to

supersonic.

The original AUSM scheme has predicted a larger recirculation zone, leading to a smaller throat,

earlier acceleration to supersonic (mind the supersonic pocket on the valve stem in �gure 7.14 a1 ).

Also the expansion around the valve casing has appeared the strongest, causing a later drop through

the normal shock-wave, whereas the other solutions have remained supersonic.

On the basis of the �ow �elds comparison, the qualitative agreement (apart from the outlet

part for the AUSM scheme) has been found among all the solutions. For the AUSM+up scheme a

very good agreement has been observed for both the codes used.

The quantitative comparison (based on the graph 7.16) has shown di�erences, caused primarily

by the position and the size of the recirculation zone. However, for this low pressure ratio, no

result has su�ered by the back�ow problem of the previous regimes.

Although being still far from the �ow model in a real engine a general concluding remark has

turned up from the simulations performed: in order to obtain a reliable solution the grid in a

throat section must be su�ciently �ne and a special attention must be paid to a proper modelling

of the recirculations.

Arti�cial Geometries to Control Recirculations

Due to the lack of physical dissipation, the inviscid �ow model is not suitable for �ows with

recirculations. However, all the results have contained large recirculation zones that have been

forming an arti�cial channel inside the real one. It is shown later in the table 7.8 that these zones

restrict the active cross-section of the channel up to 74%.

The impropriety of the inviscid model has been demonstrated on an arti�cial geometry with an

elongated outlet part of the channel, see �gure 7.17. Despite the massive elongation, the solution
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obtained still contains the back�ow along the valve casing. The overall solution is otherwise in an

excellent agreement with the solution on a conventional geometry.

a)

b)

c)

Figure 7.17: Inviscid �ow simulation on the elongated geometry, the MUSA solver, p2/p0 = 0.559. a)
Elongated domain, b) isolines of the Mach number, c) velocity streamlines, detail of the back�ow.

Geometry Original Elongated
Abs. Di� [%] Abs. Di� [%]

Max. Mach number 1.378 0.0 1.391 0.9
Avg. outlet Mach number 0.362 0.0 0.349 -3.6

Mass �ow rate 1.913 0.0 1.906 -0.4

Table 7.5: Inviscid �ow simulation, p2/p0 = 0.559. Comparison with the elongated domain (the
average outlet Mach number has been extracted at the conventional outlet position).

Controlling (avoiding) the recirculations can therefore enhance the model suitability on one

hand and improve the parameters of the exhaust process on the other hand. Two arti�cal geomet-

rical modi�cations have been tested:

1. a smoothened shape transition between the valve stem and its casing at p2/p0 = 0.559;

2. an inclination of the inlet wall by 5 and 10 degrees at p2/p0 = 0.250.

The �rst modi�cation should reduce the separation along the valve casing (and respective back�ow).

Although this target has been ful�lled (see �gure 7.18), the back�ow region has only been displaced

on the upper wall of the channel. At the same time a big recirculation has appeared along the

valve stem. The mass �ow rate has slightly increased by 5.6%, but unfortunately the expected

reduction of the recirculations' size has not been achieved.
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a) b)

Figure 7.18: Inviscid �ow simulation on the elongated geometry, the MUSA solver, p2/p0 = 0.559.
a) isolines of the Mach number, b) velocity streamlines.

The second modi�cation should decrease the turning angle3 of the �ow around the seat, so to

reduce the �ow inertia causing the separation. The modi�cation is schematized in �gure 7.19. The

table 7.6 presents the in�uence on the �ow characteristics (recirculation length, mass �ow rate).

The impact on the recirculation length is captured in the graph 7.21.

For the convenient valve lift of 4 mm no signi�cant e�ect has been observed (see �gure 7.20),

thus the same strategy has been tested also for the lift 7 mm that converges to an entirely subsonic

�ow �eld.

Although the dependencies assessed follow the trends expected, for the �ow with a dominant

supersonic region behind the throat (lift 4 mm - see �gure 7.14) the alternation of an inlet wall

occurs ine�cient for the recirculation control. For the subsonic regime (lift 7 mm) the impact of

the inclination is bigger, however the overall e�ect within the available technological limits is very

low.

Figure 7.19: Scheme of the inlet wall inclination.

Recirculation length [ mm ]
inclination angle

valve lift 0◦ 5◦ 10◦

4 mm 10.4 10.4 10.5
7 mm 22.8 24.9 29.1

Mass �ow rate gain [ % ]
inclination angle

valve lift 0◦ 5◦ 10◦

4 mm 0.00 0.01 0.04
7 mm 0.00 0.15 1.02

Table 7.6: The in�uence of the inclination angle on the �ow characteristics.

3The outer angle (i.e. >180◦) between the vertical inlet wall and the seat.
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a) b)

c)

Figure 7.20: Inviscid �ow simulation, the MUSA solver, p2/p0 = 0.250, velocity streamlines. In�u-
ence of the inlet wall inclination a) 0 degrees (original), b) 5 degrees, c) 10 degrees.

Figure 7.21: The e�ect of the inlet wall inclination on the recirculation length.

7.3.2 3D Geometry, Stationary Simulations

By the same analogy with the Laval nozzle which was used for the 2D computations, the initial

regime has been derived from the equation (A.1) and has led to p2/p0 = 0.784. Similarly to the

planar computations, this pressure ratio hasn't provided an aerodynamically choked �ow. The

pressure ratio has therefore been decreased to p2/p0 = 0.559. The in�uence of the recirculations

has again been studied.

As a separate topic the comparison of 2D and 3D solutions for identical computation setup is

presented in the later subsection 7.3.3.

Pressure Ratio 0.784

The results of the initial 3D simulation is shown in �gure 7.22. The solution contains three

strong recirculations, one of them passing the outlet boundary. Due to non-isentropy of these

zones, the equation (A.1) fails at its initial premise and thus the regime tested cannot lead the

aerodynamical blockage. Remind, that the aerodynamical blockage is the assumption based on a

practical experience.
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The quantitative analyse is summarized in the table 7.7. As stated above, the comparison with

the 2D alternative is discussed in subsection 7.3.3.

a) b)

Figure 7.22: 3D Inviscid �ow simulation, the MUSA solver, p2/p0 = 0.784. Solution cut at Z = 0.
a) isolines of the Mach number, b) velocity streamlines.

Pressure Ratio 0.559

For a lowered pressure ratio the �ow accelerates, but does not exceed the sonic speed, M=1, as

shown in �gure 7.23. Along the channel the main �ow beam stays compact and slightly widens.

The void regions around the beam again contain recirculations.

a) b)

Figure 7.23: 3D Inviscid �ow simulation, the MUSA solver, p2/p0 = 0.559. Solution cut at Z = 0.
a) isolines of the Mach number, b) velocity streamlines.

Arti�cial Geometry to Avoid Recirculations

Compared to the planar computations, only one arti�cial geometry has been tested here, in order

to prevent the �ow recirculation. The result on a smoothened geometry (between the valve stem

and its casing) is shown in �gure 7.24.

The arti�cial contour of the stem causes the Coanda e�ect, with the �ow beam remaining

attached to the lower wall. By that, the recirculation zone passing the outlet boundary is reduced.

Having smaller void regions the dominant �ow beam widens, leading to a gain of 7.6% in the mass

�ow rate against the original geometry. The back�ow, however only displaces to the upper wall.

a) b)

Figure 7.24: 3D Inviscid �ow simulation on a smoothened geometry, the MUSA solver, p2/p0 =
0.559. Solution cut at Z = 0. a) isolines of the Mach number, b) velocity streamlines.
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Regime p2/p0 0.784 0.559
Geometry original original

Abs. Di� [%] Abs. Di� [%]
Max. Mach number 0.565 0.0 0.944 67.1

Avg. outlet Mach number 0.282 0.0 0.467 65.5
Mass �ow rate 2.326 0.0 3.011 29.4
Regime p2/p0 0.559 0.559
Geometry original smoothened

Abs. Di� [%] Abs. Di� [%]
Max. Mach number 0.944 0.0 1.444 34.6

Avg. outlet Mach number 0.467 0.0 0.547 17.8
Mass �ow rate 3.011 0.0 3.258 7.6

Table 7.7: 3D Inviscid �ow simulation. Comparison of the di�erent regimes and gemetries.

This arti�cial geometry therefore seems e�cient in 3D. Remind that the applicability of this

geometrical change into practice is still conditioned by the ability of the �ow model to capture the

recirculation.

Despite this general weak-point of the inviscid �ow model the interactions of the �ow beam and

the recirculations have turned up to be a key issue to control the �ow inside the exhaust channel.

7.3.3 Stationary Simulations, Comparison of 2D and 3D Solutions

Two regimes have been selected for the comparison of 2D and 3D solutions, p2/p0 = 0.784 and 0.591.

The respective results are shown in �gures 7.25 and 7.26. For all the results a dominant �ow beam

can be identi�ed, surrounded by three large recirculation zones. The planar model predicts an

earlier and larger separation on the upper wall. Furthermore, the graph 7.28 shows that the active

area (i.e. the dominant beam versus the recirculations) is always wider for the 3D geometry.

Figure 7.25: Inviscid �ow simulation, the MUSA solver, p2/p0 = 0.784. a) isolines of the Mach
number, b) velocity streamlines. a1), b1) 2D model, a2), b2) 3D model, cut at Z=0.
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Figure 7.26: Inviscid �ow simulation, the MUSA solver, p2/p0 = 0.591. a) isolines of the Mach
number, b) velocity streamlines. a1), b1) 2D model, a2), b2) 3D model, cut at Z=0.

Using the table 7.8, with the planar model the active area is reduced approximately by 50%

with a maximum reduction of up to 74.4%. For the more realistic 3D model on average 38% of the

channel remains void.

a) b)

Figure 7.27: The Mach number distribution along the central streamline. Pressure ratio: a)
p2/p0 = 0.784, b) p2/p0 = 0.591.
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a)

b1) b2)

Figure 7.28: The plot of an active area within the exhaust channel. a) the scheme of the values
extraction, b1) pressure ratio p2/p0 = 0.784, b2) pressure ratiop2/p0 = 0.591.

None of the results compared is aerodynamically choked. The graph 7.27 indicates the higher

maximal Mach number for the planar simulations, whereas the average Mach number is higher for

the 3D cases. Besides, the contour trends are signi�cantly di�erent - the planar case predicts faster

velocity drop, while the spatial case moreless ��uctuates� around a mean value.

Regime p2/p0 0.784 0.591
Avg [%] Max [%] Avg [%] Max [%]

2D 52.0 74.4 49.9 67.6
3D 39.6 53.3 37.5 53.8

Table 7.8: Reduction of the active channel cross-section due to recirculations.

7.3.4 Summary for Inviscid Flow Model

With respect to all the simpli�cations assumed, several concluding remarks could still be gathered

along the initial explorations with the inviscid �ow model:

• The �ow �eld for all con�gurations contains non-negligible recirculation zones. Therefore an

inviscid �ow model cannot be used for reliable simulations, as the model does not contain

any physical dissipation, crucial for modelling of the recirculation structures.

• Very good agreement has been found between both the numerical codes used, cross-validating

both the codes and the results.

• Two key issues have been identi�ed in order to perform proper computations on the exhaust

channel: su�ciently �ne grid in a throat section and a proper modelling of the recirculations.

• The strong interaction between the main �ow beam and recirculations has been observed.

• Most of the results have contained a back�ow, entering the domain through an outlet bound-

ary.



134 CHAPTER 7. FLOW AROUND AN EXHAUST VALVE

• A smoother shape of the valve stem has a potential to positively in�uence the performance

of the exhaust process.

• The signi�cant di�erences have been observed between the 2D and 3D geometrical models.

Almost no quantitative predictions can be extrapolated from the planar to the spatial (and

vice versa) cases. From the qualitative point of view the 3D cases are usually less sensitive

to the problematic issues identi�ed on the 2D geometry (3D: smaller recirculations, more

uniform �ow, milder variable gradients).
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7.4 Laminar Flow Model

This �ow model represents a transition step in the code development between the initial inviscid

and the target turbulent �ow model. The explorations made have therefore been more modest,

being dedicated mainly to the testing of the numerical methods developed.

If not stated otherwise, all the results presented have been obtained by the MUSA solver, using

the AUSM+up scheme, explicit time integration, piece-wise linear reconstruction of the spatical

discretization and the minmod limiter. Further speci�cs will be appended to particular simulations.

The valve lift has been �xed to 4 mm and a modi�ed planar geometry without the valve casing

has mainly been used.

Computation Setup

The laminar �ow model is determined by (at least) three parameters. For the simulations presented

the Mach number, the Reynolds number and the freestream temperature have been chosen.

The Mach number is connected with the pressure ratio across the domain through equa-

tion (A.2). For obvious reasons (stated in the section 7.3) the pressure ratio is preferably used.

The Reynolds number characterizes the ratio between the dynamic and viscous forces. Its

reciprocal then scales the dissipation terms. To characterize the �ow regime the Reynolds number

on a unit length Re/L = ρw/µ has been used.

The freestream temperature has been chosen 500 K for all the simulations.

For the sake of completeness, the quantitative analysis has been recorded in an identical way

as for the inviscid �ow model.

Computational Grids

Because of the indispensable grid re�nement along the walls the multi-block grid consists of three

parts. The composition and the detail of the blocks seal is shown in �gure 7.29. Compared to

the inviscid geometry (�gure 7.9), the inlet section has been rounded to have the similar exterior

shape to the geometry for unstructured grids.

a) b)
Size of the grid blocks

Block 1 2 3
Size 84× 30 49× 25 117× 60

Pts. across throat 60
(color) red blue green

Figure 7.29: A structured multi-block grid on the exhaust channel: a) overview, b) zoom of the
block connection and the seat region.
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7.4.1 In�uence of Pressure Ratio

Two pressure ratios p2/p0 = 0.656 and 0.250 have been used to observe an impact on the �ow

structure. The viscosity coe�cient used has been set to Re/L = 1500. The comparisons of the �ow

�eld and the streamlines are shown in �gure 7.30.

a1) b1)

a2) b2)

Figure 7.30: Laminar �ow simulation, the MUSA solver, Re/L=1500. a) isolines of the Mach
number, b) velocity streamlines. The pressure ratio a1), b1) p2/p0 = 0.656, a2), b2) p2/p0 = 0.250.

Similarly to results with the inviscid �ow model, for both regimes a dominant �ow beam is

formed at the throat section. This beam re�ects from the valve stem (note that the Coanda e�ect

does not appear) and leaves the domain. Massive recirculation zones appear on both sides of the

beam, on top of that one passing the outlet boundary.

For the lower pressure ratio the beam occurs more compact, not interfering with its vicinity.

This hypothesis is intensi�ed by the internal topology of the beam that reminds a jet similar to a

nozzle exiting in a vessel.

The table 7.9 quanti�es the results obtained.

Pressure ratio p2/p0 0.656 0.250
Max. Mach number 0.909 1.936

Avg. outlet Mach number 0.293 0.511
Mass �ow rate 1.301 1.813

Table 7.9: Laminar �ow simulation, Re/L = 1500. In�uence of the pressure ratio.

7.4.2 In�uence of Viscosity Parameter

At the given pressure ratio p2/p0 = 0.656 the magnitude of the viscosity parameter Re/L has been

successively altered to 800, 1 500 and 10 000. Due to a non-speci�c geometry of the domain, the

transition value of the viscosity parameter has been a priory unknown. The largest value tested

(Re/L = 10 000) has �nally showed to be over this transition limit (discussed below), however the

result is presented among the others in �gure 7.31.



7.4. LAMINAR FLOW MODEL 137

a1) b1)

a2) b2)

a3) b3)

Figure 7.31: Laminar �ow simulation, the MUSA solver, p2/p0 = 0.656. a) isolines of the Mach
number, b) velocity streamlines. The viscosity parameter a1), b1) Re/L=800, a2), b2) Re/L=1500,
a3), b3) Re/L=10 000.

Viscosity parameter Re/L 800 1 500 10 000
Abs. Di� [%] Abs. Di� [%] Abs. Di� [%]

Max. Mach number 0.974 7.2 0.909 0.0 1.184 30.3
Avg. outlet Mach number 0.224 -23.5 0.293 0.0 0.273 -6.8

Mass �ow rate 1.438 10.5 1.301 0.0 1.606 23.4

Table 7.10: Laminar �ow simulation, p2/p0 = 0.656. In�uence of the viscosity parameter.

The results obtained correspond to the behaviour expected: with an increasing viscosity pa-

rameter (i.e. increasing e�ect of dynamic forces) the �ow loses its stability. The �ow beam starts

to interact with the surrounding recirculations, which causes a signi�cant dispersion, accompanied

by the raise of complicated vortex structures.

At the same time, the solution loses its numerical stability and leads to serious convergence

issues. The regime with a lower pressure ratio (for Re/L=10 000) hasn't converged even for an

adaptively decreased CFL. Besides, the convergence history for the solution 7.31 a3) contains a

periodic pattern of signi�cant amplitude, indicating an unsteady behaviour.

Being only a transition step towards the turbulent �ow model the issues mentioned have been

described but not explored into further details.

7.4.3 In�uence of Geometry

Although a simpli�ed geometry without the valve casing has mainly been studied, the di�erence

against the complete geometry has not been left without any interest.
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a1) b1)

a2) b2)

Figure 7.32: Laminar �ow simulation, the MUSA solver, p2/p0 = 0.250, Re/L = 800. a) isolines
of the Mach number, b) velocity streamlines. a1), b1) geometry without valve casing, a2), b2)
complete geometry.

Geometry without casing complete
Abs. Di� [%] Abs. Di� [%]

Max. Mach number 0.974 0.0 0.984 1.0
Avg. outlet Mach number 0.224 0.0 0.250 11.6

Mass �ow rate 1.438 0.0 1.690 17.5

Table 7.11: Laminar �ow simulation, p2/p0 = 0.656, Re/L = 800. In�uence of the geometry.

As shown in �gure 7.32 the contraction due to the casing a�ects the proportions of the recircu-

lation zones, mainly along the valve stem. The impact of the main beam on the casing head causes

a further �ow dispersion. On the other hand, the narrower outlet helps reducing the recirculations

in the rear part of the domain. The absence of the recirculation passing the outlet then a�ects the

balance of the mass �ow rate.

From the numerical point of view the complete geometry seems more delicate and sensitive due

to the interferences with the recirculations.

7.4.4 Sensitivity to Gradient Discretization

The viscous terms in the Navier-Stokes equations contain the gradients of velocity and tempera-

ture. Section 5.6.1 describes two methods (exact and approximate) of computing the gradients on

structured grids.

Because of its lower demands the approximate method is prefered and has been used in all the

simulations. Figure 7.33 (resp. the table 7.12) visualizes (resp. quanti�es) the di�erences due to

the gradient discretization.

Both the �ow �elds look similar and only a detailed overlay of the isolines discovers minor

di�erences near the outlet boundary. These discrepancies are probably caused by the higher

sensitivity to the outlet boundary condition (note that the solution su�ers by the recirculation

zone passing the boundary, that is numerically inconsistent to the condition imposed). Besides,

further upstream from the outlet boundary the overlay shows practically an excellent agreement.
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The di�erences on the monitored outputs are also within the accuracy of the method, proving

the commutability of the discretization techniques.

a1) a2)

b)

Figure 7.33: Laminar �ow simulation, the MUSA solver, p2/p0 = 0.250, Re/L = 1 500, isolines of
the Mach number. Gradient discretization a1) approximate method, a2) exact method, b) isolines
overlay.

Gradient discretization approximate exact
Abs. Di� [%] Abs. Di� [%]

Max. Mach number 1.936 0.0 1.943 0.4
Avg. outlet Mach number 0.511 0.0 0.516 1.6

Mass �ow rate 1.813 0.0 1.815 0.1

Table 7.12: Laminar �ow simulation, p2/p0 = 0.250, Re/L = 1500. In�uence of the discretization
method for the variable gradients.

7.4.5 Summary for Laminar Flow Model

• The laminar �ow model has con�rmed the qualitative predictions of the inviscid �ow model

(size, position and importance of the recirculation zones).

• The results obtained are in a good agreement with the theoretical expectations (the successive

loss of stability for an increasing Reynolds number).

• The low sensitivity of the solution to the di�erent discretization techniques for the variable

gradients has been proven.

• In order to simulate the real �ow conditions in the exhaust channel, the laminar �ow model

remains only an intermediate step towards the turbulent �ow computations.

Further conclusions would require some deeper investigations and/or more advanced numerical

approaches, which have however not been a goal of this work.
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7.5 Turbulent Flow Model

This section is subdivided into four main parts according to the geometry dimension and the

movability of the exhaust valve during a simulation: 2D/3D and �xed/moving.

The e�ect of the turbulence modelling on the solution has been studied for each part, together

with the in�uence of the valve geometry (see section 7.2) and operating conditions (mainly for

simulations with a moving valve). The e�ects of the individual attributes have been described

through a qualitative comparison of the �ow �elds and the appraisal of the mass �ow rate and the

average outlet Mach number. For the sake of completeness (see section 7.3) the maximal Mach

number across a domain is also monitored.

Computation Setup

All the results with the turbulent �ow model have been acquired with the COOLFluiD solver. If not

stated otherwise and according to the previous explorations of chapter 6, the AUSM+up scheme

has been selected. The Barth limiter has been chosen to accompany the spatial reconstruction

(section 5.5) and the ALE formulation has been used for the computations on moving grids.

Remaining parameters have either been uniquely de�ned in chapter 5 or have been subject to

the in�uence testing and therefore being speci�ed in the setup of respective simulations.

7.5.1 2D Geometry, Fixed Valve

Sensitivity to Domain Discretization

The �rst simulations have been aimed at the sensitivity to the domain discretization. In other

words, how big would be the solution error for coarser/�ner computational grids. This study is

useful for respective future calculations and provides basic information about the requirements on

the grid quality.

Three grids have been tested in particular: a regular grid and (roughly) a twice coarser and a

twice �ner alternative. Their description is in the table 7.13.

Grid no. 1 2 3
Size 8 820 21 680 42 480

Pts. across throat 40 70 100
Element type triangle

Table 7.13: Computational grids for 2D turbulent simulations.

For this exploration the SST turbulence model has been used. The outlet pressure has been set

to p2 = 100 kPa (simulating an atmospheric condition), the pressure ratio p2/p0 = 0.400 and the

freestream temperature T = 500K. For aerodynamically choked �ow the mass �ow rate is always

determined by the critical section of the channel. In order to overcome this constraint the valve

lift L = 7mm has been used (usual lift for computations with �xed valve is L = 4mm).
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a1) b1)

a2) b2)

a3) b3)

Figure 7.34: Sensitivity to grid coarseness. Turbulent �ow simulation, SST turbulence model,
L = 7mm, p2/p0 = 0.400. a) isolines of the Mach number, b) velocity streamlines; According to
the table 7.13: a1) b1) grid 1, a2) b2) grid 2, a3) b3) grid 3.

Figure 7.34 shows the comparison of the �ow �elds for all the grids tested. The most signi�cant

di�erences are visible for the coarse grid which predicts a lower supersonic expansion and smaller

separation zones. Nontheless, despite these imperfections even this solution can provide a reliable

prediction of the �ow topology.

For the �ner grid the di�erences have become less evident - apart from the �ow near the outlet.

The summary of all the computations is tabulated in 7.14. According to this table an obvious

accuracy improvement with the �ner grid has been observed. All three computations have been

run on the identical hardware environment (CPU, RAM, HW load) and with identical level of

parallelization. The wall-clocktime measured then indicates that further grid re�nements would

lead to excessive growth of time demands which seems inadequate to the precision gained.

Grid no. 1 2 3
Size [ elements ] 8 820 21 680 42 480

Abs. Di�
[%]

Abs. Di�
[%]

Abs. Di�
[%]

Max. M [ - ] 1.209 -9.3 1.333 0.0 1.349 1.2
Avg. outlet M [ - ] 0.996 -2.5 1.022 0.0 1.038 1.6

Mass �ow rate [ kg/s ] 3.350 -0.7 3.374 0.0 3.386 0.4
Wall-clocktime [ min ] 190 -2.6 195 0.0 290 48.7

Table 7.14: Turbulent �ow simulation. Sensitivity to grid coarseness.
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Sensitivity to Numerical Scheme Parameter

As mentioned in the section 5.4, the numerical scheme used (AUSM+up) requires a user-de�ned

parameterM∞. Regarding the theory this Mach number is likely related to the freestream velocity

or the conventional compressibility limit. Because the usual �ow �eld in the exhaust channel evinces

no obvious reference (freestream) values, the three magnitudes ofM∞ have been tested: 0.01; 0.10;

0.30.

The SST turbulence model has been used, the pressure ratio p2/p0 = 0.400, p2 = 100 kPa and

the valve lift L = 4mm.

a) b)

c)

Figure 7.35: Sensitivity to numerical scheme parameter. Turbulent �ow simulation, SST turbulence
model, L = 4mm, p2/p0 = 0.400. Isolines of the Mach number a) M∞ = 0.01, b) M∞ = 0.10, c)
M∞ = 0.30.

M∞ 0.01 0.10 0.30
Abs. Di�

[%]
Abs. Di�

[%]
Abs. Di�

[%]
Max. M [ - ] 2.071 -0.4 2.079 0.0 2.081 0.1

Avg. outlet M [ - ] 0.399 0.2 0.398 0.0 0.398 0.0
Mass �ow rate [ kg/s ] 1.231 -0.0 1.231 0.0 1.232 0.1

Table 7.15: Turbulent �ow simulation. Sensitivity to the parameter of the AUSM+up scheme.

According to the �gure 7.35 and the table 7.15 negligible di�erences have been observed, proving

the �ow insensitivity toM∞ (within the range tested). For all future computations, this parameter

has been set to M∞ = 0.1 .

In�uence of Turbulence Models

One of the important observations has been the impact of the turbulence model chosen on the

solution. All the models implemented have been tested on the exhaust channel geometry with

identical boundary conditions: the pressure ratio p2/p0 = 0.400, p2 = 100 kPa, the temperature

T = 500K and the valve lift L = 4mm.

The overview of the �ow �elds is shown in �gures 7.36 and 7.37, the quanti�ed parameters are

in the table 7.16 (the SST model has been chosen as a reference).



7.5. TURBULENT FLOW MODEL 143

a1) b1)

a2) b2)

a3) b3)

Figure 7.36: In�uence of the turbulence model. L = 4mm, p2/p0 = 0.400. a) isolines of the Mach
number, b) velocity streamlines, a1, b1) Spalart-Allmaras, a2, b2) BSL, a3, b3) SST.

a1) b1)

a2) b2)

a3) b3)

Figure 7.37: In�uence of the turbulence model. L = 4mm, p2/p0 = 0.400. a) isolines of the Mach
number, b) velocity streamlines, a1, b1) Wilcox, a2, b2) TNT, a3, b3) EARSM.
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Turbulence model SST S-A BSL
Abs. Di�

[%]
Abs. Di�

[%]
Abs. Di�

[%]
Max. M [ - ] 2.079 0.0 1.941 -6.6 2.084 0.2

Avg. outlet M [ - ] 0.398 0.0 0.460 15.6 0.398 0.0
Mass �ow rate [ kg/s ] 1.231 0.0 1.241 0.8 1.232 0.0
Turbulence model Wilcox TNT EARSM

Abs. Di�
[%]

Abs. Di�
[%]

Abs. Di�
[%]

Max. M [ - ] 2.055 -1.2 2.067 -0.6 1.617 -22.2
Avg. outlet M [ - ] 0.401 0.8 0.414 4.0 0.452 13.6

Mass �ow rate [ kg/s ] 1.230 -0.1 1.234 0.2 1.233 0.2

Table 7.16: In�uence of the turbulence model.

The graphs 7.39 show the distribution of the pressure and the Mach number along the central

streamline4 and the table 7.17 compares the size of the main recirculation zones.

The computations for all the models have converged to a qualitatively same result. For the

pressure ratio given, the channel gets aerodynamically choked, forming a compact supersonic �ow

beam that passes the domain. As schematized in �gure 7.38 on both sides of the beam the

recirculation zones appear. The separation is either caused by the sharp corners (mainly on the

upper wall) or induced by the shock wave which de�ects the �ow (mainly on the valve). Next

signi�cant recirculation appears along the valve casing. With a close zoom a couple of small

recirculations can be found behind the valve seat and near the intersection of the valve stem and

casing.

Figure 7.38: Scheme of the main recirculation zones, 2D model.

The large recirculations form a second aerodynamical throat inside the channel, that allows

another weaker supersonic expansion. For most of the models the �ow beam then spreads across

the entire outlet section.

Due to the aerodynamical blockage of the channel, all the models have predicted (nearly)

identical values of the mass �ow rate. An overall closest agreement has been observed among

the SST, BSL and the Wilcox models. The Spalart-Allmaras model has predicted the largest

recirculation along the valve, that has a�ected the rest of the �ow topology. The signi�cant

di�erences have also been observed for the EARSM model, that predicts the earliest separation

on the upper wall. The evoked restriction of the active section then does not allow such a strong

supersonic expansion behind the throat. For the S-A, TNT and the EARSM models a next

recirculation passing the outlet boundary has been observed.

4The central streamline is released from the geometrical mid-point of the throat.
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Figure 7.39: Distribution of the pressure and the Mach number along the central streamline for
di�erent turbulence models.

Size of recirculation [ mm ]
Channel wall Valve

Turbulence model start end length start end length
Spalart-Allmaras 2.80 35.89 33.08 1.51 30.84 29.35

BSL 4.31 29.35 25.05 4.29 21.68 17.39
SST 4.28 29.16 24.88 3.91 21.52 17.61

Wilcox 3.18 28.97 25.79 3.93 20.56 16.64
TNT 4.11 28.60 24.49 3.89 19.07 15.18

EARSM 0.37 29.35 29.53 2.62 16.45 13.83

Table 7.17: In�uence of the turbulence models on the size of recirculation zones.

In�uence of Pressure Ratio

In order to match better the pressure ratio of a real engine, for the two turbulence models selected,

SST and EARSM, the previous value of p2/p0 has been decreased to p2/p0 = 0.250. At the same

time the in�uence of the valve casing has been tested. All the remaining parameters were kept the
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same as in the section �In�uence of Turbulence Models�.

The comparison of the �ow �elds with the complete geometry is shown in �gure 7.40, for the

simpli�ed geometry (without the casing) in �gure 7.41. The complete quantitative comparison is

in the tables 7.18 and 7.19.

a1) b1)

a2) b2)

Figure 7.40: In�uence of the turbulence model. L = 4mm, p2/p0 = 0.250. a) isolines of the Mach
number, b) velocity streamlines, a1, b1) SST, a2, b2) EARSM.

a1) b1)

a2) b2)

Figure 7.41: In�uence of the turbulence model. Simpli�ed geometry without the casing. L = 4mm,
p2/p0 = 0.250. a) isolines of the Mach number, b) velocity streamlines, a1, b1) SST, a2, b2)
EARSM.

For the complete geometry the �ow topology has remained the same as in the schematic �g-

ure 7.38. The �ow is, however distinctively faster, creating a series of the so-called supersonic shock-

diamonds. Their pattern has also impressed into the recirculations (particular shock-diamonds can

be clearly identi�ed from the streamlines plot). The EARSM model predicts again an earlier sep-

aration on the upper wall, but the separation point predicted on the valve is the same with the

SST model. For both models the recirculation along the casing elongates and leaves the domain.

For the simpli�ed geometry without casing the �ow topology changes notably. Although still

consisting of the similar shock-diamond pattern the �ow does not re�ect from the valve and remains
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attached to the valve stem. This has resulted in a massive enlargement of the upper recirculation

zone. From the quantitative point, both the turbulence models have reached a good agreement in

the position of the separation points on both sides and the re-attachment point on the valve.

Turbulence model SST EARSM
Abs. Di�

[%]
Abs. Di�

[%]
Max. M [ - ] 2.617 0.0 2.293 -12.4

Avg. outlet M [ - ] 0.620 0.0 0.654 5.5
Mass �ow rate [ kg/s ] 1.993 0.0 1.980 -0.6
Turbulence model SST EARSM

geometry without casing Abs. Di�
[%]

Abs. Di�
[%]

Max. M [ - ] 2.332 0.0 2.296 -1.5
Avg. outlet M [ - ] 0.557 0.0 0.628 12.8

Mass �ow rate [ kg/s ] 1.982 0.0 1.984 0.1

Table 7.18: In�uence of the turbulence model, p2/p0 = 0.250.

Size of recirculation [ mm ]
Channel wall Valve

Turbulence model start end length start end length
SST 4.77 35.70 30.93 4.95 27.45 22.50

EARSM 4.12 37.76 33.63 4.86 30.84 25.98
SST (no casing) 3.74 - - 4.30 24.48 20.18

EARSM (no casing) 3.36 - - 3.89 24.67 20.78

Table 7.19: In�uence of the turbulence models on the size of recirculation zones, p2/p0 = 0.250.

Due to the aerodynamical blockage of the channel, no signi�cant di�erences regarding the mass

�ow rate could be observed for any of the cases.

In�uence of Valve Geometry

The in�uence of the valve shape has been tested on three geometries (see �gure 7.4):

• original geometry;

• G1 with a bigger stem curvature;

• G2 with a milder stem curvature.

In order to avoid an aerodynamical choking the valve lift has been increased to L = 10mm. The

SST turbulence model has been applied together with p2/p0 = 0.400, p2 = 100 kPa and T = 500K.

The results comparison is shown in �gure 7.42 and in the table 7.20.
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For the regime tested a surprising gain of the mass �ow rate has been observed for the alter-

native G2 with the narrowest geometrical cross-section. A thicker stem has however prevented the

recirculation along the valve, which has led to a slightly wider active cross-section.

On the contrary, the alternative G1 hasn't led to any improvement from the original state.

Its wider geometrical cross-section has been completely �lled with a recirculation that has besides

appeared even more restrictive that the original shape.

a1) b1)

a2) b2)

a3) b3)

Figure 7.42: In�uence of the valve geometry. L = 10mm, p2/p0 = 0.400. a) isolines of the Mach
number, b) velocity streamlines. Valve geometry a1, b1) original, a2, b2) G1, a3, b3) G2.

Valve geometry original G1 G2
Abs. Di�

[%]
Abs. Di�

[%]
Abs. Di�

[%]
Max. M [ - ] 1.351 0.0 1.348 -0.2 1.468 8.7

Avg. outlet M [ - ] 1.015 0.0 1.002 -1.4 1.061 4.5
Mass �ow rate [ kg/s ] 3.427 0.0 3.418 -0.3 3.477 1.4

Table 7.20: In�uence of the valve geometry.
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7.5.2 3D Geometry, Fixed Valve

Sensitivity to Domain Discretization

Similarly to the planar computations the sensitivity to the domain discretization has been tested

at �rst. Apart from the regular grid the coarser and �ner alternatives have been tested. Note

that the overall grid size grows substantially with respect to actual internal detail, shown in the

table 7.21.

Grid no. 1 2 3
Size 89 740 439 218 1 504 050

Pts. across throat 42 70 110
Element type hexahedron
File* size [MB] 16.7 78.6 264.2

Table 7.21: Computational grids for 3D turbulent simulations.
*) Grid �le in a neutral (solution-free, ASCII) format .neu .

The computations have been performed on the geometry with the lift L = 10mm, with the

SST turbulence model, p2/p0 = 0.400, p2 = 100 kPa and T = 500K.

The results are presented on three perpendicular planes as sketched in �gure 7.43.

Figure 7.43: 3D grid. Planes for solution extraction.

The longitudinal cuts for the grids tested are shown in �gure 7.44, the outlet transverse cut in

�gure 7.45.
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a)

b)

c)

Figure 7.44: Sensitivity to grid coarseness. 3D turbulent �ow simulation, SST turbulence model,
L = 10mm, p2/p0 = 0.400, contours of the Mach number, two longitudinal perpendicular cuts.
According to the table 7.21: a) grid 1, b) grid 2, c) grid 3.

a) b) c)

Figure 7.45: Sensitivity to grid coarseness. 3D turbulent �ow simulation, SST turbulence model,
L = 10mm, p2/p0 = 0.400, isolines of the Mach number, outlet transverse cut. According to the
table 7.21: a) grid 1, b) grid 2, c) grid 3.

Besides the di�erences in the �ow resolution, no signi�cant accuracy improvement has been

observed. For all the three grids tested, the �ow pattern is nearly symmetric, allowing to capture

the main solution character by a single longitudinal cut. Furthermore, within the cut plane the

velocity streamlines can be plotted, however some distortions (due to the negligence of the third

velocity component in a planar cut) are possible.

The qualitative comparison of the results is in the table 7.22. Some di�erences can be observed

between the grid 1 and 2 (coarse and normal) but almost no di�erences between 2 and 3 (normal

and �ne).
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Grid no. 1 2 3
Size [ elements ] 89 740 439 218 1 504 050

Abs. Di�
[%]

Abs. Di�
[%]

Abs. Di�
[%]

Max. M [ - ] 1.103 -3.9 1.148 0.0 1.148 0.1
Avg. outlet M [ - ] 0.973 -7.2 1.049 0.0 1.058 0.8

Mass �ow rate [ kg/s ] 0.305 -0.5 0.306 0.0 0.306 0.0
1 iter. wall-clocktime [ s ] 12.9 -90.1 130.8 0.0 429.8 228.6

Table 7.22: 3D turbulent �ow simulation. Sensitivity to grid coarseness.

Due to various parallelization the time demands have been converted to a theoretic wall-

clocktime required for 1 iteration on 1 cpu.

As all the computations have been realized at a large valve lift with a relatively smooth solution,

the grid quality corresponding to the grid 2 has been chosen also for all the oncoming simulations.

In�uence of Turbulence Model

The computations have been performed at identical computational setup as in the 2D simulations:
p2/p0 = 0.400, p2 = 100 kPa, T = 500K and L = 4mm. Only three turbulence models have been

tested: SST, Wilcox and EARSM - see �gure 7.46 and the table 7.23.

a1) b1)

a2) b2)

a3) b3)

Figure 7.46: In�uence of the turbulence model. L = 4mm, p2/p0 = 0.400. a) isolines of the Mach
number, b) velocity streamlines, a1, b1) SST, a2, b2) Wilcox, a3, b3) EARSM.
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Turbulence model SST Wilcox EARSM
Abs. Di�

[%]
Abs. Di�

[%]
Abs. Di�

[%]
Max. M [ - ] 1.757 0.0 1.743 -0.8 1.686 -4.0

Avg. outlet M [ - ] 0.758 0.0 0.750 -1.0 0.665 -12.2
Mass �ow rate [ kg/s ] 0.180 0.0 0.179 -0.7 0.174 -2.2

Table 7.23: In�uence of the turbulence model.

The computations with all the models have converged to a similar solution, schematized in

�gure 7.47.

Figure 7.47: Scheme of the main recirculation zones, 3D model.

The large (and numerous) recirculations observed in the planar cases have been reduced to just

two recirculation zones, both being induced by the shock-wave.

The dominant �ow beam formed at the channel throat uniformly �lls the exhaust pipe staying

attached to the valve stem (SST and Wilcox models) or leaving through the centre of the channel

(EARSM). The structure of the �rst supersonic pocket di�ers from the planar case, mainly in the

shape of the sonic line and the shifted region with highest velocity, see �gure 7.48.

a) b)

Figure 7.48: Detail of the throat zone. a) 2D model, b) 3D model.

The quantitative comparison later shows a very good agreement between the SST and Wilcox

models. The EARSM model predicts slightly lower values of all the outputs monitored.

In�uence of Inlet Wall Inclination

In the section 7.3.1 an arti�cial geometry with an inclined inlet wall has been proposed, see �g-

ure 7.19. Its goal has been to control and/or reduce the recirculations inside the channel.

The modi�cation has been tested on a channel with L = 10mm, p2/p0 = 0.400, p2 = 100 kPa

and T = 500K, with the SST turbulence model. See �gure 7.49 and the table 7.24 for results.
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a1) b1)

a2) b2)

a3) b3)

Figure 7.49: In�uence of the inclined inlet wall. L = 4mm, p2/p0 = 0.400. a) isolines of the Mach
number, b) velocity streamlines, a1, b1) 0 degrees (original), a2, b2) 5 degrees, a3, b3) 10 degrees.

Inclination angle 0◦ 5◦ 10◦

Abs. Di�
[%]

Abs. Di�
[%]

Abs. Di�
[%]

Max. M [ - ] 1.148 0.0 1.149 0.1 1.149 0.1
Avg. outlet M [ - ] 1.049 0.0 1.072 2.2 1.074 2.4

Mass �ow rate [ kg/s ] 0.306 0.0 0.304 -0.7 0.305 -0.3

Table 7.24: The in�uence of the inclination angle.

For the regime given on a real (i.e. 3D) geometry, none of the streamline plots detects a

recirculation, therefore the e�ect desired could not be reached. The quantitative comparison has

also shown no signi�cant gain (the mass �ow rate has even dropped under the original value).

All the computations with an inclined inlet wall have therefore resulted in no substantial im-

provement against the status geometry. Hence, within the parameters monitored, this geometrical

modi�cation seems ine�cient.

In�uence of Inlet Boundary Condition

As described in the section 5.10, the inlet boundary condition imposes the total pressure, the total

temperature and the incidence angle. For the (original) radial inlet, this angle is perpendicular

to the inlet boundary (�gure 7.50 a) ). The second alternative tested, the tangential inlet, has

rotated the velocity vector by 90 degrees (indicated in �gure 7.50 b) ).
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a)

b)

Figure 7.50: Schematic view of di�erent inlet boundary conditions: a) radial inlet, b) tangential
inlet.

Two valve lifts 4 and 10 mm have been tested. Figure 7.51 and the table 7.25 prove a large

sensitivity on the tangential velocity component for both the lifts.

a1) a2)

b1) b2)

Figure 7.51: In�uence of the inlet boundary condition, SST model, p2/p0 = 0.400. Contours of the
Mach number. a) L=4 mm, b) L=10 mm; a1, b1) radial inlet, a2, b2) tangential inlet.
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Inlet condition radial tangential
L=4 mm Abs. Di�

[%]
Abs. Di�

[%]
Max. M [ - ] 1.757 0.0 1.635 -6.9

Avg. outlet M [ - ] 0.758 0.0 0.485 -36.0
Mass �ow rate [ kg/s ] 0.180 0.0 0.172 -4.4

Inlet condition radial tangential
L=10 mm Abs. Di�

[%]
Abs. Di�

[%]
Max. M [ - ] 1.148 0.0 1.179 2.7

Avg. outlet M [ - ] 1.049 0.0 0.733 -30.1
Mass �ow rate [ kg/s ] 0.306 0.0 0.291 -4.9

Table 7.25: The in�uence of the inlet boundary condition.

For the lower lift the centripetal forces turn the supersonic expansion (and following �ow)

towards the valve stem, together with a reduction of further supersonic pockets. The substantial

diversion of the incoming �ow also a�ects the sonic line. The similar trends have been observed

also for the bigger lift.

For the average outlet Mach number and the mass �ow rate the di�erences of the same order

have been found for both the lifts tested.

In�uence of Valve Geometry

The three valve shapes tested were the original, G1 (with a bigger stem curvature) and G2 (with

a milder stem curvature). In order to avoid an aerodynamical choking the valve lift has been set to

L = 10mm. The SST turbulence model has been applied together with p2/p0 = 0.400, p2 = 100 kPa

and T = 500K.

The results comparison is presented in �gure 7.52 and in the table 7.52.
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a1) b1)

a2) b2)

a3) b3)

Figure 7.52: In�uence of the valve geometry. L = 10mm, p2/p0 = 0.400. a) isolines of the Mach
number, b) velocity streamlines. Valve geometry a1, b1) original, a2, b2) G1, a3, b3) G2.

Valve geometry original G1 G2
Abs. Di�

[%]
Abs. Di�

[%]
Abs. Di�

[%]
Max. M [ - ] 1.148 0.0 1.128 -1.7 1.164 1.4

Avg. outlet M [ - ] 1.049 0.0 1.010 -3.7 1.013 -3.4
Mass �ow rate [ kg/s ] 0.306 0.0 0.296 -3.3 0.301 -1.6

Table 7.26: In�uence of the valve geometry.

Compared to the planar computations no altered shape provides a larger mass �ow rate than

the original valve. A surprising drop has been observed for the G1 geometry. The streamline plot

has then discovered a separation zone which has arisen along the valve. For both the geometries

remaining no recirculations have been registered.

This comparison has again con�rmed that a slimmer valve does not always lead to an (intuitive)

improvement of the exhaust e�ciency, as the wider geometrical cross-section gets usually �lled with

a hollow recirculation.
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7.5.3 2D Geometry, Moving Valve

In�uence of Unsteady Approach

The �rst interest, after having developed the method for computations with moving valve, has

been to study the actual in�uence of this unsteady approach. In order to avoid issues with the

remeshing and the solution interpolation (discussed in the section 5.9.3) the �rst computation has

been accomplished for an oscillating valve at a big valve lift.

The movement has been imposed by as sinusoidal (L0 = 10mm, amplitude 1 mm) and the

boundary conditions have been �xed at constant values: p2/p0 = 0.500, p2 = 100 kPa and T =

500K, SST turbulence model. As indicated in �gure 7.53 three cycle periods have been simulated.

Figure 7.53: Setup of the boundary conditions and the valve movement for an initial unsteady
simulation.

Figure 7.54 compares the initial solution (steady state simulation on the �xed geometry) with

the solutions at the identical valve lift after three cycle periods (at opening and closing stage). The

table 7.27 compares the the quantitative indicators.
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a1) b1)

a2) b2)

a3) b3)

Figure 7.54: In�uence of the unsteady approach, L = 10mm, p2/p0 = 0.500. a) isolines of the Mach
number, b) velocity streamlines, a1, b1) steady state solution, a2, b2) unsteady (opening stage),
a3, b3) unsteady (closing stage).

steady unsteady
opening closing

L=10 mm Abs. Di�
[%]

Abs. Di�
[%]

Abs. Di�
[%]

Max. M [ - ] 1.475 0.0 1.548 4.9 1.467 -0.5
Avg. outlet M [ - ] 0.824 0.0 0.784 -4.9 0.858 4.1

Mass �ow rate [ kg/s ] 2.761 0.0 2.612 -5.4 2.893 4.8

Table 7.27: In�uence of the unsteady approach.

Apparent di�erences have been found among all the results shown. The supersonic pocket near

the seat reacts on the throat change, taking the �ow inertia into account. The separation zone on

the upper wall follows these �uctuations accordingly. The e�ect of the unsteady approach has also

been observed on the second supersonic pocket near the casing.
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Figure 7.55: Evolution of the Mach number and the mass �ow rate with time.

The graph 7.55 plots the time evolution of the parameters monitored. It has been found the

solution needs (approximately) one period to stabilize on the periodic pattern. Both the mass �ow

rate and the average outlet Mach number then reproduce the movement imposed. The contour of

the maximal Mach number has an opposite phase and indicates a small discontinuity during the

opening stage. Altogether it underlines the non-negligible in�uence of the unsteady approach.

Simulation of Closing Stage - In�uence of Inlet Inclination

Next results present a simulation of the complete closing stage at constant boundary conditions,

as shown in �gure 7.56. The valve movement is modelled by a quarter sinusoidal; the initial lift

L0 = 10mm; the �nal lift (as close as possible to) Lfinal = 0mm.

Figure 7.56: Setup of the boundary conditions and the valve movement for a closing stage simula-
tion.

From the numerical point of view, this simulation enforces strong grid deformations which

may corrupt the solution (see in the later �gure 7.60). To eliminate this risk, a series of three

computational grids have been used (L=10, 6, 3 mm), among which the respective solution has

been interpolated (explained in the section 5.9.3). The interpolation is shown in �gure 7.57.
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a) b)

Figure 7.57: Solution interpolation. a) L=6 mm, b) L=3 mm. Left: detail of the original (de-
formed) grid and solution, Right: detail of the new grid, interpolated solution.

The �nal solution is shown in �gure 7.58, the time evolution of the parameters monitored

in �gure 7.59. For the regime given (constant pressure ratio during entire closing stage) with a

decreasing throat cross-section the �ow accelerates to supersonic and chokes aerodynamically the

channel. By doing so, the mass �ow rate is bounded by its critical value and decreases together

with the lift. This results to a growth of the recirculation zones.

Initially, the recirculations appear on both sides of the �ow beam, however with a smaller lift

this beam attaches to one of the walls and reduces the respective recirculation. Note that for very

low lifts the �ow alters between upper and lower wall.
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t = 0.00000 s

t = 0.00020 s

t = 0.00040 s

t = 0.00060 s

t = 0.00080 s

t = 0.00098 s
a) b)

Figure 7.58: Closing stage. Solution development along time. a) isolines of the Mach number, b)
velocity streamlines.

Figure 7.59: Evolution of the Mach number and the mass �ow rate with time, closing stage.

Regarding the necessity of the grid interpolation, �gure 7.60 shows the solution obtained on
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a massively deformed grid. The initial grid with L=10 mm has been used till approximatelly

L=1 mm. As shown on the solution, the excesivelly skewed elements have completely corrupted

the solution.

a) b)

Figure 7.60: In�uence of the grid deformation. a) detail of a proper grid and solution in the throat
region; b) detail of an excesivelly deformed grid and its impact on the solution.

The computation setup has been used also for the geometries with an inclined inlet wall (see

�gure 7.19). Figure 7.61 shows the evolution of the parameters monitored for both the geometries

tested (inclination angle 5◦ and 10◦).

The graph 7.62 then superposes the mass �ow rates for all the geometries. Despite the expecta-

tions, all the contours overlap in a single curve, indicating no signi�cant e�ect of this modi�cation.

This is, however, consistent with all the previous conclusions (from steady state computations)

observed on these geometries.

a) b)

Figure 7.61: Evolution of the Mach number and the mass �ow rate with time, closing stage. Inlet
wall inclination a) 5◦, b) 10◦.
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Figure 7.62: Evolution of the Mach number and the mass �ow rate with time, closing stage.
In�uence of the Inlet wall inclination.

Simulation of Closing Stage - In�uence of Valve Geometry

Using the computational setup from the previous simulation (see �gure 7.56) three valve geome-

tries have been tested: original, G1 (with a bigger stem curvature) and G2 (with a milder stem

curvature).

Figures 7.63 and 7.64 present the �ow �elds for the lifts (approximatelly) L=4 mm and 2 mm.

Figure 7.65 then shows the time evolution of the Mach number and the mass �ow rate.
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a1) b1)

a2) b2)

a3) b3)

Figure 7.63: Closing stage. In�uence of the valve geometry. L=4 mm. a) isolines of the Mach
number, b) velocity streamlines; Valve shape a1) b1) original; a2) b2) G1; a3) b3) G2.

a1) b1)

a2) b2)

a3) b3)

Figure 7.64: Closing stage. In�uence of the valve geometry. L=2 mm. a) isolines of the Mach
number, b) velocity streamlines; Valve shape a1) b1) original; a2) b2) G1; a3) b3) G2.
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Figure 7.65: Evolution of the Mach number and the mass �ow rate with time, closing stage.
In�uence of the valve geometry.

For the larger lift shown an agreement has been observed between the original and the G1

geometry. The extra space around the valve (due to bigger curvature) therefore remains void and

�lled with the recirculation. For the geometry G2 the �ow stays attached to the valve stem, leading

to an almost perpendicular impact on the casing, which then a�ects the later supersonic expansion.

For the smaller lift, the earlier separation on the G1 de�ects the �ow slightly downwards than

the original geometry. However, as shown in the evolution graphs, these alternatives stay in a close

agreement for most of the period. The G2 geometry evinces identical behaviour as for the bigger

lift, giving arise to a large separation zone near the casing.

From the graph comparisons, the G2 geometry seems best performing in the initial phase of the

cycle. With the decreasing lift its narrower throat spoils the performance below the original and

G1 alternatives. This has been proven by an integral value of the mass �ow rate over the period

computed, which is shown in the table 7.28.

Valve geometry original G1 G2
mass �ow rate [ kg/s] Abs. Di�

[%]
Abs. Di�

[%]
Abs. Di�

[%]
L = 9 mm 3.507 0.0 3.523 0.4 3.543 1.1
L = 6 mm 3.105 0.0 3.113 0.3 3.102 -0.1
L = 3 mm 1.578 0.0 1.563 -0.9 1.391 -11.8

total mass �ow [ g ] 1.707 0.0 1.675 -1.9 1.647 -3.5

Table 7.28: In�uence of the valve geometry.

Real Cycle Simulation - In�uence of Inlet Boundary Condition

Figure 7.66 schematizes the valve lift during a real cycle of a reciprocating engine for a chosen

value of the engine revolutions: 3500 RPM.
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Figure 7.66: The valve lift evolution during a real cycle of a reciprocating engine.

The development of the pressure inside the cylinder and in the exhaust pipe (at the position of

the outlet section) are plotted in �gure 7.67. The values shown are taken from [41] and represent the

inlet and outlet boundary values for the numerical simulations. For the inlet pressure two curves

have been used in turn, corresponding to the pressure evolution for the compression ignition (CI)

and the spark ignition (SI) engine (their basics have been described in the section 2.1).

Figure 7.67: The evolution of the pressure in the cylinder and in the exhaust pipe during a real
cycle of a reciprocating engine.

The in�uence of the inlet pressure (i.e. the curve chosen) has been studied in this subsection.

All the results shown here have used the SST turbulence model.

According to �gure 7.67, the numerical simulations have been performed between time 0.0225 s

and 0.0350 s (corresponding to a yet/already fully closed valve) with a physical time-step ∆t =

10−6 s.

Because of a negligible mass �ux and in order to avoid grid singularities for a fully closed valve,

the minimal clearance gap Lmin = 0.40mm has been applied. The maximal valve lift has been

Lmax = 11.05mm. To prevent excessive grid deformations a series of four grids with nominal lifts:

0.40; 1.51; 2.93 and 7.02 mm has been used, leading to four interpolation points, as indicated in

the graph 7.68.
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Figure 7.68: Numerical realization of the valve motion.

Figures 7.69, resp. 7.70 show the �ow �elds for the SI, resp. CI inlet conditions. The develop-

ment of the parameters monitored is presented in the graph 7.71.

a1) a2)

b1) b2)

c)

Figure 7.69: Real cycle simulation, SI inlet condition, contours of the Mach number. Valve lift: a)
3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2, b2) closing stage.
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a1) a2)

b1) b2)

c)

Figure 7.70: Real cycle simulation, CI inlet condition, contours of the Mach number. Valve lift:
a) 3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2, b2) closing stage.

Figure 7.71: Evolution of the Mach number and the mass �ow rate with time, closing stage. Real
cycle simulation. In�uence of the inlet boundary condition.

With the lower pressure ratio, the solution of the CI regime shows an aerodynamical blockage

for nearly a twice longer period than for the SI regime, as summarized in the table 7.29.
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Time [s] Portion of
Opening stage Closing stage cycle

Regime Since Till Since Till [%]
SI 0.0225 0.0257 - - 25.6
CI 0.0225 0.0268 0.0313 0.331 48.8

Table 7.29: Period of aerodynamical blockage for di�erent inlet boundary conditions.

The �ow topology is, however similar for both the inlet conditions, with an o�set of the velocity

magnitude: for the lower lifts at opening stage the �ow is attached to the upper wall, whereas at

the closing stage it attaches to the valve stem. For larger lifts the �ow beam passes through the

middle of the channel, being surrounded by recirculations on both sides.

In order to illustrate the in�uence of an unsteady approach, two steady state simulations have

been performed for the �xed lift L = 7mm and the related boundary conditions of the CI regime

(both the opening and closing stage). The �ow �eld comparison is then showed in �gures 7.72, 7.73

with the mass �ow rate comparison in the table 7.30. The main di�erences have been observed in

the size of the supersonic expansion and the positions of the separation zones. According to the

table 7.30, it has been observed that neglecting the �ow unsteadiness leads to di�erences of the

order ≈ 10%.

a1) b1)

a2) b2)

Figure 7.72: In�uence of the unsteady approach, CI inlet condition, opening stage, L=7 mm. a)
contours of the Mach number, b) velocity streamlines; a1) b1) unsteady, a2), b2) steady.
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a1) b1)

a2) b2)

Figure 7.73: In�uence of the unsteady approach, CI inlet condition, closing stage, L=7 mm. a)
contours of the Mach number, b) velocity streamlines; a1), b1) unsteady, a2), b2) steady.

mass �ow rate [kg/s]
Unsteady Steady

L=7 mm Abs Di� [%] Abs Di� [%]
Opening stage 3.162 0.0 3.469 9.7
Closing stage 2.532 0.0 2.220 -12.3

Table 7.30: Di�erences between steady state and unsteady solutions.

Real Cycle Simulation - In�uence of Valve Geometry

For an identical computational setup (both the SI and CI inlet conditions) the three valve geome-

tries (original, G1 and G2) have been tested. Hence, the comparative results on the original geom-

etry have been already shown in �gures 7.69-7.70. The next �gures present identically structured

solution snapshots for the CI regime on the G1 (�gure 7.74) and the G2 (�gure 7.75) geometries.

a1) a2)

b1) b2)

c)

Figure 7.74: Real cycle simulation, CI inlet condition, G1 geometry, contours of the Mach number.
Valve lift: a) 3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2, b2) closing stage.
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a1) a2)

b1) b2)

c)

Figure 7.75: Real cycle simulation, CI inlet condition, G2 geometry, contours of the Mach number.
Valve lift: a) 3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2, b2) closing stage.

The graphs 7.76 and the table 7.31 summarize the e�ect of the valve geometry on the Mach

number and the mass �ow rate.

a)

b)

Figure 7.76: Evolution of the Mach number and the mass �ow rate with time, closing stage. Real
cycle simulation. In�uence of the valve geometry. a) SI regime, b) CI regime.



172 CHAPTER 7. FLOW AROUND AN EXHAUST VALVE

Total mass �ow over one cycle [ kg ]
Valve geometry Original G1 G2

Regime Abs. Di�
[%]

Abs. Di�
[%]

Abs. Di�
[%]

SI 0.0224 0.0 0.0221 -1.3 0.0225 +0.7
CI 0.0281 0.0 0.0278 -1.1 0.0284 +1.1

Table 7.31: In�uence of the valve geometry on the total mass �ow over one cycle.

According to all the previous (steady state) observations the exhaust channel gets aerody-

namically choked, which sets the critical mass �ow rate. Hence a wider geometrical cross-section

(alternative G1) does not lead to an increase of the mass �ux. By contrary, the void space along

the stem always induces a strong recirculation which then restricts the active cross-section. Due

to this strong recirculation the main �ow beam stays attached to the upper wall even for a low

lift at closing stage (as distinct to other geometries). In total, this geometry deteriorates the total

mass �ow over a cycle by ≈ 1% from the original geometry.

On the other hand, the alternative G2 completely eliminates the separation on the stem. This

has a positive e�ect on the �ow stability and allows the main �ow beam to stay attached to the

stem for almost entire cycle. It also leads to a very light increase of the mass �ow rate over a

dominant part of the cycle. The overall performance is therefore ≈ 1% better than the original

geometry. Identical trends have been observed for both the inlet regimes tested.

Real Cycle Simulation - In�uence of Turbulence Model

For one numerical simulation (with one regime selected) the EARSM has been used. The CI regime

has been chosen, as its lower pressure ratio leads to more complex transonic e�ects, upon which

the in�uence of the turbulence model can be better evinced. For convenience sake the original

valve geometry has been used.

The comparative result of the SST model has been shown in �gure 7.70. The results of the

EARSM model are then shown in �gure 7.77 and the graph 7.78.

a1) a2)

b1) b2)

c)

Figure 7.77: Real cycle simulation, CI inlet condition, EARSM turbulence model, contours of the
Mach number. Valve lift: a) 3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2, b2) closing
stage.
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Figure 7.78: Evolution of the Mach number and the mass �ow rate with time, closing stage. Real
cycle simulation. In�uence of the turbulence model.

Time [s] Portion of
Opening stage Closing stage cycle

Turb. model Since Till Since Till [%]
SST 0.0225 0.0268 0.0313 0.331 48.8

EARSM 0.0225 0.02623 - - 30.4

Table 7.32: Period of aerodynamical blockage for di�erent turbulence models.

Although the results are in a good qualitative agreement, the �ow �eld comparison detects

di�erences on the supersonic expansion. During the closing stage the EARSM model predicts

longer and thinner supersonic pockets. Furthermore, for the lift L=3 mm (distinct to all the

previous results) the �ow has not attached to any wall yet. As indicated in the table 7.32, during

this stage the EARSM model has not predicted an aerodynamical blockage.

On the other hand the initial phase of the opening stage is in a perfect agreement for all

the parameters monitored. Later, the EARSM model predicts an earlier separation on the valve,

leading to a weaker expansion (in terms of maximal Mach number). The table 7.32 also shows

that the time of the aerodynamical opening of the channel is similar for both models.

As shown in the graph 7.78, for the non-choked period of the cycle (t > 0.0270 s) the EARSM

model predicts slightly smaller mass �ow rate. This fact signi�cantly in�uences the total mass �ow,

as this period with the big lift is responsible for the largest transport of mass, see the table 7.33.

However, for time t > 0.0320 s a perfect �t of the mass �ow rate for both models has again been

observed.
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Total mass �ow over one cycle [ kg ]
Turbulence model SST EARSM

Regime Abs. Di�
[%]

Abs. Di�
[%]

CI 0.0281 0.0 0.0275 -2.1

Table 7.33: In�uence of the turbulence model on the total mass �ow over one cycle.

7.5.4 3D Geometry, Moving Valve

The computational setup from the previous section 7.5.3 for a real valve cycle has been re-used,

with some obvious extensions due to the third dimension.

The boundary conditions and the valve movement have been again described by the plot 7.67,

corresponding to the engine revolutions at 3500 RPM (the relations have been taken from a lit-

erature which actually refers to operating conditions of a real, i.e. 3D, engine). Besides, the SST

turbulence model has been used.

The unsteady approach has again implied the need of a series of computational grids, in order to

prevent excessive element deformations. A usual computational grid has contained approximately

500 000 elements, making the complete simulation setup (on available CPU resources) costly.

Extracting from the computations perfomed, an average runtime period of one valve cycle has

been (scaled to 1 CPU) approximately 162 days. Assuming a common parallelization onto 8 cores,

a necessary pre-processing (grid generation, solution interpolation), an ideal (snag-free) run and

a post-processing, the current demands are about one month on a single simulation. Hence, the

testing phase has been reduced to a minumum with a main focus on the real cycle simulations. To

save some computational time, the stages with very low valve lifts (hence a very low mass �ux)

have been skipped for some simulations.

Real Cycle Simulation

The exhaust process has been studied on the original valve geometry for both alternatives of the

inlet condition (SI and CI). Afterwards, the in�uence of the valve geometry has been tested in

both regimes, leading to six computation campaigns in total.

Figures 7.79, 7.80 and 7.81 present the results on all three geometries for the SI regime. The

solutions of the CI regimes are shown later in �gures 7.83, 7.84 and 7.855. All the solutions obtained

have been nearly symmetric (no substantial asymetrical �ow pattern has been found), thus the

results are represented by their respective planar cuts.

The time evolution of the parameters monitored (see the section 7.3) is shown in the graphs 7.82

(SI regime) and 7.86 (CI regime).

For the SI regime the �ow velocity has been transonic only in the initial stage of a cycle for all the

geometries tested. Besides, very similar �ow topology has been observed for the original and the G1

geometry, implying no signi�cant (aerodynamical) gain with the thinner valve stem. Consistently

to all the previous observations, the extra volume gained by the stem thinning is occupied by a

recirculation zone formed between the valve seat and the casing - creating an arti�cial valve shape

in fact. The main �ow beam stays attached to the upper wall during the entire cycle.

5A parallelization used has usually operated on 8 CPU cores. The COOLFluiD solver does not merge the
fractional solutions into one �le, but stores them in (eight) separate �les. The result visualization is then realized
by an actual overlapping of these �les inside a post-processing software Tecplot. Because of the internal overlap of
each zone (according to the computational stencil), the solution plot often contains discontinous (fraying) isolines.
It is, however a purely post-processing imperfection and not a solution defect.
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As distinct from the original and G1 shape, the contour of the G2 geometry (nearly) follows the

border of the main �ow beam. It reduces the recirculation along the stem, but generates another

one on the upper wall, as the �ow attaches to the stem.

From the quantitative point of view (graph 7.82 and table 7.35) the di�erent geometries have

however led only to minor di�erences. Compared to the planar simulations, the graph of the mass

�ow rate vs. time is biased towards the opening stage. The di�erences can also be seen in the plots

of the average outlet velocity: the planar simulation predicts a smooth ascend and descend, whereas

for the 3D simulation a long plateau can be found in the same period of large valve opening. The

average velocity magnitude is also higher for the 3D simulation.

a1) a2)

b1) b2)

c)

Figure 7.79: Real cycle simulation, original valve shape, SI inlet condition, contours of the Mach
number. Solution cut Z = 0. Valve lift: a) 3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2,
b2) closing stage.
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a1) a2)

b1) b2)

c)

Figure 7.80: Real cycle simulation, G1 valve shape, SI inlet condition, contours of the Mach
number. Solution cut Z = 0. Valve lift: a) 3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2,
b2) closing stage.
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a1) a2)

b1) b2)

c)

Figure 7.81: Real cycle simulation, G2 valve shape, SI inlet condition, contours of the Mach
number. Solution cut Z = 0. Valve lift: a) 3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2,
b2) closing stage.

Figure 7.82: Evolution of the Mach number and the mass �ow rate with time. Real cycle simulation.
SI regime. In�uence of the valve geometry.

The CI regime evinces longer period of the aerodynamical choking for all the geometries tested.

The period of the blockage is, however, much shorter from the planar predictions and appears only



178 CHAPTER 7. FLOW AROUND AN EXHAUST VALVE

during the opening stage; compare the tables 7.34 and 7.29.

With a decreased pressure ratio p2/p0 the trends observed in the SI regime are further empha-

sized: the mass �ow rate is more biased towards the opening stage and the signi�cant plateau

in the outlet velocity evolution is again identi�ed. After relieving the aerodynamical blockage of

the throat, the �ow detaches from the upper wall and a smaller supersonic pocket appears on the

casing. Other �ow characteristics are similar to the SI regime.

Regarding the measurable outputs, the G1 geometry predicts smaller mass �ow rate, as well as

the outlet velocity. On the other hand the performance of the original and G2 geometry is very

similar.

The results presented within this section have con�rmed a necessity of a full 3D model and an

unsteady approach to the problem, as the observations made could not be extrapolated from any

simpli�ed models (2D and/or steady). Further conclusions are left to the next chapter.

a1) a2)

b1) b2)

c)

Figure 7.83: Real cycle simulation, original valve shape, CI inlet condition, contours of the Mach
number. Solution cut Z = 0. Valve lift: a) 3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2,
b2) closing stage.
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a1) a2)

b1) b2)

c)

Figure 7.84: Real cycle simulation, G1 valve shape, CI inlet condition, contours of the Mach
number. Solution cut Z = 0. Valve lift: a) 3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2,
b2) closing stage.
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a1) a2)

b1) b2)

c)

Figure 7.85: Real cycle simulation, G2 valve shape, CI inlet condition, contours of the Mach
number. Solution cut Z = 0. Valve lift: a) 3 mm, b) 7 mm, c) 11 mm; a1, b1) opening stage, a2,
b2) closing stage.

Figure 7.86: Evolution of the Mach number and the mass �ow rate with time. Real cycle simulation.
CI regime. In�uence of the valve geometry.
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Time [s] Portion of
Opening stage Closing stage cycle

Valve geometry Since Till Since Till [%]
Original 0.0225 0.0253 - - 22.4

G1 0.0225 0.0252 - - 21.6
G2 0.0225 0.0255 - - 24.0

Table 7.34: Period of aerodynamical blockage for di�erent inlet boundary conditions. 3D simula-
tion, CI regime.

Total mass �ow over one cycle [ kg ]
Valve geometry Original G1 G2

Regime Abs. Di�
[%]

Abs. Di�
[%]

Abs. Di�
[%]

SI 0.00228 0.0 0.00226 -0.7 0.00229 0.5
CI 0.00295 0.0 0.00285 -4.4 0.00293 -0.6

Table 7.35: In�uence of the turbulence model on the total mass �ow over one cycle.
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Chapter 8

Conclusions

Several sub-projects have had to be accomplished along the whole research in order to ful�ll the

goals of this dissertation.

In the beginning, the mathematical formulation for a general case of a �uid motion on a moving

domain using the �nite volume method has been stated. The formulation has been based on the

integral form of the conservation laws of mass, momentum and energy. Single-phase ideal gas has

been assumed as the working medium.

This general set of equations has served as a basis for all computations made by the MUSA

and the COOLFluiD solvers and (with speci�c extensions) for all �ow models used.

Along the computations made, the turbulence modelling has occured to be an important aspect.

Thus, the entire fourth chapter has been dedicated to the description of turbulence. After making

a general review of the models available, �ve di�erent models have been selected to be used for the

purposes of this thesis.

In the following chapter the numerical methods for discretization of the continuous mathemat-

ical equations are described. Due to the large extent of this chapter, only the key concepts are

mentioned here: discretization of the convective (inviscid) �uxes by the AUSM-family schemes;

discretization of the viscous �uxes and the source terms; the improvement of the solution spatial

accuracy by a piece-wise linear reconstruction and a limiter; explicit and implicit time integration;

adaptations for the time accurate computations on moving domains; proper initial and boundary

conditions and the job parallelization. Some of these issues are commented further in this chapter.

Regarding the original state of both the platforms the following code extensions have been

necessary to implement.

MUSA: the original code was able to solve the 2D inviscid �ow on a single domain. Within this

work the capabilities of the solver have been extended so to allow computations with the

laminar and the turbulent (using the one-equation Spalart-Allmaras model) models in 2D.

For 3D cases the code allows to choose between the inviscid and the laminar model. The

code has also been re-structured to allow a usage of multi-block grids in a generic format.

An original AUSM scheme has been replaced by its more advanced successors, among which

the in�uence on the solution accuracy has been tested.

The code, however still uses the explicit time integration which is the main bottle-neck for the

respective oncoming simulations (due to the time-step constrains the computations require

excessive number of iterations).

183
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COOLFluiD: since the beginning the capabilities of this code have been more advanced compared

to the solver MUSA, mainly thanks to the longer period of development and the larger team

of developers. On the other hand, due to its bigger size and complexity, the code has been

more di�cult for adding new functionalities.

The code at its initial state (from the thesis standpoint) has required an implementation

of �rst turbulence models which were represented by the classical k − ε and k − ω models.

This step has been �nished under a tutelage of the code founder T. Wuilbaut. The following

developments have been subject to an independent research activity. In the scope of this

activity the two-equations turbulence models have been implemented (both 2D and 3D),

debugged and tested.

Next main developments have been related to the speci�c needs of the target test case: mesh

deformation techniques; dual time stepping; radial and time dependent boundary conditions;

internal conditions and several debugging interventions on various parts of the code.

The properties of both the codes have been continuously evaluated by monitoring the results on the

series of reference test cases. Although playing an important role for proving the code reliability

and accuracy, �ndings for each test case have been kept in their respective sections not to make

the general conclusions excessively long.

The veri�ed numerical codes have then been used for the main target - the �ow through an

exhaust channel with a moving valve. The �ow structure has been revealed and described both

qualitatively and quantitatively. The deeper evidences are elaborated in the following section.

8.1 Findings on the Exhaust Channel

The current work has modelled the �ow around an exhaust valve using various numerical methods,

�ow regimes and geometrical modi�cations.

The inviscid �ow model has occured the simplest to implement but inappropriate with regards

to the �ow characteristics. The usual �ow topology consists of a dominant �ow beam formed

between the seats. This beam transports the majority of the mass and is surrounded by the recir-

culation zones on both sides that form an arti�cial channel. The interaction among recirculations

and the main beam then suppresses or stimulates further expansion, therefore requires an accurate

modelling that cannot be provided by the inviscid �ow model. For the 3D geometry the size of

the recirculation zones is reduced. The 3D model also predicts di�erent position of the main �ow

beam and the more uniform velocity pro�le (higher average magnitude but milder peaks) than in

2D.

The laminar �ow model has con�rmed the qualitative predictions of the inviscid �ow model

regarding the size, position and importance of the recirculations. The detailed conclusions for both

the intermediate �ow models (inviscid and laminar) have been captured in sections 7.3.4 and 7.4.5.

The main focus has therefore been on the turbulent �ow model on which several properties have

been tested. For usual operating conditions the channel gets aerodynamically choked, followed by

a supersonic expansion, a drop back to subsonics and the re-acceleration near the casing due to

the channel restriction. Hence, the general �ow is transonic and sensitive to any (geometrical)

changes.
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The geometrical modi�cations tested have shown the following results:

• the �ow is insensitive to the shape of the inlet region (original geometry with the horizontal

inlet BC vs. reduced inlet with the radial BC, �gure 7.2); the �ow in the cylinder area has a

negligible velocity; no impact has been observed on the transonic �ow in the exhaust channel;

the inlet computational domain can thus be reduced to the nearest vicinity of the valve;

• an inclination of the inlet wall (�gure 7.19) has turned to be ine�cient to control the �ow

character (recirculation zones) for most of the regimes tested. The improvements appear

only for big lifts (channel already not choked), moreover only with a low potential gain.

• regarding the valve shape (�gure 7.4) the modi�cation G2 (milder stem curvature) has shown

a comparable or better performance than the original valve in all the regimes tested; the

thicker stem prevents the separation along the valve and allows for a better control of the

(attached) �ow beam;

• the modi�cation G1 (larger stem curvature and the geometrical cross-section) deteriorates

the exhaust performance due to the induced separation; at any regime the �ow has not been

able to �ll up completely the void volume;

• all the 3D simulations have converged to solely symmetric solutions; the steep pressure ratio

has prevented the formation of the non-symmetric patterns; both the qualitative and quan-

titative comparison to the planar solutions however justify the need of a fully 3D approach.

The appraisal of the di�erent turbulence models has led to the following observations:

• all the turbulence models used have converged to a qualitatively similar solution;

• di�erences have been found with the Spalart-Allmaras and the EARSM models which both

have predicted the earlier �ow separation;

• all the remaining models (Menter's BSL, SST; TNT and Wilcox) have shown a very close

agreement (<4% for all the outputs monitored) in both 2D and 3D.

Finally, the tuning of some numerical parameters has discovered:

• the tangential (swirling) component of the inlet velocity has a strong e�ect on the solution;

the exhaust process seems therefore sensitive to the velocity distribution in the cylinder;

according to the piston movement during the exhaust stroke (the volume compression damps

the velocity �uctuations) the radial inlet is however much more likely;

• the response on the grid re�nement has followed the trends expected; the �ner grids have

allowed for more accurate solutions; the accuracy improvement is however disproportionate,

compared to the increase of the CPU and the increased wall-clocktime demands;

• the two di�erent strategies of the dual cell construction have not led to any actual impact

on the solution;

• the numerical scheme used (AUSM+up) has shown a low sensitivity on its free parameter

M∞, proving its su�cient robustness for the �ow �elds with wide velocity range.
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Some of these observations have been reviewed and presented at the various international confer-

ences on �uid dynamics. Choosing from the most important references: mainly the steady state

solutions have been published at [31, 32, 112, 113] and the solutions on the moving domain later

at [21, 114].

All the computations done have con�rmed the reliability and accuracy of the numerical solvers

used. The current numerical methods are able to simulate the exhaust process based exclusively

on the measurable variables of the cylinder pressure and temperature and the exhaust pressure.

The numerical solution then provides a detailed insight to the typical aerodynamical e�ects during

the exhaust stroke.

Considering the work statement, we can conclude that all the main objectives of this thesis

have been successfully accomplished.

8.2 Future Work

Regarding the current experience the crucial bottle-neck is the computational time required for a

single 3D simulation with a moving valve. A decent reduction of the computational time can be

reached by the larger parallelization and/or an automation of the pre-processing (grid generation,

solution interpolation) and the post-processing activities.

Preferably with a shortened time demands, also the remaining turbulence models shall be tested

for the full-scale simulation. All the computations have assumed a constant inlet temperature.

Although some literature seems sceptical about the in�uence of temperature, its actual e�ect

could be veri�ed.

Within a future research the experimental measurements shall be proposed in order to validate

the numerical results and to evaluate the performance of the geometrical changes tested. Such

experiment could also provide an accurate pressure evolution for di�erent RPM to be used as

boundary conditions for the numerical computations.

The numerical methods developed here for the exhaust stroke can later be coupled with some

other numerical codes in order to accurately simulate the entire four-stroke engine cycle.
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Appendix A

Laval Nozzle - 1D Analysis

The Laval nozzle is a convergent-divergent channel, as shown in the �gure A.1.

Figure A.1: Scheme of a Laval nozzle.

Note

• p0 the reservoir pressure (~w0 ≡ 0),

• p1 the pressure at inlet section,

• p∗ the pressure at the throat section,

• p2 the pressure at the outlet section.

Assume a constant reservoir state and a �xed shape of the nozzle. According to ratio of pressure,

6 operating regimes can be distinguished:

1. p2 = p0, no pressure gradient, the medium inside the channel remains at rest.

2. p0−p2 = ε (p2 slightly smaller than p0), velocity at convergent part increases (does not reach

the critical speed of M = 1) and gradually decreases in the divergent part.

3. p2 = pc1 (�rst critical regime), the velocity reaches M∗ = 1 only at the throat section and

gradually decreases in the divergent section again. The velocity across whole channel remains

subsonic. The value pc1 can be derived from the geometrical size of the throat and outlet

sections.
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with κ the ratio of speci�c heats, A and M the size and Mach number in respective sections.

4. p2 < pc1, the velocity at convergent part is subsonic, reaches the critical speed at the throat

section and accelerates to supersonic down the divergent part. There the velocity suddenly

changes to subsonic through a so-called shock-wave.

5. p2 = pc2 (second critical regime), the shock-wave appears right in the outlet section. The

value pc2 represents the highest pressure for which the outlet section can still be subsonic.

The value pc2 can be determined by the relations (A.1) and (A.2).

6. p2 < pc2, the velocity in the divergent part is exclusively supersonic, no shock-wave appears

and the channel operates as a supersonic nozzle.
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Appendix B

Exhaust Channel Geometry

Figure B.1: Technical drawing of the cylinder head and the exhaust channel.
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Figure B.2: Technical drawing of the exhaust valve.


