
Czech Technical University in Prague
Faculty of Mechanical Engineering

The finite element method in fluids:
stabilization and domain decomposition

Ph.D. thesis

Ing. Jakub Šı́stek

Specialization
Mathematical and Physical Engineering

Advisor
Prof. RNDr. Pavel Burda, CSc.

July 2008

Acknowledgements

At this place, I would like to thank to several people, who have had great influence on my work.
First, I would like to thank to my advisor Prof. Pavel Burda. He introduced me to applied

mathematics, has always motivated me with his optimism, and greatly supported me in various
ways during all the time we have worked together. He also initiated this research.

I greatly thank to Dr. Jaroslav Novotný. He has been my teacher of using computers and
introduced me to the world of parallel computers. I am also very grateful for providing me his
frontal solvers, which were useful in many places of the implementation and saved me a lot of
time, and for many interesting industral problems for testing the programs.

I would like to thank to Prof. Jan Mandel, who created wonderful conditions for my research
during my visit at University of Colorado Denver. He has greatly accelerated the work by frequent
consultations on domain decomposition methods and contributed with many helpful ideas.

I thank to Prof. Ivo Marek for his readiness, patience and time he spent with me during many
useful consultations on various topics.

I want to thank also to my colleagues and friends Dr. Marta Čertı́ková and Bedřich Sousedı́k
for pleasant and inspiring collaboration on the subject of domain decomposition.

I greatly thank to my parents, who has kept supporting me during the time of my studies and
thus allowed me to fully concentrate on the research, and for the way they have educated me.

Finally, I would like to express my greatest thanks to my wife Hanka and our daughter Anežka,
for their tolerance and patience, with which they both accepted my work, and for creating beautiful
family background, which is so important for any human efforts.

My research during the Ph.D. studies was supported by the Grant Agency of the Czech Repub-
lic under grants 106/05/2731 and 106/08/0403, by the Czech Academy of Sciences under grants
IAA2120201/02 and 1ET 400760509, by the U.S. National Science Foundation under grant DMS-
0713876, and by HPC-Europa project (RII3-CT-2003-506079) supported by European Community
- Research Infrastructure Action under the FP6.

Chýnov, July 13th 2008

2

3

Abstrakt
Předkládaná disertačnı́ práce se zabývá použı́tı́m metody konečných prvků (MKP) na řešenı́

problémů prouděnı́. Je uvažována vazká nestlačitelná tekutina. Jejı́ prouděnı́ je popsáno soustavou
Stokesových či Navierových-Stokesových rovnic.

V práci je dále studována technika stabilizace MKP. Touto metodou je možné úspěšně řešit
některá prouděnı́ při Reynoldsových čı́slech výrazně vyššı́ch, než pro jaká jsme schopni nalézt
řešenı́ standardnı́ MKP. Za tuto možnost ovšem platı́me snı́ženou přesnostı́ výpočtu. V práci je
navržena stabilizovaná metoda semiGLS, která je testována na řadě problémů s nestlačitelným
prouděnı́m. Dále jsou navrženy dva postupy pro vyhodnocovánı́ nepřesnosti, kterou do problému
stabilizace zavádı́. Pro tento účel jsou úspěšně využity a posteriornı́ odhady chyby MKP.

Dále jsou diskutovány metody rozkladu oblasti, zejména metoda Balancing Domain Decom-
position by Constraints (BDDC). V práci jsou představeny dva algoritmy metody BDDC vhodné
pro paralelnı́ počı́tače. Prvnı́ z nich je založen na standardnı́ch součástech MKP programů, druhý
využı́vá globálnı́ přı́stup umožněný navrženou reformulacı́ metody. Oba algoritmy byly implemen-
továny a rozsáhle testovány a vybrané výsledky těchto experimentů jsou prezentovány. Algoritmy
jsou testovány na úlohách lineárnı́ pružnosti, tedy úlohách se symetrickými pozitivně definitnı́mi
maticemi. Následně je metoda BDDC úspěšně aplikována na problémy Stokesova prouděnı́.

Abstract
The thesis is devoted to the application of the Finite Element Method (FEM) for solving flow

problems. Incompressible viscous fluid is considered. Such flows are governed by the systems of
Stokes or Navier-Stokes equations.

In the thesis, techniques of stabilization of the FEM are studied. Using this approach, it is
possible to solve problems with considerably higher Reynolds number, than it would be possi-
ble using a standard FEM. However, we pay for this possibility by some loss of accuracy. The
semiGLS stabilized method is proposed in the thesis and is tested on a number of applications
with incompressible flows. Then, two approaches for evaluation of the error induced by stabi-
lization are proposed. For this purpose, a posteriori error estimates of the FEM are successfully
applied.

Further, domain decomposition methods are discussed, especially Balancing Domain Decom-
position by Constraints (BDDC). Two algorithms of the BDDC method for parallel computers are
presented. The first is based on standard parts of FEM software, the second uses a global approach
allowed through the proposed reformulation of the method. Both algorithms were implemented
and extensively tested and selected results of these experiments are presented. The algorithms are
first tested on problems of linear elasticity, which have symmetric positive definite matrices. The
BDDC method is then successfully applied to problems of Stokes flow.

Contents

Index of symbols 6

Abbreviations 8

1 Introduction 9

2 Models of incompressible viscous flow 14
2.1 The Navier-Stokes equations . 14
2.2 The Stokes equations . 15
2.3 Weak formulation of Stokes and Navier-Stokes problems 15

3 Mixed finite element method for flow problems 18
3.1 Function spaces for velocity and pressure approximation 18
3.2 Taylor-Hood finite elements . 19
3.3 Discretization of steady Stokes and Navier-Stokes equations by FEM 21
3.4 Discretization of unsteady Stokes and Navier-Stokes equations by FEM 22

4 SemiGLS stabilization of the finite element method 24
4.1 Formulation of the stabilized problem . 24
4.2 Newton method for solution of the stabilized problem 26

4.2.1 Functionals for the Newton method and their differentials in steady case . . 26
4.2.2 Matrices for the finite element method in steady case 30
4.2.3 Functionals for the Newton method and their differentials in unsteady case 38
4.2.4 Matrices for the finite element method in unsteady case 40
4.2.5 Computation of stabilization parameter 46

4.3 Accuracy of the stabilized method . 48

5 BDDC domain decomposition method 51
5.1 Introduction to iterative substructuring . 51
5.2 Formulation of BDDC . 53
5.3 Projected BDDC preconditioner . 58
5.4 Generalized change of variables . 60

6 Parallel algorithms of the BDDC method 63
6.1 BDDC by frontal solver . 63
6.2 BDDC by multifrontal solver . 65
6.3 Details of the algorithm . 66

6.3.1 Algorithm of preconditioned conjugate gradient method for BDDC 66
6.3.2 Efficient inverse of transformation matrix 69
6.3.3 Storing the matrices in memory . 70

4

CONTENTS 5

7 Numerical results 73
7.1 Applications of semiGLS stabilization to Navier-Stokes flow 73

7.1.1 Steady flow of lid driven cavity . 73
7.1.2 Steady flow in channel with sudden extension of diameter 74
7.1.3 Flow past NACA 0012 airfoil . 79

7.2 Applications of BDDC to linear elasticity . 84
7.2.1 Cube problem . 84
7.2.2 Steam turbine entry nozzle . 88
7.2.3 Shaft with a groove . 90

7.3 Numerical experiments with BDDC for steady Stokes flow 92
7.3.1 Lid driven cavity . 92
7.3.2 Channel with sudden extension of diameter 92
7.3.3 Channel with sudden reduction of diameter 93

8 Conclusion 96

Bibliography 98

Index of symbols

(a, b) open interval of real numbers
[a, b] closed interval of real numbers
C, C1, C2 etc. generic constants
Ω domain, a subset of R2 or R3

∂Ω boundary of domain Ω
∂Ωg part of boundary of domain Ω with Dirichlet boundary condition
∂Ωdn part of boundary of domain Ω with natural (‘do nothing’) bound-

ary condition
Ωi subdomain (also called substructure) i, a subset of Ω
∂Ωi boundary of subdomain Ωi

Γ interface
TK finite element K
hK diameter of element TK
H characteristic size of subdomain
h characteristic size of finite element

Cn(Ω) space of n-times continuously differentiable functions on Ω
L2(Ω) Lebesgue space of square integrable functions over Ω
H1(Ω) Sobolev space W 1,2(Ω)
H1

0 (Ω) subspace of H1(Ω) with zero traces on ∂Ω
V linear space of vector functions with components in H1(Ω) with

zero traces on ∂Ωg

Vg linear space of vector functions with components in H1(Ω) with
traces satisfying Dirichlet boundary conditions on ∂Ωg

Vgh ⊂ Vg finite element functions from Vg
Vh ⊂ V finite element functions from V
Qh ⊂ L2(Ω)/R finite element functions from L2(Ω)/R
Wi space of finite element functions on subdomain Ωi

W product space of finite element functions discontinuous across
subdomains, W = W1 × · · · ×WN

U space of finite element functions continuous on Ω
U ′ dual space to U
UΓ subspace of U of finite element functions with minimal energy on

subdomains, defined by values on interface
U ′Γ dual space to UΓ

Ui subspace of U of finite element functions with nonzero values
only in interior of subdomain Ωi

6

CONTENTS 7

W̃ subspace of W of functions continuous at all coarse degrees of
freedom (unknowns at corners and averages)

W̃ c subspace of W of functions continuous at corners
W̃ avg subspace of W̃ c of functions with continuous averages across sub-

domains
W̃C subspace of W̃ of functions with minimal energy on subdomains,

defined by values in coarse degrees of freedom
W̃i subspace of W̃ of functions with nonzero values in subdomain Ωi

and zero coarse degrees of freedom
‖ · ‖0 L2(Ω) norm
‖ · ‖1 H1(Ω) norm

F(·, ·), F1(·, ·), F2(·, ·) functionals on Vgh ×Qh

< DF1(·, ·), [h, q] > . . Gateaux differential of functional F1(·, ·) with respect to h and q
a(·, ·) symmetric bilinear form on U × U
〈·, ·〉 duality pairing
ã(·, ·) bilinear form on W̃ × W̃
A operator associated with a(·, ·) by 〈Au, v〉 = a(u, v) ∀u, v ∈ U
Ã operator associated with ã(·, ·) by 〈Ãu, v〉 = ã(u, v) ∀u, v ∈ W̃
t . time
τ ,δ stabilization parameters
ϑ time step
s,s scaling parameters

u vector field of fluid velocity, resp. displacement
p pressure divided by density
ν kinematic viscosity of fluid
f density of volume forces per mass unit
S Schur complement matrix
G, G matrix of global constraints
null(G) nullspace of G
Ci, Ci subdomain matrix of constraints
r residual
f right hand side vector
E operator of projection, E : W̃ → UΓ or E : W̃ avg → UΓ

T operator of transformation, T : W̃ c → W̃ c

DP operator of weights, DP : W̃ → W̃ or DP : W̃ avg → W̃ avg

R operator of injection, R : UΓ → W̃ or R : UΓ → W̃ avg

P ,P operator of projection, P : W̃ c → W̃ avg, P : W̃ c → W̃ avg

∇v gradient of scalar field v,∇v =
(
∂v
∂x1
, ∂v
∂x2
, . . . , ∂v

∂xn

)T
∇ · v divergence of vector field v, ∇ · v = ∂v1

∂x1
+ ∂v2

∂x2
+ · · ·+ ∂vn

∂xn

∇v componentwise gradient,∇v = (∇v1,∇v2, . . . ,∇vn)T

∇u : ∇v componentwise scalar product, ∇u : ∇v = ∇u1 · ∇v1 + ∇u2 ·
∇v2 + · · ·+∇un · ∇vn

∆v Laplacian of scalar field v, ∆v = ∂2v
∂x2

1
+ ∂2v

∂x2
2

+ · · ·+ ∂2v
∂x2

n

∆u componentwise Laplacian, ∆u = (∆u1,∆u2, . . . ,∆un)T

Abbreviations

Re Reynolds number
SPD symmetric positive definite
PDE partial differential equations
FEM finite element method
CFD computational fluid dynamics
SUPG Streamline/Upwind Petrov-Galerkin
BB Babuška-Brezzi condition
GLS Galerkin/Least Squares
semiGLS semi Galerkin/Least Squares
DD domain decomposition
FETI Finite Element Tearing and Interconnecting
FETI-DP Finite Element Tearing and Interconnecting, Dual–Primal
BDD Balancing Domain Decomposition
BDDC Balancing Domain Decomposition by Constraints
PCG Preconditioned Conjugate Gradients
MUMPS Multifrontal Massivelly Parallel sparse direct Solver
AEE a posteriori error estimator
w.r.t. with respect to

8

Chapter 1

Introduction

The overwhelming spread of computers has ignited or accelerated many areas of studies connected
somehow to them, among many others, computational mathematics, computational physics, and
computational mechanics. The finite element method (FEM) has become one of the most remark-
able members of this family, introduced nearly at the same time as computers and still being the
leading method for simulations of physical phenomena described by partial differential equations
(PDE).

Two main applications of FEM in mechanical engineering have emerged during the years and
have kept in the centre of interest – structural analysis of various mechanical parts has been per-
formed by FEM from the beginning of the method, while analysis of various flows of fluids rep-
resents slightly younger application. This delay was caused mainly by the generally higher com-
plexity of physical models behind the latter analysis.

Hand in hand with the advance of computers, demands of simulations have grown constantly,
allowing successful solution of problems with larger sizes and better resolution.

It has become clear at the end of the last century, that the answer of computer vendors to
these growing demands on computers of the twenty-first century will be based on dividing the
computational work among several processors, and parallel computers based on this approach
have become commonly available (e.g. by processors with multiple cores).

This tendency attracted the attention of numerical matematics to the development of algorithms
especially suited for parallel processing. In the context of solving PDE, the family of successful
methods generally called domain decomposition has rapidly evolved and started to play the leading
role of such algorithms.

When application of the FEM in linear structure mechanics is now clear enough for solv-
ing common tasks in mechanical engineering, computational fluid dynamics (CFD) still includes
amount of open and not well handled problems. One of them is reliable modelling of incom-
pressible flows at high Reynolds numbers, which often appear in engineering practice. Domain
decomposition methods together with recent parallel computers with large number of processors
open new attractive possibilities for CFD.

The main concern of the presented Ph.D. thesis is modelling of incompressible viscous flows.
Ways of stabilization of the standard FEM are studied. Domain decomposition methods are dis-
cussed as a promising way of parallelization of problems in mechanics of both solids and fluids.

The topic of FEM in CFD is studied in a large number of publications. I mention only the most
important monographs here.

9

CHAPTER 1. INTRODUCTION 10

GIRAULT AND RAVIART [25] present a pioneering monograph on the subject. A comprehen-
sive theory of mixed finite elements, a successful approach to the solution of problems in fluid
mechanics, is presented by BREZZI AND FORTIN [5]. A list of finite elements satisfying the
Babuška-Brezzi stability condition is presented in the book. A detailed description of FEM for
incompressible fluids is given by GRESHO AND SANI [28]. GLOWINSKI [26] describes the same
subject and additionally presents the method of operator splitting. Finally, ELMAN, SILVESTER,
AND WATHEN [16] present interesting connections of discretizations of flow problems by FEM
and modern iterative solution techniques of linear algebra. CHORIN AND MARSDEN [11] present
a nice introduction to mathematical models for fluids. Theoretical questions of existence and
uniqueness of solution to Stokes and Navier-Stokes equations are discussed by TEMAM [56].

The idea of stabilizing the FEM is not quite new in comparison to the history of using FEM
for flow problems. Several researchers have been involved in this area and already presented
a number of techniques and results. Some of them have provided theroretical basis for the problem
from the mathematical point of view, others presented often better results but usually with quite
unclear background. Stabilization techniques were mainly motivated by two issues, that appear
when the standard FEM is applied to flow problems: i) problems with convergence on elements
using equal order approximation for both velocities and pressure, ii) problems with convergence
at high Reynolds numbers. While the former problem is connected to the violation of Babuška-
Brezzi (BB) stability condition, a theoretical result limiting proper choices of velocity and pressure
approximations (see e.g. BREZZI AND FORTIN [5] or ELMAN, SILVESTER, AND WATHEN [16]),
the latter is caused by the nonlinear advective terms in the equations.

Let us review several publications related to the area. HUGHES, FRANCA, AND BALESTRA

[31] presented the stable Petrov-Galerkin formulation of the Stokes problem in 1987. The paper
introduced the notion of residual stabilization methods into fluid mechanics and became the main
reference of the field. DOUGLAS AND WANG [14] introduced an alternative stabilized method for
the Stokes problem in 1989. However, both papers were devoted to the Stokes equations and thus
answered only the issue of violating the Babuška-Brezzi condition by using equal order approxi-
mation. In the same year, HUGHES, FRANCA, AND HULBERT [32] presented Streamline/Upwind
Petrov-Galerkin (SUPG) and Galerkin/Least Squares (GLS) stabilized finite element methods for
the advective-diffusive equation. While the former was a generalization of HUGHES, FRANCA,
AND BALESTRA [31], the latter represented a novel approach to stabilization terms. This work
covered both above-mentioned issues of FEM for fluid mechanics. Their ideas were extended to
the Navier-Stokes equations by FRANCA AND FREY [20], however, still missing theoretical back-
ground. The convergence theory of GLS for linearized Navier-Stokes equations was presented by
FRANCA AND HUGHES [21]. However, all these formulations depended on some stabilization
parameters, constants, that were necessary to be chosen a priori, but otherwise unclear. FRANCA

AND MADUREIRA [23] provided an elegant way of determining these parameters for each element
in 1993. While the method has proved to be quite successful in applications, the meaning of the
stabilizing terms still remained unclear. An explanation of the meaning of stabilizing terms was
presented by HUGHES [30]. It is based on relating the stabilized techniques to multiscale mod-
elling and identifying the stabilized terms with sub-grid scale effects. The similarity to the method
of residual free bubbles (e.g. FRANCA ET AL. [22]) is also mentioned. Work of Tezduyar on Pres-
sure Stabilizing Petrov-Galerkin (PSPG) method (e.g. TEZDUYAR AND SATHE [57]) and work
of Lube and his co-workers (e.g. GELHARD ET AL. [24]) represent recent research in the field
of stabilization of the FEM for fluid dynamics. GLOWINSKI [26] investigates another approach
to stabilization. It uses splitting of the Navier-Stokes equations into the Stokes problem and the
advective-diffusive equation.

Our semiGLS method was presented by Š ÍSTEK [53] and BURDA, NOVOTNÝ, AND Š ÍSTEK [8]

CHAPTER 1. INTRODUCTION 11

as a modification of the GLS method following HUGHES AND FRANCA, AND HULBERT [32]. It
was further analyzed in the aspects of accuracy using a posteriori error estimates in our papers by
BURDA, NOVOTNÝ, AND Š ÍSTEK [9, 10]. These results are presented in the thesis.

The general idea of domain decomposition (DD) methods is simple: divide the physical domain
into smaller subsets (called subdomains or substructures) and transform the problem described by
PDE defined on the whole domain to several problems defined on these subsets. In the context
of finite elements, this division corresponds to division of the computational mesh into several
submeshes.

The role of subdomains has varied during the time. An early use of this idea in FEM com-
putations might be traced back to the time, when the size of discretized problems reached the
point where it was impossible to solve them in computer memory by direct methods. Disjoint
subdomains, also called superelements, were then used to define the interface, i.e. the set of nodes
common to more than one subdomain, and the problem was solved using static condensation of
unknowns. Let us note, that already the team of Zlámal applied the idea of condensation of pa-
rameters (see [38]). First, unknowns in interior of each subdomain were eliminated, and the Schur
complement matrix and reduced right hand side with respect to the interface was created. These
matrices and right hand sides were then assembled to form the global interface problem, much
smaller than the original problem and thus solvable on computers of those days. Once the solution
on the interface was found, the solution in subdomain interiors was resolved by solving Dirichlet
problems on each subdomain with prescribed values on the interface.

While this practical trick helped engineers to fit into computer memory with larger problems,
a mathematical context was hidden until also the interface problem reached the limits of direct
solvers and the transition to iterative methods was necessary. Then, the condition number of the
systems got into the centre of interest. It is well known (e.g. BRENNER AND SCOTT [3]), that the
condition number of the global problem grows as O (h−2) for h→ 0, where h is the characteristic
size of the element in the triangulation. However, mathematical analysis revealed another pleasant
aspect of using static condensation – condition number of the resulting Schur complement matrix
of the interface problem grows only as O (H−1h−1), where H >> h is the characteristic size of
the substructure (cf. BRENNER [2]). Once the Schur complement systems on the interface started
to be solved iteratively, a question of a proper preconditioner was raised, and such methods opened
the field of iterative substructuring.

Krylov subspace methods, especially preconditioned conjugate gradient method (PCG) intro-
duced by CONCUS, GOLUB, AND O’LEARY [12], gained a lot of popularity and dominate in
the field nowadays. When using such methods for solving the problem with Schur complement,
only the multiplication of a vector by this matrix is needed. However, one can compute this prod-
uct without explicit construction of the matrix, which is often too expensive. Instead, a Dirichlet
problem on each subdomain is solved in each iteration.

There has been a challenge to construct an optimal preconditioner for the Schur complement
problem, that would be scalable and provide resulting condition number of preconditioned operator
bounded independently of number of subdomains. Two methods introduced in early 1990s have
been particularly successful in fulfilling these goals: the Finite Element Tearing and Interconnect-
ing (FETI) method (FARHAT AND ROUX [19]), and the Balancing Domain Decomposition (BDD)
method (MANDEL [43]). While BDD is a preconditioner for the Schur complement system on the
interface, where continuity of unknowns on the interface is enforced strongly (primal approach),
the FETI method enforces the continuity only weakly by Langrange multipliers (dual approach),

CHAPTER 1. INTRODUCTION 12

and the Schur complement system on the interface is substituted by dual problem for Lagrange
multipliers of the same size. While both methods have got very popular, they have a common
drawback limiting their connection to standard FEM software – they both require solution of sin-
gular systems on subdomains, a functionality not always available in standard sparse direct solvers
used for the realization of these preconditioners.

This necessity was quite recently resolved by newer counterparts of these methods: FETI-DP
method (FARHAT ET AL. [17]) and BDDC method (DOHRMANN [13]). The FETI-DP method
enforced the continuity of the degrees of freedom at substructure corners as in the primal method
by representing them by one common variable, while the remaining continuity conditions between
the substructures are enforced by Lagrange multipliers. In 2D, the FETI-DP method was proved
to have condition number bounded as O

(
log2 (1 +H/h)

)
by MANDEL AND TEZAUR [50]. How-

ever, the method does not converge as well in 3D and generalized continuity constraints, such as
averages over edges or faces of substructures, need to be added as coarse degrees of freedom for
fast convergence. This fact was first observed experimentally by FARHAT, LESOINNE, AND PIER-
SON [18], and confirmed theoretically by KLAWONN, WIDLUND, AND DRYJA [37], where the
O
(
log2 (1 +H/h)

)
bound was proved again for 3D considering such constraints.

The Balancing Domain Decomposition by Constraints (BDDC) proposed by DOHRMANN [13]
is a primal alternative to the FETI-DP method. The BDDC method imposes the equality of coarse
degrees of freedom at corners and of averages by constraints. The bound O

(
log2 (1 +H/h)

)
for

BDDC was first proved by MANDEL AND DOHRMANN [45].
In an important contribution to the theory of these preconditioners, MANDEL, DOHRMANN,

AND TEZAUR [46] proved, that the spectra of preconditioned operators of BDDC and FETI-DP
are identical (except eigenvalue 1). Simpler proofs of this equality were later presented by LI

AND WIDLUND [42], and BRENNER AND SUNG [4]. The first attempt to apply BDDC to the
Stokes problem was proposed by LI AND WIDLUND [41]. Although the optimal preconditioning
properties of BDDC were recovered, the approach is rather complicated.

So far, only nonoverlapping methods were mentioned, characterized by disjoint partitions into
subdomains. An important class of methods has evolved for partitions with overlaps, called over-
lapping domain decomposition methods. Although attractive condition number bounds of order
O
(
(1 +H/δ)2), where δ is the size of the overlap, are known for such methods (cf. BRENNER

AND SCOTT [3]), these techniques usually suffer from the obvious difficulty of creating the over-
lap on general unstructured meshes. Since the goal of the thesis is a study of nonoverlapping DD
methods, references to overlapping methods are not reviewed.

Nowadays, several monographs devoted to domain decomposition are available. An introduc-
tion to domain decomposition methods is presented by SMITH, BJØRSTAD, AND GROPP [55].
QUARTERONI AND VALLI [51] present several interesting applications of domain decomposition
to problems of fluid mechanics. A comprehensive summary of theoretical results in the field is
presented by TOSELLI AND WIDLUND [58]. Finally, a more practical point of view on domain
decomposition methods is presented by KRUIS [39]. A short but interesting chapter on domain
decomposition methods was also added to the second edition by BRENNER AND SCOTT [3, Chap-
ter 7].

The main goal of this work is to develop a stabilized method suitable for finite elements sat-
isfying the Babuška-Brezzi stability condition and to apply it to flows at high Reynolds numbers.
A way of quantifying the loss of accuracy inherited to the stabilized method should be proposed.

CHAPTER 1. INTRODUCTION 13

A consequent goals of the thesis are the development of an efficient parallel finite element algo-
rithm based on the BDDC method by DOHRMANN [13], suitable for problems with symmetric
positive definite matrices (SPD), such as problems of linear elasticity, and investigation of possible
extensions of the method to indefinite problems of fluid mechanics.

The rest of the thesis is organized in the following way. Incompressible viscous flow described
by the Stokes and the Navier-Stokes system of equations are introduced in Chapter 2. In this
chapter, weak formulations for these systems are derived for both steady and unsteady cases. In
Chapter 3, FEM formulations based on the mixed methods are derived for the Stokes and the
Navier-Stokes problem using Taylor-Hood finite elements. Difficulties accompanying numerical
solution, especially the Babuška-Brezzi stability condition are discussed. The semiGLS stabiliza-
tion technique, a modification of the GLS method by HUGHES, FRANCA, AND HULBERT [32],
is derived in Chapter 4, the principal part of the thesis. In this Chapter, our previous work on
this topic published by BURDA, NOVOTNÝ, AND Š ÍSTEK [8, 9, 10], and Š ÍSTEK [53] is recalled
and summarized. Two ways of evaluating the accuracy of the stabilization technique are pro-
posed. A posteriori error estimates for the Navier-Stokes equations are found as a useful tool for
this purpose. The stabilization is applied to the incompressible Navier-Stokes equations and sev-
eral numerical results are presented in Chapter 7. Chapter 5 is devoted to the formulation of the
BDDC preconditioner. A reformulation of the algorithm in comparison to the original paper by
DOHRMANN [13] is suggested, so that it better fits the desired parallel algorithms with connection
to averages over subdomain edges and faces. Two independent parallel algorithms of the precon-
ditioner are described in Chapter 6. In Chapter 7, several numerical tests are presented to verify
the algorithm on symmetric positive definite problems arising from linear elasticity, and the appli-
cability is then investigated on several experiments with the Stokes flow. Chapter 8 summarizes
main achievements of the presented work and proposes topics for further research.

Chapter 2

Models of incompressible viscous flow

Let Ω be an open bounded domain in R2 filled with an incompressible viscous fluid, and let ∂Ω be
its boundary. The generic point of R2 is denoted by x = (x1, x2)T ,

2.1 The Navier-Stokes equations
Flow of Newtonian fluids with constant density is modelled by the following unsteady Navier-
Stokes system of partial differential equations (nonconservative form)

∂u

∂t
+ (u · ∇)u− ν∆u +∇p = f in Ω× [0, T], (2.1)

∇ · u = 0 in Ω× [0, T], (2.2)

where

• t denotes time variable,

• u = (u1, u2)T denotes the vector of fluid velocity,

• p denotes the pressure divided by the density,

• ν denotes the kinematic viscosity of the fluid supposed to be constant,

• f denotes the density of volume forces per mass unit.

The system introduced is not sufficient to define a flow since it has an infinity of solutions. To
restrict the number of solutions, we have to consider further conditions, such as the initial condition

u = u0 in Ω, t = 0, (2.3)

where u0 is a given flow field satisfying∇ · u0 = 0, and the boundary conditions

u = g on ∂Ωg × [0, T], (2.4)
−ν(∇u)n + pn = 0 on ∂Ωdn × [0, T], (2.5)

where

• ∂Ωg and ∂Ωdn are two subsets of ∂Ω satisfying ∂Ω = ∂Ωg ∪ ∂Ωdn, µR1(∂Ωg ∩ ∂Ωdn) = 0,

• n denotes an outer normal vector to the boundary ∂Ω with unit lenght,

14

CHAPTER 2. MODELS OF INCOMPRESSIBLE VISCOUS FLOW 15

• g is a given function satisfying
∫
∂Ω

g · nd∂Ω = 0 in the case of ∂Ω = ∂Ωg.

If the solution to system (2.1)–(2.2) has a steady limit for t → ∞, the time derivative in (2.1)
vanishes in the limit and the state can be modelled by the steady Navier-Stokes system

(u · ∇)u− ν∆u +∇p = f in Ω, (2.6)
∇ · u = 0 in Ω, (2.7)

and boundary conditions

u = g on ∂Ωg, (2.8)
−ν(∇u)n + pn = 0 on ∂Ωdn. (2.9)

Initial condition is not present, and u, p, f , and g are no more functions of time.

2.2 The Stokes equations
The Stokes problem is an important simplification of the Navier-Stokes system, that corresponds to
linearization of the momentum equation (2.1) around zero velocity. Such simplification is justified
for diffusion-dominated flows, such as flows at very low Reynolds number or in regions, where the
speed is reduced (e.g. boundary layers). The nonlinear convection term of Navier-Stokes equations
is neglected and the unsteady Stokes problem reads

∂u

∂t
− ν∆u +∇p = f in Ω× [0, T], (2.10)

∇ · u = 0 in Ω× [0, T], (2.11)
u = u0 in Ω, t = 0, (2.12)
u = g on ∂Ωg × [0, T], (2.13)

−ν(∇u)n + pn = 0 on ∂Ωdn × [0, T]. (2.14)

Due to the absence of the nonlinear term in momentum equation (2.10), the problem has
a unique steady solution for time t → ∞ [56]. If we are not investigating the transient behaviour
of the flow, we could find this state directly by solving the steady Stokes problem

−ν∆u +∇p = f in Ω, (2.15)
∇ · u = 0 in Ω, (2.16)

u = g on ∂Ωg, (2.17)
−ν(∇u)n + pn = 0 on ∂Ωdn. (2.18)

2.3 Weak formulation of Stokes and Navier-Stokes problems
Although the weak solution to the Navier-Stokes problem is much more difficult to analyze than
in the (linear) Stokes case, the standard notion of the weak solution is introduced similarly for
both problems. For this reason, the derivation of the weak problem is presented only for the most
general case considered, i.e. the time-dependent Navier-Stokes problem, and it is abbreviated for
the other problems.

We need to introduce several function spaces for further derivations. Note, that all integrals
are considered in the Lebesque sense. Let L2(Ω) be the space of square integrable functions on Ω,

CHAPTER 2. MODELS OF INCOMPRESSIBLE VISCOUS FLOW 16

and let L2(Ω)/R be the space of functions in L2(Ω) ignoring an additive constant. Let H1(Ω) and
H1

0 (Ω) be the Sobolev spaces defined as

H1(Ω) =
{
v | v ∈ L2(Ω),

∂v

∂xi
∈ L2(Ω), i = 1, 2

}
,

H1
0 (Ω) =

{
v | v ∈ H1(Ω),Tr v = 0

}
,

where Tr is the trace operator Tr : H1(Ω) −→ L2(∂Ωg), and derivatives are considered in the
weak sense.

The norm of function v in the space L2(Ω) is considered as

‖v‖2
L2(Ω) =

∫
Ω

v2dΩ,

and the norm of function v in the Sobolev space H1(Ω) is considered as

‖v‖2
H1(Ω) =

∫
Ω

(
v2 +

2∑
k=1

(
∂v

∂xk

)2
)

dΩ.

Sometimes, the notation ‖ · ‖L2(Ω) is shortened to ‖ · ‖0 and ‖ · ‖H1(Ω) to ‖ · ‖1.
Let us define vector function spaces Vg and V by

Vg =
{
v = (v1, v2)T | v ∈ [H1(Ω)]2; Tr vi = gi, i = 1, 2

}
,

V =
{
v = (v1, v2)T | v ∈ [H1

0 (Ω)]2
}
.

Let us note, that the norm of vector function v in the space Vg and V is then

‖v‖2
[H1(Ω)]2 =

2∑
i=1

∫
Ω

(
v2
i +

2∑
k=1

(
∂vi
∂xk

)2
)

dΩ,

and the norm of vector function v in the space [L2(Ω)]2 is

‖v‖2
[L2(Ω)]2 =

2∑
i=1

∫
Ω

v2
i dΩ.

Let us first derive the weak formulation of the Navier-Stokes equations (2.1)–(2.5) in the way
of mixed methods, i.e. usage of different function spaces of test functions for the momentum
equation and for the continuity equation (cf. [5]). To derive it, we suppose for a while, that the
functions appearing in the system are sufficiently smooth. Then for any t ∈ [0, T], we have∫

Ω

∂u

∂t
· vdΩ +

∫
Ω

(u · ∇)u · vdΩ− ν
∫

Ω

∆u · vdΩ +

∫
Ω

∇p · vdΩ =

∫
Ω

f · vdΩ, (2.19)∫
Ω

ψ∇ · udΩ = 0, (2.20)

u− ug ∈ V, (2.21)

for any v ∈ V and ψ ∈ L2(Ω). Here ug ∈ Vg is a representation of the Dirichlet boundary
condition g in (2.4). We assume g ∈ [L2(∂Ωg)]

2 and f ∈ [L2(Ω)]2.

CHAPTER 2. MODELS OF INCOMPRESSIBLE VISCOUS FLOW 17

Using Green’s formula on the third and the fourth term of equation (2.19), we obtain∫
Ω

∂u

∂t
· vdΩ +

∫
Ω

(u · ∇)u · vdΩ− ν
∫
∂Ω

(∇u)v · nd∂Ω + ν

∫
Ω

∇u : ∇vdΩ +

+

∫
∂Ω

pv · nd∂Ω−
∫

Ω

p∇ · vdΩ =

∫
Ω

f · vdΩ, (2.22)∫
Ω

ψ∇ · udΩ = 0, (2.23)

u− ug ∈ V. (2.24)

The integrals over boundary in (2.22) vanish for considered boundary conditions. Here, ∇u : ∇v
represents the componentwise scalar product∇u1 · ∇v1 +∇u2 · ∇v2.

Then the weak formulation of the unsteady Navier-Stokes problem reads:
Find of u(t) = (u1(t), u2(t))T ∈ Vg and p(t) ∈ L2(Ω)/R satisfying for any t ∈ [0, T]∫

Ω

∂u

∂t
· vdΩ +

∫
Ω

(u · ∇)u · vdΩ + ν

∫
Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

f · vdΩ, (2.25)∫
Ω

ψ∇ · udΩ = 0, (2.26)

u− ug ∈ V, (2.27)

for v ∈ V and ψ ∈ L2(Ω).
Similarly, the weak formulation of the steady Navier-Stokes problem reads:

Find u = (u1, u2)T ∈ Vg and p ∈ L2(Ω)/R satisfying∫
Ω

(u · ∇)u · vdΩ + ν

∫
Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

f · vdΩ, (2.28)∫
Ω

ψ∇ · udΩ = 0, (2.29)

u− ug ∈ V, (2.30)

for v ∈ V and ψ ∈ L2(Ω).
Repeating the same procedure for the unsteady Stokes problem (2.10)–(2.14), and the steady

Stokes problem (2.15)–(2.18), respectively, leads to the weak formulation of the unsteady Stokes
problem:
Find u(t) = (u1(t), u2(t))T ∈ Vg and p(t) ∈ L2(Ω)/R satisfying for any t ∈ [0, T]∫

Ω

∂u

∂t
· vdΩ + ν

∫
Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

f · vdΩ, (2.31)∫
Ω

ψ∇ · udΩ = 0, (2.32)

u− ug ∈ V, (2.33)

for v ∈ V and ψ ∈ L2(Ω), and to the weak formulation of the steady Stokes problem:
Find u = (u1, u2)T ∈ Vg and p ∈ L2(Ω)/R satisfying

ν

∫
Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ =

∫
Ω

f · vdΩ, (2.34)∫
Ω

ψ∇ · udΩ = 0, (2.35)

u− ug ∈ V, (2.36)

for v ∈ V and ψ ∈ L2(Ω).

Chapter 3

Mixed finite element method for flow
problems

In this chapter, an oveview of the finite element method used for the solution of the Stokes and
Navier-Stokes problem is presented. As in the previous chapter, due to the similarity of finite
element spaces used for both problems, the derivations apply to both unless othewise noted.

Let us divide the domain Ω (supposed now polygonal) into N elements TK of a shape regular
triangulation T such that

N⋃
K=1

TK = Ω,

µR2 (TK ∩ TL) = 0, K 6= L.

Let hK = diam(TK) denote the largest distance in element TK .

3.1 Function spaces for velocity and pressure approximation
The choice of function spaces for velocity and pressure approximation is not arbitrary in solv-
ing Navier-Stokes as well as Stokes equations by the FEM. It is often useful to choose different
polynomial approximation for velocities and for pressure. Although equal order approximation is
easier to implement, pressure exhibits instability. Therefore, approximation with different order is
more suitable for practical computing, cf. [5, 16].

The following properties of desired solution follow from the weak formulations (2.25)–(2.27),
(2.28)–(2.30), (2.31)–(2.33), and (2.34)–(2.36): i) each component of velocity is a square inte-
grable function of x, and at least its first weak derivative by any coordinate exists; ii) pressure is
a square integrable function of x.

The polynomial order of approximation of velocity on an element is not independent of ap-
proximation of pressure. Babuška and Brezzi derived an inequality limiting these approximations

∃CB > 0, const. ∀qh ∈ Qh ∃vh ∈ Vgh (qh,∇ · vh)0 ≥ CB‖qh‖0‖vh‖1, (3.1)

where Qh and Vgh are the function spaces for approximation of pressure and velocity. This is
an important condition necessary in the proof of uniqueness of pressure for Stokes problem. It
has been shown, that severe difficulties have to be overcome when using approximations, which
do not satisfy the Babuška-Brezzi (abbreviated to BB) condition, cf. e.g. [5]. There are several

18

CHAPTER 3. MIXED FINITE ELEMENT METHOD FOR FLOW PROBLEMS 19

finite elements (in 2D as well as in 3D) which do satisfy the BB-condition. Following list is not
complete.

Finite elements satisfying the Babuška-Brezzi condition (cf. [5])

• P+
1 P1 (mini element)

• P2P1 (Taylor-Hood, 1973)

• P+
2 P1

• P+
2 P−1 (Crouzeix-Raviart)

• Q2Q1 (Taylor-Hood)

• Q2P−1

3.2 Taylor-Hood finite elements
Due to their application in this work, Taylor-Hood finite elements on triangles and quadrilaterals
are described more precisely. Values of velocity are aproximated at corner nodes and at centres
of edges, while pressure variables are at corner nodes only (Figure 3.1). This corresponds to the
following function spaces on element TK :

• triangle

vi ∈ P2(TK), i = 1, 2, i.e. polynomial of the second order,

p ∈ P1(TK) i.e. linear polynomial.

• quadrilateral

vi ∈ Q2(TK), i = 1, 2, i.e. polynomial of the second order for each coordinate,

p ∈ Q1(TK) i.e. bilinear polynomial.

The approximation leads to the following shape functions written in local coordinate system
{ξ, η}:

• triangle
Shape functions for approximation of velocity component:

N1 = 1/2 · (2− ξ − η)(1− ξ − η)

N2 = 1/2 · ξ(ξ − 1)

N3 = 1/2 · η(η − 1)

N4 = ξ(2− ξ − η)

N5 = ξη

N6 = η(2− ξ − η)

Shape functions for approximation of pressure

M1 = 1/2 · (2− ξ − η)

M2 = 1/2 · ξ
M3 = 1/2 · η

CHAPTER 3. MIXED FINITE ELEMENT METHOD FOR FLOW PROBLEMS 20

�
�

-
6

�

�

-

6

Æ��u Æ��u
Æ��uÆ��u

vx; vy; p vx; vy; p
vx; vy; pvx; vy; p

vx; vy vx; vy
vx; vy
vx; vy

1 2
34

8 6
5
7

Æ�� Æ��
Æ��
Æ��

-6
-6

-6
-6

-6 -6
-6

-6 Æ��u Æ��u
Æ��u������ ������Æ��

Æ��
Æ��vx; vy; p vx; vy; p

vx; vy; p
vx; vy vx; vy

vx; vy1 2
3

6 5
4-6

-6

-6-6 -6
-6

Figure 3.1: Taylor-Hood reference elements

• quadrilateral
Shape functions for approximation of velocity component

N1 = 1/4 · (1− ξ)(1− η)(−ξ − η − 1)

N2 = 1/4 · (1 + ξ)(1− η)(ξ − η − 1)

N3 = 1/4 · (1 + ξ)(1 + η)(ξ + η − 1)

N4 = 1/4 · (1− ξ)(1 + η)(−ξ + η − 1)

N5 = 1/2 · (1− ξ2)(1− η)

N6 = 1/2 · (1− η2)(1 + ξ)

N7 = 1/2 · (1− ξ2)(1 + η)

N8 = 1/2 · (1− η2)(1− ξ)

Shape functions for approximation of pressure

M1 = 1/4 · (1− ξ)(1− η)

M2 = 1/4 · (1 + ξ)(1− η)

M3 = 1/4 · (1 + ξ)(1 + η)

M4 = 1/4 · (1− ξ)(1 + η)

CHAPTER 3. MIXED FINITE ELEMENT METHOD FOR FLOW PROBLEMS 21

3.3 Discretization of steady Stokes and Navier-Stokes equations
by FEM

For isoparametric finite elements, velocities and pressure on an element TK are given as

vx|TK
=

Nu∑
i=1

vxi
Ni,

vy|TK
=

Nu∑
i=1

vyi
Ni,

p|TK
=

Np∑
i=1

piMi,

where

• vx denotes the component of velocity in the direction of x-coordinate

• vy denotes the component of velocity in the direction of y-coordinate

• p denotes pressure

• vxi
is the value of velocity vx in node i

• vyi
is the value of velocity vy in node i

• pi is the value of pressure in node i

• Nu is the number of nodes with value of velocity on element given (in the case of Taylor-
Hood elements, Nu = 8 for quadrilateral and Nu = 6 for triangle)

• Np is the number of nodes with value of pressure on element given (in the case of Taylor-
Hood elements, Np = 4 for quadrilateral, Np = 3 for triangle)

Let us employ the notation

Rm(TK) =

{
Pm(TK), if TK is a triangle
Qm(TK), if TK is a quadrilateral

,

and let C(Ω) denote the space of continuous functions on Ω.
Application of Taylor-Hood finite elements leads to an approximation on the domain Ω satis-

fying uh ∈ Vgh and ph ∈ Qh where

Vgh =
{
vh = (vh1 , vh2)T ∈ [C(Ω)]2; vhi

|TK
∈ R2(TK), K = 1, . . . , N, i = 1, 2, vh = gh on ∂Ωg

}
,

Qh =
{
ψh ∈ C(Ω); ψh |TK

∈ R1(TK), K = 1, . . . , N
}
.

Further, we introduce the space of test functions

Vh =
{
vh = (vh1 , vh2)T ∈ [C(Ω)]2; vhi

|TK
∈ R2(TK), K = 1, . . . , N, i = 1, 2, vh = 0 on ∂Ωg

}
.

CHAPTER 3. MIXED FINITE ELEMENT METHOD FOR FLOW PROBLEMS 22

Since these function spaces satisfy Vgh ⊂ Vg, Vh ⊂ V , and Qh ⊂ L2(Ω)/R, we are now ready to
introduce the approximate steady Navier-Stokes problem based on the weak formulation (2.28)–
(2.30):

Find uh ∈ Vgh and ph ∈ Qh satisfying∫
Ω

(uh · ∇)uh · vhdΩ + ν

∫
Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ =

∫
Ω

f · vhdΩ, ∀vh ∈ Vh,(3.2)∫
Ω

ψh∇ · uhdΩ = 0, ∀ψh ∈ Qh, (3.3)

uh − ugh ∈ Vh, (3.4)

where ugh ∈ Vgh is the projection of ug onto the space Vgh. Similarly, we derive the approximate
steady Stokes problem from (2.34)–(2.36):
Find uh ∈ Vgh and ph ∈ Qh satisfying

ν

∫
Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ =

∫
Ω

f · vhdΩ, ∀vh ∈ Vh, (3.5)∫
Ω

ψh∇ · uhdΩ = 0, ∀ψh ∈ Qh, (3.6)

uh − ugh ∈ Vh. (3.7)

3.4 Discretization of unsteady Stokes and Navier-Stokes equa-
tions by FEM

To solve the unsteady Stokes equations (2.31)–(2.33) or Navier-Stokes equations (2.25)–(2.27), we
need to discretize the systems both in space and time. Let us follow the concept of the method of
lines (MOL) and perform the space semidiscretization first, followed by the discretization in time.

Extending derivations for the steady case in Section 3.3, we first introduce the semidiscrete
unsteady Navier-Stokes problem based on the weak formulation (2.25)–(2.27):

Find uh(t) ∈ Vgh, t ∈ [0, T] and ph(t) ∈ Qh, t ∈ [0, T] satisfying∫
Ω

∂uh
∂t
· vhdΩ +

∫
Ω

(uh · ∇)uh · vhdΩ + ν

∫
Ω

∇uh : ∇vhdΩ−

−
∫

Ω

ph∇ · vhdΩ =

∫
Ω

f · vhdΩ, ∀vh ∈ Vh, (3.8)∫
Ω

ψh∇ · uhdΩ = 0, ∀ψh ∈ Qh, (3.9)

uh − ugh ∈ Vh. (3.10)

Let us now discretize the problem in time. We consider partition of the time interval [0, T] into
M time intervals with M + 1 time layers. The time step between n-th time layer and (n + 1)-st
time layer is assumed constant and is denoted by ϑ. We employ the implicit Euler method (also
known as the backward difference method), i.e. time derivative is substituted as

∂uh
∂t
≈ un+1

h − unh
ϑ

.

CHAPTER 3. MIXED FINITE ELEMENT METHOD FOR FLOW PROBLEMS 23

This leads to fully implicit method for seeking uh in (n + 1)-st time layer. The discrete unsteady
Navier-Stokes problem then reads:

Find un+1
h ∈ Vgh and pn+1

h ∈ Qh satisfying

1

ϑ

∫
Ω

un+1
h · vhdΩ +

∫
Ω

(un+1
h · ∇)un+1

h · vhdΩ + ν

∫
Ω

∇un+1
h : ∇vhdΩ−

−
∫

Ω

pn+1
h ∇ · vhdΩ− 1

ϑ

∫
Ω

unh · vhdΩ =

∫
Ω

fn+1 · vhdΩ, ∀vh ∈ Vh, (3.11)∫
Ω

ψh∇ · un+1
h dΩ = 0, ∀ψh ∈ Qh, (3.12)

un+1
h − un+1

gh ∈ Vh. (3.13)

Applying now the same derivations to problem (2.31)–(2.33), we can derive the discrete un-
steady Stokes problem:

Find un+1
h ∈ Vgh and pn+1

h ∈ Qh satisfying

1

ϑ

∫
Ω

un+1
h · vhdΩ + ν

∫
Ω

∇un+1
h : ∇vhdΩ −

∫
Ω

pn+1
h ∇ · vhdΩ−

−1

ϑ

∫
Ω

unh · vhdΩ =

∫
Ω

fn+1 · vhdΩ, ∀vh ∈ Vh, (3.14)∫
Ω

ψh∇ · un+1
h dΩ = 0, ∀ψh ∈ Qh, (3.15)

un+1
h − un+1

gh ∈ Vh. (3.16)

Chapter 4

SemiGLS stabilization of the finite element
method

In this chapter, the semiGLS method of stabilization of FEM is recalled. It was introduced in [53]
as a modification of the Galerkin Least-Squares (GLS) technique by Hughes, Franca and their co-
workers [20, 21, 23, 31, 32]. The semiGLS method was further analyzed in our papers [8] and [10].
Main results are summarized in this chapter.

Throughout the chapter, the Navier-Stokes problem is considered. The purpose of the semiGLS
stabilization is to extend the applicability of the finite element method of Chapter 3 to flows at high
Reynolds numbers, which are of practical interest, but for which the standard Galerkin method fails
to converge.

4.1 Formulation of the stabilized problem
Franca and Hughes analyzed in [21] a modification of the GLS method to stabilize the steady
linearized Navier-Stokes equations given by

(∇u)a +∇p− ν∆u = f in Ω, (4.1)
∇ · u = 0 in Ω, (4.2)

u = 0 on ∂Ω, (4.3)

where ∇ · a = 0. They defined the norm on Vgh ×Qh as

|||{u, p}|||2 ≡ ν‖∇u‖2
0,Ω +

∑
K

τ‖(∇u)a +∇p− ν∆u‖2
0,K +

∑
K

δ‖∇ · u‖2
0,K , (4.4)

where δ and τ are certain stabilization parameters, and they prove the following lemma:

Lemma 1 (Stability) The bilinear form of the linearized problem (4.1)–(4.3) satisfies

BGLS(uh, ph; uh, ph) = |||{uh, ph}|||2.

For the Stokes problem, the following estimate is proved in [21]

|||{uh, ph}|||2 ≥
ν

2
‖∇u‖2

0,Ω +
1

2

∑
K

τ‖∇p‖2
0,K +

∑
K

δ‖∇ · u‖2
0,K . (4.5)

Notice, that the choice δ = 0 also gives stability. It is important for the semiGLS method.
Using stability, the following convergence theorem is proved in [21]:

24

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 25

Theorem 1 (Convergence) Assuming constant viscosity ν, the solution {uh, ph} obtained by the
GLS method converges to the solution {u, p} of the weak formulation of (4.1)–(4.3) as follows:

|||{uh, ph} − {u, p}|||2 ≤ C
∑
K

[
H(ReK − 1)

(
sup
x∈TK

|a|qh2k+1
K |u|2k+1,TK

+ sup
x∈TK

|a|−1
q h2l+1

K |p|2l+1,TK

)

+ H(1− ReK)
(
νh2k

K |u|2k+1,TK
+ ν−1h2l+2

K |p|2l+1,TK

)]
,

where H(·) is the Heaviside function given by

H(x− y) =

{
0, x < y
1, x > y

,

and ReK is local Reynolds number on element K.

The semiGLS method was derived from the variant of GLS presented for the Navier-Stokes
equations in [23] with the following modifications: The main difference between the two is the
fact, that in semiGLS, stabilization of the continuity equation is omitted. The stabilized unsteady
Navier-Stokes problem is derived from the semidiscrete formulation (3.8)–(3.10) as:

Find uh(t) ∈ Vgh, t ∈ [0, T] and ph(t) ∈ Qh, t ∈ [0, T] satisfying for any t ∈ [0, T]

BsGLS(uh, ph; vh, ψh) = LsGLS(vh, ψh), ∀vh ∈ Vh, ∀ψh ∈ Qh, (4.6)
uh − ugh ∈ Vh, (4.7)

where

BsGLS(uh, ph; vh, ψh) ≡
∫

Ω

∂uh
∂t
· vhdΩ +

∫
Ω

(uh · ∇)uh · vhdΩ +

+ ν

∫
Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ +

∫
Ω

ψh∇ · uhdΩ +

+
N∑
K=1

∫
TK

[
∂uh
∂t

+ (uh · ∇)uh − ν∆uh +∇ph
]
· τ [(uh · ∇)vh − ν∆vh +∇ψh] dΩ,

LsGLS(vh, ψh) ≡
∫

Ω

f · vhdΩ +
N∑
K=1

∫
TK

f · τ [(uh · ∇)vh − ν∆vh +∇ψh] dΩ.

Here τ is a positive stabilization parameter. In Section 4.2.5, details on its computation are pre-
sented.

The stabilized steady Navier-Stokes problem is derived analogously as:

Find uh ∈ Vgh and ph ∈ Qh satisfying

BsGLS(uh, ph; vh, ψh) = LsGLS(vh, ψh), ∀vh ∈ Vh, ∀ψh ∈ Qh, (4.8)
uh − ugh ∈ Vh, (4.9)

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 26

where

BsGLS(uh, ph; vh, ψh) ≡
∫

Ω

(uh · ∇)uh · vhdΩ +

+ ν

∫
Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ +

∫
Ω

ψh∇ · uhdΩ +

+
N∑
K=1

∫
TK

[
∂uh
∂t

+ (uh · ∇)uh − ν∆uh +∇ph
]
· τ [(uh · ∇)vh − ν∆vh +∇ψh] dΩ,

LsGLS(vh, ψh) ≡
∫

Ω

f · vhdΩ +
N∑
K=1

∫
TK

f · τ [(uh · ∇)vh − ν∆vh +∇ψh] dΩ.

4.2 Newton method for solution of the stabilized problem
In this section, a method for solution of the stabilized problem (4.6)–(4.7) and (4.8)–(4.9) is pro-
posed.

The steady stabilized problem (4.8)–(4.9) is represented by a system of nonlinear equations.
If the backward difference is applied to the time derivative in unsteady semiGLS problem (4.6)–
(4.7) (cf. Section 3.4), a fully implicit method is derived. This is characterized, again, by solving
a system of nonlinear equations in each time layer.

Based on the previous work [53], the Newton method is applied to the solution of the resulting
system. In the rest of the section, matrices of the linearized problem solved in each iteration of
the Newton method are derived. First, the derivation is presented for the steady stabilized problem
(4.8)–(4.9), followed by extension to the unsteady case (4.6)–(4.7).

Notation 1 Since only finite element functions uh, vh, ph, and ψh are considered in this section,
index h is omitted in what follows.

4.2.1 Functionals for the Newton method and their differentials in steady
case

Solution of the nonlinear system representing the stabilized problem (4.8)–(4.9) is equivalent to
a consequent minimization of two nonlinear functionals F1(u, p) and F2(u, p) corresponding to

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 27

momentum equation and continuity equation, separately. These functionals are defined as

F1(u, p) =

∫
Ω

(u · ∇)u · vdΩ + ν

∫
Ω

∇u : ∇vdΩ−
∫

Ω

p∇ · vdΩ−
∫

Ω

f · vdΩ +

+
N∑
K=1

{∫
TK

τ(u · ∇)u · (u · ∇)vdΩ− ν
∫
TK

τ(u · ∇)u ·∆vdΩ +

+

∫
TK

τ(u · ∇)u · ∇ψdΩ− ν
∫
TK

τ∆u · (u · ∇)vdΩ + ν2

∫
TK

τ∆u ·∆vdΩ−

− ν

∫
TK

τ∆u · ∇ψdΩ +

∫
TK

τ∇p · (u · ∇)vdΩ− ν
∫
TK

τ∇p ·∆vdΩ +

+

∫
TK

τ∇p · ∇ψdΩ−
∫
TK

τ f · (u · ∇)vdΩ +

+ ν

∫
TK

τ f ·∆vdΩ−
∫
TK

τ f · ∇ψdΩ

}
,

F2(u, p) =

∫
Ω

ψ∇ · udΩ.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 28

We propose using the Newton method to find the solution, for which we need Fréchet differ-
entials of functionals F1(u, p) and F2(u, p). We can find them by evaluating Gateaux differentials
since we assume that both exist:

< DF1(u, p), [h, q] >=

= lim
t→0

1

t

[∫
Ω

[(u + th) · ∇](u + th) · vdΩ + ν

∫
Ω

∇(u + th) : ∇vdΩ−

−
∫

Ω

(p+ tq)∇ · vdΩ−
∫

Ω

f · vdΩ +

+
N∑
K=1

{∫
TK

τ [(u + th) · ∇](u + th) · [(u + th) · ∇]vdΩ−

− ν

∫
TK

τ [(u + th) · ∇](u + th) ·∆vdΩ +

∫
TK

τ [(u + th) · ∇](u + th) · ∇ψdΩ−

− ν

∫
TK

τ∆(u + th) · [(u + th) · ∇]vdΩ + ν2

∫
TK

τ∆(u + th) ·∆vdΩ−

− ν

∫
TK

τ∆(u + th) · ∇ψdΩ +

∫
TK

τ∇(p+ tq) · [(u + th) · ∇]vdΩ−

− ν

∫
TK

τ∇(p+ tq) ·∆vdΩ +

∫
TK

τ∇(p+ tq) · ∇ψdΩ−

−
∫
TK

τ f · [(u + th) · ∇]vdΩ + ν

∫
TK

τ f ·∆vdΩ−
∫
TK

τ f · ∇ψdΩ

}
−

−
∫

Ω

(u · ∇)u · vdΩ− ν
∫

Ω

∇u : ∇vdΩ +

∫
Ω

p∇ · vdΩ +

∫
Ω

f · vdΩ−

−
N∑
K=1

{∫
TK

τ(u · ∇)u · (u · ∇)vdΩ− ν
∫
TK

τ(u · ∇)u ·∆vdΩ +

+

∫
TK

τ(u · ∇)u · ∇ψdΩ− ν
∫
TK

τ∆u · (u · ∇)vdΩ +

+ ν2

∫
TK

τ∆u ·∆vdΩ− ν
∫
TK

τ∆u · ∇ψdΩ +

+

∫
TK

τ∇p · (u · ∇)vdΩ− ν
∫
TK

τ∇p ·∆vdΩ +

+

∫
TK

τ∇p · ∇ψdΩ−
∫
TK

τ f · (u · ∇)vdΩ +

+ ν

∫
TK

τ f ·∆vdΩ−
∫
TK

τ f · ∇ψdΩ

}]
,

< DF2(u, p), [h, q] >= lim
t→0

1

t

[∫
Ω

ψ∇ · (u + th)dΩ−
∫

Ω

ψ∇ · udΩ

]
.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 29

After letting t→ 0, we get the following lemma.

Lemma 2 Assume all functions sufficiently smooth. Then the Gateaux differentials of functionals
F1(u, p) and F2(u, p) are

< DF1(u, p), [h, q] >=

=

∫
Ω

(h · ∇)u · vdΩ +

∫
Ω

(u · ∇)h · vdΩ + ν

∫
Ω

∇h : ∇vdΩ−
∫

Ω

q∇ · vdΩ +

+
N∑
K=1

{∫
TK

τ(h · ∇)u · (u · ∇)vdΩ +

∫
TK

τ(u · ∇)h · (u · ∇)vdΩ +

+

∫
TK

τ(u · ∇)u · (h · ∇)vdΩ− ν
∫
TK

τ(h · ∇)u ·∆vdΩ− ν
∫
TK

τ(u · ∇)h ·∆vdΩ +

+

∫
TK

τ(h · ∇)u · ∇ψdΩ +

∫
TK

τ(u · ∇)h · ∇ψdΩ− ν
∫
TK

τ∆h · (u · ∇)vdΩ−

− ν

∫
TK

τ∆u · (h · ∇)vdΩ + ν2

∫
TK

τ∆h ·∆vdΩ− ν
∫
TK

τ∆h · ∇ψdΩ +

+

∫
TK

τ∇q · (u · ∇)vdΩ +

∫
TK

τ∇p · (h · ∇)vdΩ− ν
∫
TK

τ∇q ·∆vdΩ +

+

∫
TK

τ∇q · ∇ψdΩ−
∫
TK

τ f · (h · ∇)vdΩ

}
,

and

< DF2(u, p), [h, q] >=

∫
Ω

ψ∇ · hdΩ.

Let us formally introduce the functional

F(u, p) = F1(u, p) + F2(u, p), (4.10)

and its differential

< DF(u, p), [h, q] >=< DF1(u, p), [h, q] > + < DF2(u, p), [h, q] > . (4.11)

The algorithm consists of the following steps

1. solution of the equation system (the zth iteration of the Newton method) for h, q:

< DF(u, p), [h, q] >= −F(u, p) (4.12)

2. correction of the solution u, p:

uz+1 = uz + h

pz+1 = pz + q

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 30

4.2.2 Matrices for the finite element method in steady case
Let us derive the element matrix for a finite element TK . We substitute

hx|TK
=

Nu∑
i=1

hxiNi,

hy|TK
=

Nu∑
i=1

hyiNi,

q|TK
=

Np∑
i=1

qiMi,

and reduce all test functions to

v = (Nj, 0), v = (0, Nj),

ψ = Mj,

where

• Nj, j = 1, . . . , Nu are the shape functions for each component of velocity on the element,

• Mj, j = 1, . . . , Np are the shape functions for pressure on the element.

Then, we derive three equations for each node from the scalar equation (4.12) by taking in turn the
following combinations of test functions

v = (Nj, 0), ψ = 0,

v = (0, Nj), ψ = 0,

v = (0, 0), ψ = Mj.

These equations read for the node j

< DF(u, p), [h, q] >j1= −F(u, p)j1 , (4.13)
< DF(u, p), [h, q] >j2= −F(u, p)j2 , (4.14)
< DF(u, p), [h, q] >j3= −F(u, p)j3 , (4.15)

where by Lemma 2 we obtain the following terms:

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 31

< DF(u, p), [h, q] >j1=

=
Nu∑
i=1

∫
Ω

(
hxi
Ni
∂ux
∂x

+ hyi
Ni
∂ux
∂y

)
NjdΩ +

Nu∑
i=1

∫
Ω

hxi

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
NjdΩ +

+
Nu∑
i=1

ν

∫
Ω

hxi

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ−

Np∑
i=1

∫
Ω

qiMi
∂Nj

∂x
dΩ +

+
Nu∑
i=1

∑
K

{∫
TK

τ

(
hxi
Ni
∂ux
∂x

+ hyi
Ni
∂ux
∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τhxi

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)(
hxi
Ni
∂Nj

∂x
+ hyi

Ni
∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
hxi
Ni
∂ux
∂x

+ hyi
Ni
∂ux
∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τhxi

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τhxi

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)(
hxi
Ni
∂Nj

∂x
+ hyi

Ni
∂Nj

∂y

)
dΩ +

+ ν2

∫
TK

τhxi

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ
∂p

∂x

(
hxi
Ni
∂Nj

∂x
+ hyi

Ni
∂Nj

∂y

)
dΩ−

−
∫
TK

τfx

(
hxi
Ni
∂Nj

∂x
+ hyi

Ni
∂Nj

∂y

)
dΩ

}
+

+

Np∑
i=1

∑
K

{∫
TK

τqi
∂Mi

∂x

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τqi
∂Mi

∂x

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ

}
,

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 32

< DF(u, p), [h, q] >j2=

=
Nu∑
i=1

∫
Ω

(
hxi
Ni
∂uy
∂x

+ hyi
Ni
∂uy
∂y

)
NjdΩ +

Nu∑
i=1

∫
Ω

hyi

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
NjdΩ +

+
Nu∑
i=1

ν

∫
Ω

hyi

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ−

Np∑
i=1

∫
Ω

qiMi
∂Nj

∂y
dΩ +

+
Nu∑
i=1

∑
K

{∫
TK

τ

(
hxi
Ni
∂uy
∂x

+ hyi
Ni
∂uy
∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τhyi

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)(
hxi
Ni
∂Nj

∂x
+ hyi

Ni
∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
hxi
Ni
∂uy
∂x

+ hyi
Ni
∂uy
∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τhyi

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τhyi

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)(
hxi
Ni
∂Nj

∂x
+ hyi

Ni
∂Nj

∂y

)
dΩ +

+ ν2

∫
TK

τhyi

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ
∂p

∂y

(
hxi
Ni
∂Nj

∂x
+ hyi

Ni
∂Nj

∂y

)
dΩ−

−
∫
TK

τfy

(
hxi
Ni
∂Nj

∂x
+ hyi

Ni
∂Nj

∂y

)
dΩ

}
+

+

Np∑
i=1

∑
K

{∫
TK

τqi
∂Mi

∂y

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τqi
∂Mi

∂y

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ

}
,

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 33

< DF(u, p), [h, q] >j3=

=
Nu∑
i=1

∫
Ω

(
hxi

∂Ni

∂x
+ hyi

∂Ni

∂y

)
MjdΩ +

+
Nu∑
i=1

∑
K

{∫
TK

τ

(
hxi
Ni
∂ux
∂x

+ hyi
Ni
∂ux
∂y

)
∂Mj

∂x
dΩ +

+

∫
TK

τ

(
hxi
Ni
∂uy
∂x

+ hyi
Ni
∂uy
∂y

)
∂Mj

∂y
dΩ +

+

∫
TK

τhxi

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
∂Mj

∂x
dΩ +

∫
TK

τhyi

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
∂Mj

∂y
dΩ−

− ν

∫
TK

τhxi

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)
∂Mj

∂x
dΩ− ν

∫
TK

τhyi

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)
∂Mj

∂y
dΩ

}
+

+

Np∑
i=1

∑
K

∫
TK

τqi

(
∂Mi

∂x

∂Mj

∂x
+
∂Mi

∂y

∂Mj

∂y

)
dΩ,

F(u, p)j1 =

∫
Ω

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
NjdΩ + ν

∫
Ω

(
∂ux
∂x

∂Nj

∂x
+
∂ux
∂y

∂Nj

∂y

)
dΩ−

−
∫

Ω

p
∂Nj

∂x
dΩ−

∫
Ω

fxNjdΩ +

+
∑
K

{∫
K

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+ ν2

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ
∂p

∂x

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ
∂p

∂x

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

−
∫
TK

τfx

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+ ν

∫
TK

τfx

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ

}
,

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 34

F(u, p)j2 =

∫
Ω

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
NjdΩ + ν

∫
Ω

(
∂uy
∂x

∂Nj

∂x
+
∂uy
∂y

∂Nj

∂y

)
dΩ−

−
∫

Ω

p
∂Nj

∂y
dΩ−

∫
Ω

fyNjdΩ +

+
∑
K

{∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+ ν2

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ
∂p

∂y

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ
∂p

∂y

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

−
∫
TK

τfy

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+ ν

∫
TK

τfy

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ

}
,

F(u, p)j3 =

∫
Ω

(
∂ux
∂x

+
∂uy
∂y

)
MjdΩ +

+
∑
K

{∫
TK

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
∂Mj

∂x
dΩ +

+

∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
∂Mj

∂y
dΩ−

− ν

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
∂Mj

∂x
dΩ−

− ν

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)
∂Mj

∂y
dΩ +

+

∫
TK

τ
∂p

∂x

∂Mj

∂x
dΩ +

∫
TK

τ
∂p

∂y

∂Mj

∂y
dΩ−

−
∫
TK

τfx
∂Mj

∂x
dΩ−

∫
TK

τfy
∂Mj

∂y
dΩ

}
.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 35

Now, we can extract the elements of the ji-submatrix Kji of the element stiffness matrix Ke

(cf. Figure 4.1):

Kji11(u, p) =

∫
Ω

Ni
∂ux
∂x

NjdΩ +

∫
Ω

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
NjdΩ +

+ ν

∫
Ω

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ +

+
∑
K

{∫
TK

τNi
∂ux
∂x

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
Ni
∂Nj

∂x
dΩ−

− ν

∫
TK

τNi
∂ux
∂x

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
Ni
∂Nj

∂x
dΩ +

+ ν2

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ
∂p

∂x
Ni
∂Nj

∂x
dΩ−

∫
TK

τfxNi
∂Nj

∂x
dΩ

}
,

Kji12(u, p) =

∫
Ω

Ni
∂ux
∂y

NjdΩ +

+
∑
K

{∫
TK

τNi
∂ux
∂y

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
Ni
∂Nj

∂y
dΩ−

− ν

∫
TK

τNi
∂ux
∂y

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
Ni
∂Nj

∂y
dΩ +

+

∫
TK

τ
∂p

∂x
Ni
∂Nj

∂y
dΩ−

∫
TK

τfxNi
∂Nj

∂y
dΩ

}
,

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 36

Kji13(u, p) = −
∫

Ω

Mi
∂Nj

∂x
dΩ +

+
∑
K

{∫
TK

τ
∂Mi

∂x

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ
∂Mi

∂x

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ

}
,

Kji21(u, p) =

∫
Ω

Ni
∂uy
∂x

NjdΩ +

+
∑
K

{∫
TK

τNi
∂uy
∂x

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
Ni
∂Nj

∂x
dΩ−

− ν

∫
TK

τNi
∂uy
∂x

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)
Ni
∂Nj

∂x
dΩ +

+

∫
TK

τ
∂p

∂y
Ni
∂Nj

∂x
dΩ−

∫
TK

τfyNi
∂Nj

∂x
dΩ

}
,

Kji22(u, p) =

∫
Ω

Ni
∂uy
∂y

NjdΩ +

∫
Ω

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
NjdΩ +

+ ν

∫
Ω

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ +

+
∑
K

{∫
TK

τNi
∂uy
∂y

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
Ni
∂Nj

∂y
dΩ−

− ν

∫
TK

τNi
∂uy
∂y

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
K

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)
Ni
∂Nj

∂y
dΩ +

+ ν2

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ
∂p

∂y
Ni
∂Nj

∂y
dΩ−

∫
TK

τfyNi
∂Nj

∂y
dΩ

}
,

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 37

Kji23(u, p) = −
∫

Ω

Mi
∂Nj

∂y
dΩ +

+
∑
K

{∫
TK

τ
∂Mi

∂y

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ
∂Mi

∂y

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ

}
,

Kji31(u, p) =

∫
Ω

∂Ni

∂x
MjdΩ +

+
∑
K

{∫
TK

τNi
∂ux
∂x

∂Mj

∂x
dΩ +

∫
TK

τNi
∂uy
∂x

∂Mj

∂y
dΩ +

+

∫
TK

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
∂Mj

∂x
dΩ− ν

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)
∂Mj

∂x
dΩ

}
,

Kji32(u, p) =

∫
Ω

∂Ni

∂y
MjdΩ +

+
∑
K

{∫
TK

τNi
∂ux
∂y

∂Mj

∂x
dΩ +

∫
TK

τNi
∂uy
∂y

∂Mj

∂y
dΩ +

+

∫
TK

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
∂Mj

∂y
dΩ− ν

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)
∂Mj

∂y
dΩ

}
,

Kji33(u, p) =
∑
K

∫
TK

τ

(
∂Mi

∂x

∂Mj

∂x
+
∂Mi

∂y

∂Mj

∂y

)
dΩ.

Matrix Kji can be written as

Kji =

 Kji11 Kji12 Kji13

Kji21 Kji22 Kji23

Kji31 Kji32 Kji33

 .
Let us define vector of the right hand side as

rj =

 −F(u, p)j1
−F(u, p)j2
−F(u, p)j3

 ,
and vector of solution as

di =

 hxi

hyi

qi

 .
This way, we obtain element stiffness matrix Ke and element vector of the right hand side re (cf.
Figure 4.1). After conventional assemblage procedure of stiffness matrix K and the right hand side
r, we solve the system of linear equations

Kd = r

in each iteration of the Newton method.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 38

r
r

r

r

r

Figure 4.1: Structure of element stiffnes matrix for quadrilateral element

4.2.3 Functionals for the Newton method and their differentials in unsteady
case

We extend the theory for the steady case in Section 4.2.1 to the unsteady problem (4.6)–(4.7), again
omitting index h in the derivations.

Let us approximate the time derivative in the (n+ 1)-st time layer as

∂u

∂t
≈ un+1 − un

ϑ
,

where ϑ is a constant time step.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 39

Functionals for the Newton method for the unsteady case are defined as

F1(un+1, pn+1) =
1

ϑ

∫
Ω

un+1 · vdΩ +

∫
Ω

(un+1 · ∇)un+1 · vdΩ +

+ ν

∫
Ω

∇un+1 : ∇vdΩ−
∫

Ω

pn+1∇ · vdΩ−

−
∫

Ω

fn+1 · vdΩ− 1

ϑ

∫
Ω

un · vdΩ +

+
N∑
K=1

{
1

ϑ

∫
TK

τun+1 · (un+1 · ∇)vdΩ− ν

ϑ

∫
TK

τun+1 ·∆vdΩ +

+
1

ϑ

∫
TK

τun+1 · ∇ψdΩ +

∫
TK

τ(un+1 · ∇)un+1 · (un+1 · ∇)vdΩ−

− ν

∫
TK

τ(un+1 · ∇)un+1 ·∆vdΩ +

∫
TK

τ(un+1 · ∇)un+1 · ∇ψdΩ−

− ν

∫
TK

τ∆un+1 · (un+1 · ∇)vdΩ + ν2

∫
TK

τ∆un+1 ·∆vdΩ−

− ν

∫
TK

τ∆un+1 · ∇ψdΩ +

∫
TK

τ∇pn+1 · (un+1 · ∇)vdΩ−

− ν

∫
TK

τ∇pn+1 ·∆vdΩ +

∫
TK

τ∇pn+1 · ∇ψdΩ−

−
∫
TK

τ fn+1 · (un+1 · ∇)vdΩ + ν

∫
TK

τ fn+1 ·∆vdΩ−

−
∫
TK

τ fn+1 · ∇ψdΩ− 1

ϑ

∫
TK

τun · (un+1 · ∇)vdΩ +

+
ν

ϑ

∫
TK

τun ·∆vdΩ− 1

ϑ

∫
TK

τun · ∇ψdΩ

}
,

F2(un+1, pn+1) =

∫
Ω

ψ∇ · un+1dΩ.

Notation 2 For the sake of brevity, another simplification of notation is employed in the following
derivations. We omit index n + 1, and then u and p denote variables in the (n + 1)-st time layer.
Index of time layer is preserved at variables from other time layers, e.g. un.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 40

Lemma 3 Assume all functions sufficiently smooth. Then the Gateaux differentials of functionals
F1(u, p) and F2(u, p) are

< DF1(u, p), [h, q] >=

=
1

ϑ

∫
Ω

h · vdΩ +

∫
Ω

(h · ∇)u · vdΩ +

∫
Ω

(u · ∇)h · vdΩ + ν

∫
Ω

∇h : ∇vdΩ−
∫

Ω

q∇ · vdΩ +

+
N∑
K=1

{
1

ϑ

∫
TK

τh · (u · ∇)vdΩ +
1

ϑ

∫
TK

τu · (h · ∇)vdΩ− ν

ϑ

∫
TK

τh ·∆vdΩ +

+
1

ϑ

∫
TK

τh · ∇ψdΩ +

∫
TK

τ(h · ∇)u · (u · ∇)vdΩ +

∫
TK

τ(u · ∇)h · (u · ∇)vdΩ +

+

∫
TK

τ(u · ∇)u · (h · ∇)vdΩ− ν
∫
TK

τ(h · ∇)u ·∆vdΩ− ν
∫
TK

τ(u · ∇)h ·∆vdΩ +

+

∫
TK

τ(h · ∇)u · ∇ψdΩ +

∫
TK

τ(u · ∇)h · ∇ψdΩ− ν
∫
TK

τ∆h · (u · ∇)vdΩ−

− ν

∫
TK

τ∆u · (h · ∇)vdΩ + ν2

∫
TK

τ∆h ·∆vdΩ− ν
∫
TK

τ∆h · ∇ψdΩ +

+

∫
TK

τ∇q · (u · ∇)vdΩ +

∫
TK

τ∇p · (h · ∇)vdΩ− ν
∫
TK

τ∇q ·∆vdΩ +

+

∫
TK

τ∇q · ∇ψdΩ−
∫
TK

τ f · (h · ∇)vdΩ− 1

ϑ

∫
TK

τun(h · ∇)vdΩ

}
,

and

< DF2(u, p), [h, q] >=

∫
Ω

ψ∇ · hdΩ.

As for the steady case, we formally introduce the functional

F(u, p) = F1(u, p) + F2(u, p), (4.16)

and its differential

< DF(u, p), [h, q] >=< DF1(u, p), [h, q] > + < DF2(u, p), [h, q] > . (4.17)

4.2.4 Matrices for the finite element method in unsteady case
Let us derive the element matrix for a finite element TK . We substitute for hx, hy, and q restricted
to the element as in Section 4.2.2 and use the vector shape functions as test functions.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 41

We obtain elements of the ji-submatrix Kji of the element stiffness matrix Ke:

Kji11(u, p) =
1

ϑ

∫
Ω

NiNjdΩ +

∫
Ω

Ni
∂ux
∂x

NjdΩ +

∫
Ω

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
NjdΩ +

+ ν

∫
Ω

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ +

+
∑
K

{
1

ϑ

∫
TK

τNi

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

1

ϑ

∫
TK

τuxNi
∂Nj

∂x
dΩ−

− ν

ϑ

∫
TK

τNi

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τNi
∂ux
∂x

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
Ni
∂Nj

∂x
dΩ−

− ν

∫
TK

τNi
∂ux
∂x

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
Ni
∂Nj

∂x
dΩ +

+ ν2

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ
∂p

∂x
Ni
∂Nj

∂x
dΩ−

∫
TK

τfxNi
∂Nj

∂x
dΩ− 1

ϑ

∫
TK

τunxNi
∂Nj

∂x
dΩ

}
,

Kji12(u, p) =

∫
Ω

Ni
∂ux
∂y

NjdΩ +

+
∑
K

{
1

ϑ

∫
TK

τuxNi
∂Nj

∂y
dΩ +

∫
TK

τNi
∂ux
∂y

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
Ni
∂Nj

∂y
dΩ−

− ν

∫
TK

τNi
∂ux
∂y

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
Ni
∂Nj

∂y
dΩ +

+

∫
TK

τ
∂p

∂x
Ni
∂Nj

∂y
dΩ−

∫
TK

τfxNi
∂Nj

∂y
dΩ− 1

ϑ

∫
TK

τunxNi
∂Nj

∂y
dΩ

}
,

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 42

Kji13(u, p) = −
∫

Ω

Mi
∂Nj

∂x
dΩ +

∑
K

{∫
TK

τ
∂Mi

∂x

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ
∂Mi

∂x

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ

}
,

Kji21(u, p) =

∫
Ω

Ni
∂uy
∂x

NjdΩ +
∑
K

{
1

ϑ

∫
TK

τuyNi
∂Nj

∂x
dΩ +

+

∫
TK

τNi
∂uy
∂x

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
Ni
∂Nj

∂x
dΩ−

− ν

∫
TK

τNi
∂uy
∂x

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)
Ni
∂Nj

∂x
dΩ +

+

∫
TK

τ
∂p

∂y
Ni
∂Nj

∂x
dΩ−

∫
TK

τfyNi
∂Nj

∂x
dΩ− 1

ϑ

∫
TK

τunyNi
∂Nj

∂x
dΩ

}
,

Kji22(u, p) =
1

ϑ

∫
Ω

NiNjdΩ +

∫
Ω

Ni
∂uy
∂y

NjdΩ +

∫
Ω

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
NjdΩ +

+ ν

∫
Ω

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ +

+
∑
K

{
1

ϑ

∫
TK

τNi

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

1

ϑ

∫
TK

τuyNi
∂Nj

∂y
dΩ−

− ν

ϑ

∫
TK

τNi

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

∫
TK

τNi
∂uy
∂y

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
Ni
∂Nj

∂y
dΩ− ν

∫
TK

τNi
∂uy
∂y

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
K

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)
Ni
∂Nj

∂y
dΩ +

+ ν2

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ
∂p

∂y
Ni
∂Nj

∂y
dΩ−

∫
TK

τfyNi
∂Nj

∂y
dΩ− 1

ϑ

∫
TK

τunyNi
∂Nj

∂y
dΩ

}
,

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 43

Kji23(u, p) = −
∫

Ω

Mi
∂Nj

∂y
dΩ +

∑
K

{∫
TK

τ
∂Mi

∂y

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ
∂Mi

∂y

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ

}
,

Kji31(u, p) =

∫
Ω

∂Ni

∂x
MjdΩ +

+
∑
K

{
1

ϑ

∫
TK

τNi
∂Mj

∂x
dΩ +

∫
TK

τNi
∂ux
∂x

∂Mj

∂x
dΩ +

∫
TK

τNi
∂uy
∂x

∂Mj

∂y
dΩ +

+

∫
TK

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
∂Mj

∂x
dΩ− ν

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)
∂Mj

∂x
dΩ

}
,

Kji32(u, p) =

∫
Ω

∂Ni

∂y
MjdΩ +

+
∑
K

{
1

ϑ

∫
TK

τNi
∂Mj

∂y
dΩ +

∫
TK

τNi
∂ux
∂y

∂Mj

∂x
dΩ +

∫
TK

τNi
∂uy
∂y

∂Mj

∂y
dΩ +

+

∫
TK

τ

(
ux
∂Ni

∂x
+ uy

∂Ni

∂y

)
∂Mj

∂y
dΩ− ν

∫
TK

τ

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)
∂Mj

∂y
dΩ

}
,

Kji33(u, p) =
∑
K

∫
TK

τ

(
∂Mi

∂x

∂Mj

∂x
+
∂Mi

∂y

∂Mj

∂y

)
dΩ.

Let us remind matrix Kji

Kji =

 Kji11 Kji12 Kji13

Kji21 Kji22 Kji23

Kji31 Kji32 Kji33

 ,
vector of the right hand side

rj =

 −F(u, p)j1
−F(u, p)j2
−F(u, p)j3

 ,
and vector of solution

di =

 hxi

hyi

qi

 .

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 44

Elements of the vector of the right hand side are

F(u, p)j1 =
1

ϑ

∫
Ω

uxNjdΩ +

∫
Ω

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
NjdΩ + ν

∫
Ω

(
∂ux
∂x

∂Nj

∂x
+
∂ux
∂y

∂Nj

∂y

)
dΩ−

−
∫

Ω

p
∂Nj

∂x
dΩ−

∫
Ω

fxNjdΩ− 1

ϑ

∫
Ω

unxNjdΩ +

+
∑
K

{
1

ϑ

∫
TK

τux

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ− ν

ϑ

∫
TK

τux

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+ ν2

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ
∂p

∂x

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ− ν

∫
TK

τ
∂p

∂x

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

−
∫
TK

τfx

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ + ν

∫
TK

τfx

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− 1

ϑ

∫
TK

τunx

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

ν

ϑ

∫
TK

τunx

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ

}
,

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 45

F(u, p)j2 =
1

ϑ

∫
Ω

uyNjdΩ +

∫
Ω

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
NjdΩ + ν

∫
Ω

(
∂uy
∂x

∂Nj

∂x
+
∂uy
∂y

∂Nj

∂y

)
dΩ−

−
∫

Ω

p
∂Nj

∂y
dΩ−

∫
Ω

fyNjdΩ− 1

ϑ

∫
Ω

unyNjdΩ +

+
∑
K

{
1

ϑ

∫
TK

τuy

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ− ν

ϑ

∫
TK

τuy

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ−

− ν

∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− ν

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

+ ν2

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ +

+

∫
TK

τ
∂p

∂y

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ− ν

∫
TK

τ
∂p

∂y

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

−
∫
TK

τfy

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ + ν

∫
TK

τfy

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ−

− 1

ϑ

∫
TK

τuny

(
ux
∂Nj

∂x
+ uy

∂Nj

∂y

)
dΩ +

ν

ϑ

∫
TK

τuny

(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ

}
,

F(u, p)j3 =

∫
Ω

(
∂ux
∂x

+
∂uy
∂y

)
MjdΩ +

∑
K

{
1

ϑ

∫
TK

τ

(
ux
∂Mj

∂x
+ uy

∂Mj

∂y

)
dΩ +

+

∫
TK

τ

(
ux
∂ux
∂x

+ uy
∂ux
∂y

)
∂Mj

∂x
dΩ +

∫
TK

τ

(
ux
∂uy
∂x

+ uy
∂uy
∂y

)
∂Mj

∂y
dΩ−

− ν

∫
TK

τ

(
∂2ux
∂x2

+
∂2ux
∂y2

)
∂Mj

∂x
dΩ− ν

∫
TK

τ

(
∂2uy
∂x2

+
∂2uy
∂y2

)
∂Mj

∂y
dΩ +

+

∫
TK

τ
∂p

∂x

∂Mj

∂x
dΩ +

∫
TK

τ
∂p

∂y

∂Mj

∂y
dΩ−

−
∫
TK

τfx
∂Mj

∂x
dΩ−

∫
TK

τfy
∂Mj

∂y
dΩ− 1

ϑ

∫
TK

τ

(
unx
∂Mj

∂x
+ uny

∂Mj

∂y

)
dΩ

}
.

As in Section 4.2.2, after we obtain element stiffness matrix Ke and element vector of the right
hand side re (cf. Figure 4.1) and perform the assemblage procedure of stiffness matrix K and the
right hand side r, we solve the system of linear equations

Kd = r

in each iteration of the Newton method.

Once we obtain the solution in a particular time layer, we solve the problem in next time layer
and use the previous solution as the initial value for the Newton method. This is repeated, until we
reach the desired time.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 46

4.2.5 Computation of stabilization parameter
Following the suggestions of Franca and Madureira in [23], we compute the stabilization parameter
τ as

τ =
ξ(ReK(x))√
λK | u(x) |2

, (4.18)

where

ReK(x) =
| u(x) |2
4
√
λKν

,

ξ(ReK(x)) =

{
ReK(x), 0 ≤ ReK(x) < 1

1, ReK(x) ≥ 1
,

λK = max
0 6=v∈(R2(TK)/R)2

‖∆v‖2
0,TK

‖∇v‖2
0,TK

,

| u(x) |2 =

(
2∑
i=1

| ui(x) |2
) 1

2

.

Parameter λK is computed for each element as the largest eigenvalue of the problem

(∆w,∆v) = λK(∇w,∇v), ∀v ∈ (R2(TK)/R)2. (4.19)

This is done once, before entering the main computational loop of the Newton method, since λK
is not a function of velocity and depends only on the computational mesh and shape functions on
element K.

Let us focus on computing λK more precisely. Problem (4.19) can be written as∫
TK

∆w ·∆vdΩ = λK

∫
TK

∇w : ∇vdΩ, ∀v ∈ (R2(TK)/R)2. (4.20)

In the finite element context, similarly to Sections 4.2.2 and 4.2.4, we substitute

wx =
Nu∑
i=1

wxiNi,

wy =
Nu∑
i=1

wyiNi,

and use the vector shape functions

v = (Nj, 0),

v = (0, Nj)

as test functions to get two equations from the scalar one (4.20). It leads to

Nu∑
i=1

∫
TK

wxi

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ = λK

Nu∑
i=1

∫
TK

wxi

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ,

Nu∑
i=1

∫
TK

wyi

(
∂2Ni

∂x2
+
∂2Ni

∂y2

)(
∂2Nj

∂x2
+
∂2Nj

∂y2

)
dΩ = λK

Nu∑
i=1

∫
TK

wyi

(
∂Ni

∂x

∂Nj

∂x
+
∂Ni

∂y

∂Nj

∂y

)
dΩ.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 47

Let us create element matrices A and B for the purpose of computation of the largest eigenvalue
of this problem as

Aji =

 ∫TK

(
∂2Ni

∂x2 + ∂2Ni

∂y2

)(
∂2Nj

∂x2 +
∂2Nj

∂y2

)
dΩ 0

0
∫
TK

(
∂2Ni

∂x2 + ∂2Ni

∂y2

)(
∂2Nj

∂x2 +
∂2Nj

∂y2

)
dΩ

 ,
Bji =

 ∫TK

(
∂Ni

∂x

∂Nj

∂x
+ ∂Ni

∂y

∂Nj

∂y

)
dΩ 0

0
∫
TK

(
∂Ni

∂x

∂Nj

∂x
+ ∂Ni

∂y

∂Nj

∂y

)
dΩ

 .
Now, we need to find the largest eigenvalue of the generalized matrix eigenvalue problem

AwK = λKBwK (4.21)

for each element. Here, λK is the desired eigenvalue and wK is the corresponding eigenvector,
which is not used in stabilization.

Recommended method for solving this problem in [23] is the power method. But several
difficulties are hidden behind it:

1. The power method is designed for finding of the largest eigenvalue and the corresponding
eigenvector of the problem Aw = λKw and not for the generalized problem. We need
to transform problem (4.21) to the ordinary problem of eigenvalues. Possible way without
necessity of inverting full matrix is sketched. We decompose matrix B by Choleski’s method
and find L such that

B = LLT ,

and L is lower triangular matrix. Its inversion is simpler, and when we have it, we get

L−1AwK = λKLTwK .

Let us denote zK = LTwK or wK = L−TzK . After substitution, we have

L−1AL−TzK = λKzK .

If we denote G = L−1AL−T , we can solve the ordinary problem of eigenvalues

GzK = λKzK .

It is clear, that applied transformations do not take effect on eigenvalues of the generalized
problem.

2. During realizing Choleski’s decomposition (as for computing an inverse matrix), we need B
to be nonsingular. But obtained matrix, which is similar to element stiffness matrix without
application of boundary conditions, is singular.

Recommended way to regularize it is to fix corresponding number of degrees of freedom.
But since this is done by putting unities on diagonal and zeros on relevant columns and rows
of matrix B, this way could affect the largest eigenvalue, if it is less then one.

We experienced, that more suitable way to regularize the matrix is to ‘cut off’ two rows and
columns from both matrices A and B. As far as we have tested this way, it has taken no
effect on the largest eigenvalue for different omited rows and columns. The only restriction
is to omit one for each component of velocity.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 48

Figure 4.2: Plot of τ(ReK)

Let us investigate the dependence of τ on local Reynolds number ReK(x) given by (4.18). We
can observe that ReK(x) is a linear function of | u(x) |2 for constant viscosity on element K, i.e.

ReK(x) = C1 | u(x) |2, (4.22)

where C1 = 1
4
√
λKν

.

Substituting (4.22) in (4.18) we get

τ(ReK(x),x) =

{
C2, 0 ≤ ReK(x) < 1

C3

|u(x)|2 = C2

ReK(x)
, ReK(x) ≥ 1

,

where C2 = 1
4λKν

and C3 = 1√
λK

, cf. Figure 4.2.

4.3 Accuracy of the stabilized method
The aspect of accuracy of the stabilized method was mentioned already in [53]. In numerical
experiments presented therein, a loss of accuracy was observed. As it is inherited to the stabilized
methods of this family, it is always present in such calculations. However, in [8] and [10], two
methods for quantification of this loss of accuracy were presented. In this way, it is possible to
get an idea of the importance of it, and so to estimate the cost we pay for the stabilized solution at
a higher Reynolds number. The evaluation of the loss of accuracy is presented and demonstrated
only for the steady Navier-Stokes problem. The extension to the unsteady case could be derived
analogously.

One source of the loss of accuracy is the violation of the continuity equation through the non-
zero term of element matrix discussed in Sections 4.2.2 and 4.2.4,

Kji33(u, p) =
∑
K

∫
TK

τ

(
∂Mi

∂x

∂Mj

∂x
+
∂Mi

∂y

∂Mj

∂y

)
dΩ.

This term introduces dependence on pressure into the continuity equation and affects the presumed
incompressibility. Since derivatives of shape functions in Kji33 are independent of solution, and
since τ is never zero (cf. Figure 4.2), Kji33 does not vanish for converged solution. However,
Figure 4.2 gives a hope: we can observe, that τ is decreasing for higher local Reynolds number,
therefore described perturbation of the continuity equation is also decreasing for higher Re.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 49

A straightforward approach to evaluation of the error by stabilization was presented in [8]. The
effect of stabilization was simply evaluated as the difference between discrete solutions obtained
with and without stabilization as

δη =

√√√√√√√
n∑
i=1

(ηsGLSi
− ηNewtoni

)2

n∑
i=1

η2
Newtoni

· 100 [%], (4.23)

where η represents in turn uh1, uh2 and ph, n denotes number of nodes with η given, ηsGLS denotes
the solution obtained by the semiGLS algorithm and ηNewton denotes the solution obtained by the
Newton method without stabilization.

However, such comparison is possible only at the range of Reynolds numbers, where we are
able to find the solution by both stabilized and standard Galerkin method.

For this shortcoming, application of a posteriori error estimates was presented in [10]. In this
approach to evaluating the achieved accuracy of our solution, we use the following error estimator
that represents the relative error on element TK

R2(u1h, u2h, ph, TK) =
|Ω| E2(u1h, u2h, ph, TK)

|TK |‖(u1h, u2h, ph)‖2
V,Ω

, (4.24)

based on a posteriori error estimates in the following form derived for Taylor-Hood elements in [6]

‖(eu1 , eu2 , ep)‖2
V,TK
≤ E2(u1h, u2h, ph, TK), (4.25)

where

• (u1, u2, p) denotes an exact solution,

• (u1h, u2h, ph) denotes an approximate solution computed by FEM,

• (eu1 , eu2 , ep) = (u1 − u1h, u2 − u2h, p− ph) denotes an error of approximate solution,

• ‖u1h, u2h, ph‖2
V,Ω = ‖u1h, u2h‖2

1,Ω + ‖ph‖2
0,Ω where,

• ‖u1h, u2h‖1,Ω means the Sobolev H1(Ω) norm,

• ‖ph‖0,Ω means the L2(Ω) norm,

• |Ω|, |TK | mean the area of the domain Ω, and the element TK , respectively.

The term on the right hand side of the inequality (4.25) is evaluated as

E2(u1h, u2h, ph, TK) = C
[
h2
K

∫
TK

(
r2

1(u1h, u2h, ph) + r2
2(u1h, u2h, ph)

)
dΩ +

∫
TK

r2
3(u1h, u2h, ph)dΩ

]
,

where

r1(u1h, u2h, ph) = fx1 −
(
u1h

∂u1h

∂x1

+ u2h
∂u1h

∂x2

)
+ ν

(
∂2u1h

∂x2
1

+
∂2u1h

∂x2
2

)
− ∂ph
∂x1

,

r2(u1h, u2h, ph) = fx2 −
(
u1h

∂u2h

∂x1

+ u2h
∂u2h

∂x2

)
+ ν

(
∂2u2h

∂x2
1

+
∂2u2h

∂x2
2

)
− ∂ph
∂x2

,

r3(u1h, u2h, ph) =
∂u1h

∂x1

+
∂u2h

∂x2

.

CHAPTER 4. SEMIGLS STABILIZATION OF THE FINITE ELEMENT METHOD 50

stand for residuals of the system (2.6)–(2.7).
The constant C is a delicate task in a posteriori error estimates. In [6], its derivation was

shown for the case of non-stabilized finite element method. In this application, the constant is used
in a relative sense: we apply the a posteriori error estimates to show the relative error on finite
elements, in order to show the distribution of the error in the solution domain. For the purpose of
comparison of this distribution obtained without stabilization and by semiGLS, it is important to
use the same constant for both solutions.

Chapter 5

BDDC domain decomposition method

In this chapter, the Balancing Domain Decomposition by Constraints (BDDC) method is described.
It can be understood as a preconditioner for large systems arising from finite element analysis
introduced by Dohrmann [13] in 2003. The theory was developed by Mandel and Dohrmann in
[45]. The preconditioner was reformulated by Li and Widlund in [42].

Results of joint work with Jan Mandel and Bedřich Sousedı́k, and results from our paper [54]
are used in this chapter.

First, the abstract formulation of the preconditioner is discussed, followed by some modifica-
tions motivated by implementation.

5.1 Introduction to iterative substructuring
Throughout this chapter, let Ω be a bounded domain in R2 or R3.

Let U be a finite element space of piecewise polynomial functions v continuous on Ω and U ′

its dual space. Let a(·, ·) be a bilinear form on U × U and f ∈ U ′, and let 〈·, ·〉 denote the duality
pairing of U ′ and U . Consider an abstract variational problem: Find u ∈ U such that

a(u, v) = 〈f, v〉 ∀ v ∈ U . (5.1)

For the case of linear elasticity,

a(u, v) =

∫
Ω

(λ(∇ · uh)(∇ · vh) +
1

2
µ(∇uh +∇Tuh) : (∇vh +∇Tvh))dΩ, (5.2)

〈f, v〉 =

∫
Ω

f · vhdΩ. (5.3)

Here solution u = uh represents the discretized vector field of displacement, λ and µ represent the
first and the second Lammé’s constant, respectively, and f represents the external load.

For the case of steady Stokes flow (cf. Chapter 3, problem (3.5))

a(u, v) = ν

∫
Ω

∇uh : ∇vhdΩ−
∫

Ω

ph∇ · vhdΩ−
∫

Ω

ψh∇ · uhdΩ, (5.4)

〈f, v〉 =

∫
Ω

f · vhdΩ. (5.5)

Solution u = (uh, ph) represents the discretized vector field of velocity and the discretized scalar
field of pressure, ν represents the kinematic viscosity of the fluid, and f represents the external load
(see Chapter 2 for details).

51

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 52

For the case of linear elasticity, a(u, v) is a symmetric positive definite bilinear form on U×U ,
while for the Stokes problem, it is symmetric indefinite.

Let us define operator A associated with the bilinear form a(·, ·) as

A : U → U ′, 〈Av,w〉 = a(v, w) ∀ v, w ∈ U. (5.6)

An equivalent formulation of (5.1) is to find a solution u ∈ U to

Au = f. (5.7)

Remark 1 The setting involving dual spaces allows us to make a clear distinction between an ap-
proximate solution and its residual, which is in the dual space. It is beneficial to have approximate
solutions and residuals in different spaces, because they need to be treated differently.

In computation, operator A is represented by a stiffness matrix denoted A as well. It is defined
as A = (aij), where aij = a(φi, φj) and {φi} is a finite element basis of U . Similarly, u and f are
represented in the computation by vectors of discrete values corresponding to their coordinates in
the basis of U and U ′, respectively.

The domain Ω is decomposed intoN nonoverlapping subdomains Ωi, i = 1, ..., N with charac-
teristic sizeH , which form a conforming triangulation of the domain Ω. Each subdomain is a union
of several finite elements of the underlying mesh with characteristic mesh size h, i.e. nodes of the
finite elements between subdomains coincide.

Definition 1 Unknowns common to at least two subdomains are called boundary unknowns and
the union of all boundary unknowns is called the interface Γ. Remaining unknowns are called
interior.

Remark 2 Note the difference of interface Γ from physical boundary of the domain ∂Ω. According
to the definition, nodes in ∂Ω belong to either interface or interior. Most of them, however, become
interior nodes.

Let us now assume, that a(u, v) is symmetric and positive definite to develop the theory based
on the scalar product generated by a(u, v). The first step is the reduction of the problem to the
interface. The space U is decomposed as the a-orthogonal direct sum U = U1 ⊕ · · · ⊕ UN ⊕ UΓ,
where Ui is the space of all functions from U with nonzero values only inside Ωi (in particular, they
are zero on Γ), and UΓ is the a-orthogonal complement of all spaces Ui; UΓ = {v ∈ U : a(v, w) =
0 ∀w ∈ Ui, i = 1, . . . N}. Functions from UΓ are fully determined by their values at unknowns
on Γ and the discrete harmonic condition that they have minimal energy on the interior of every
subdomain. The discrete harmonic condition, sometimes called the minimal energy condition, is
often used in domain decomposition literature. It is an analogy to discrete solutions to Laplace
equation with homogenous right hand side. In our context, we use the following definition:

Definition 2 Let b be a vector with zero values at selected unknowns. The solution u to the discrete
system Au = b is called discrete harmonic with respect to these unknowns.

Let us denote the sum of interior solutions as uo =
∑N

i ui, ui ∈ Ui, and let uΓ ∈ UΓ. Then the
solution may be rewritten as u = uΓ + uo, and problem (5.7) as

A(uΓ + uo) = f. (5.8)

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 53

Let us now write the problem in the block form, with the first block corresponding to unknowns
in subdomain interiors, and the second block corresponding to unknowns at the interface,[

A11 A12

A21 A22

] [
uΓ1 + uo1
uΓ2 + uo2

]
=

[
f1

f2

]
. (5.9)

Here uo2 is a zero block by definition. Using the minimal energy constraint of functions from UΓ,
problem (5.9) may be split into the sum of the following two problems[

A11 A12

A21 A22

] [
uΓ1

uΓ2

]
=

[
0

f2 − A21A
−1
11 f1

]
, (5.10)

[
A11 A12

A21 A22

] [
uo1
0

]
=

[
f1

A21A
−1
11 f1

]
. (5.11)

It follows, that this decomposition is equivalent to solving first the problem

A11uo1 = f1, (5.12)

which is independent for each subdomain, followed by substitution uo1 = A−1
11 f1 into (5.10) and

solving [
A11 A12

A21 A22

] [
uΓ1

uΓ2

]
=

[
0

f2 − A21uo1

]
. (5.13)

Once both problems are solved, the solution is obtained as u = uΓ + uo.
Problem (5.13) is equivalent to the solution of

SuΓ2 = g2, (5.14)

where S is the Schur complement with respect to interface, S = A22 − A21A
−1
11 A12, and g2 is the

condensed right hand side, g2 = f2 − A21uo1, followed by the solution of

A11uΓ1 = −A12uΓ2. (5.15)

Since A11 has a block diagonal structure, solution to (5.12) may be found in parallel as uo1 =∑N
i uo1i, where uo1i are solutions of the local problems A11iuo1i = f1i on every Ωi.
In the following sections, we are interested in an efficient solution of problem (5.13), or equiv-

alently (5.14), by the preconditioned conjugate gradients (PCG) method.
To find solution uΓ by PCG, we iterate on problem (5.14), but without explicit construction of

S. It is circumvented by finding uΓ1 in each iteration by solving Dirichlet problem in (5.13), since
A11 block is already factorized from (5.12).

5.2 Formulation of BDDC
The BDDC method is a particular kind of preconditioner for problem (5.13), or the reduced prob-
lem (5.14).

Let Wi be the space of finite element functions on subdomain Ωi and put

W = W1 × · · · ×WN . (5.16)

It is the space, where subdomains are completely disconnected, and functions on them independent
of each other. Clearly, UΓ ⊂ W .

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 54

The main idea of the BDDC preconditioner in an abstract form [48] is to construct an auxiliary
finite dimensional space W̃ such that

UΓ ⊂ W̃ ⊂ W, (5.17)

and extend the bilinear form a (·, ·) to a form ã (·, ·) defined on W̃ × W̃ , such that solving the
variational problem (5.1) with ã (·, ·) in place of a (·, ·) is cheaper and can be split into independent
computations performed in parallel. Then the solution restricted to UΓ is used for the precondi-
tioning of (5.13), or (5.14).

More precisely, let
E : W̃ → UΓ (5.18)

be a given projection of W̃ onto UΓ, g the right hand side of (5.13), and r = g − AuΓ ∈ U ′Γ the
residual in a PCG iteration. Here U ′Γ is the dual space to UΓ.

Remark 3 Residual r remains zero at unknowns interior to subdomains for uΓ ∈ UΓ in each
iteration for the discrete harmonic property w.r.t. interior of functions from UΓ.

An action of the BDDC preconditioner is described in the following algorithm.

Algorithm 1 The BDDC preconditioner MBDDC : U ′Γ → UΓ in the abstract form is defined as

MBDDC : r → v = Ew,

where w ∈ W̃ is obtained as the solution to problem

w ∈ W̃ : ã (w, z) = (r, Ez) ∀z ∈ W̃ . (5.19)

In terms of operators,
v = EÃ−1ET r, (5.20)

where Ã is the operator associated with the bilinear form ã by〈
Ãu, v

〉
= ã (u, v) ∀u, v ∈ W̃ . (5.21)

In computation, Ã is represented by a matrix denoted Ã as well. It is larger than the original
matrix of the problem A, but possess simpler structure in terms of direct solution methods.

All functions from UΓ are continuous on the domain Ω. In order to design the space W̃ , we
relax the continuity on the interface Γ. On Γ, we select coarse degrees of freedom and define W̃ as
the space of finite element functions with minimal energy on every subdomain, continuous across
Γ only at coarse degrees of freedom. The coarse degrees of freedom can be of two basic types
– explicit unknowns (called coarse unknowns) at selected nodes (called corners), and averages
over larger disjoint sets of nodes (subdomain faces or edges, cf. Definition 3). The continuity
condition then means that the values of the corresponding unknowns, or averages, on neighbouring
subdomains coincide. The bilinear form a (·, ·) is extended to ã (·, ·) on W̃×W̃ by integrating over
the subdomains Ωi separately and adding the results. We need to use the following assumption on
selection of corners.

Assumption 1 It is assumed, that enough corners were chosen for ã (·, ·) to fix floating subdo-
mains.

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 55

In the case of elasticity, this means that number of corners is sufficient to prevent relative rigid
body motions of any pair of adjacent subdomains. This results in the positive definiteness of
ã (·, ·). In the case of Stokes problem, satisfying the assumption results in a positive definite block
corresponding to velocity unknowns. See Remark 4 for discussion on satisfying Assumption 1.

The projection E : W̃ → UΓ is realized as a weighted average of values from different subdo-
mains at unknowns on the interface Γ, thus resulting in functions continuous across the interface,
and the solutions of local subdomain problems (5.15) to make the averaged function discrete har-
monic. To assure good performance regardless of different stiffnesses of the subdomains [45],
the weights may be chosen proportional to the corresponding diagonal entries of the subdomain
stiffness matrices.

Definition 3 The interface Γ may also be classified as a union of three different types of sets:
faces, edges, and vertices, according e.g. to [36]. In the case that we have no information about
the boundary of the domain, the definition in 3D simplifies to the following:

• a face contains all nodes shared by two fixed subdomains,

• an edge contains nodes shared by more than two fixed subdomains,

• a vertex is a degenerated edge with only one node.

Let us identify vertices with so called corners (see Remark 4 for more general case). As in
[44], we will call any edge and, in the 3D case, a face on the interface Γ a glob and it will be
identified with the set of degrees of freedom associated with nodes in it. The set of all globs will
be denoted by KG . Note, that our definition of a glob does not include corners, the set of which
will be denoted by KC . So, for the interface it holds that

Γ =
(
∪G∈KGG

)
∪ KC.

In the original formulation of the preconditioner [13], space W̃ is further decomposed as ã-
orthogonal direct sum W̃ = W̃1 ⊕ · · · ⊕ W̃N ⊕ W̃C , where W̃i is the space of functions with
nonzero values only in Ωi (i.e. they have zero values at coarse unknowns and they are generally
not continuous at other unknowns on Γ) and W̃C is the explicit coarse space, defined as the ã-
orthogonal complement of all spaces W̃i; W̃C = {v ∈ W̃ : ã(v, w) = 0 ∀w ∈ W̃i, i = 1, . . . N}.
Functions from W̃C are fully determined by their values at coarse degrees of freedom (where they
are continuous) and have minimal energy. Thus, they are generally discontinuous across Γ outside
of coarse unknowns. The solution w ∈ W̃ from (5.19) is now split accordingly, and the BDDC
preconditioner is defined as

Algorithm 2 The BDDC preconditioner MBDDC : U ′Γ → UΓ with coarse problem is defined as

MBDDC : r → u = Ew,

where w ∈ W̃ is obtained as

w = wC +
N∑
i=1

wi.

Here the coarse correction wC is determined by

wC ∈ W̃C : ã (wC , v) = (r, Ev) ∀v ∈ W̃C , (5.22)

and the subdomain corrections wi are determined by

wi ∈ W̃i : ã (wi, v) = (r, Ev) ∀v ∈ W̃i. (5.23)

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 56

Remark 4 Although the set of vertices forms an important subset of corners, the definition of
vertices is often not sufficient to detect enough corners for uniqueness of subdomain solutions. To
see its shortcomings, we can think of three very simple examples of division into two, four and eight
subdomains depicted in Figure 5.1. In the case of two subdomains, whole interface is recognized
as a single face. In the second case, the interface is classified into four faces and one edge. In the
case of eight subdomains, this classification leads to twelve faces, six edges and a single vertex
in the center of the domain. To assure that enough corners will be used for each subdomain, one

Figure 5.1: Examples of problems with two, four, and eight cubic subdomains

can immediately think of a number of modifications that are possible to generate a better list of
corners, edges and faces.

Although several more sophisticated methods were tested for this purpose ([35, 40]), a simple
algorithm is applied in most of the practical calculations in this thesis. It is based on addition of
prescribed number of random nodes from interface to the set of corners, followed by removal of
these nodes from edges and faces. Besides its simplicity, it has been found useful for its flexibility
in setting the size of the coarse problem, and thus controlling the efficiency of the preconditioning
for a fixed division. A more sophisticated approach was presented in [47]. It is based on adding
proper constraints to edges and/or faces.

Let us now rewrite Algorithm 2 in terms of matrices, following [13]. Problem (5.23) is formu-
lated in a saddle point form as [

Ki C
T

i

Ci 0

] [
wi
µi

]
=

[
ri
0

]
, (5.24)

where Ki denotes the substructure local stiffness matrix, obtained by the subassembly of element
matrices only of elements in substructure i, matrix Ci represents constraints on subdomain, that
enforce zero values of coarse degrees of freedom, µi is vector of Lagrange multipliers, and ri is
the weighted residual ET r restricted to subdomain i.

Matrix Ki is singular for floating subdomains (subdomains not touching Dirichlet boundary
conditions), while the augmented matrix of problem (5.24) is regular and may be factorized. Matrix
Ci contains both constraints enforcing continuity across corners (single point continuity), and
constraints enforcing equality of averages over edges and faces of subdomains. The former type
corresponds to just one nonzero entry equal to 1 on a row of Ci, while the latter leads to several
nonzero entries on a row. This structure will be exploited in the following section.

Problem (5.24) is solved in each iteration of the PCG method to find the correction from sub-
structure i. However, the matrix of (5.24) is used prior to the whole iterative process to construct
the local subdomain matrix of the coarse problem. First, the coarse basis functions are found
independently for each subdomain as the solution to[

Ki C
T

i

Ci 0

][
ψi
λi

]
=

[
0
I

]
. (5.25)

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 57

This is a problem with multiple right hand sides, where ψi is a matrix of coarse basis functions with
several columns, each corresponding to one coarse degree of freedom on i-th subdomain. These
functions are given by values equal to 0 at all coarse degrees of freedom except one, where they
equal to 1, and they have minimal energy on subdomain outside coarse degrees of freedom. The
identity block I has the dimension of the number of constraints on the subdomain.

Once ψi is known, the subdomain coarse matrix KCi is constructed as

KCi = ψTi Kiψi. (5.26)

Matrices KCi are then assembled to form the global coarse matrix AC . This procedure is same
as the standard process of assembly in finite element solution, with subdomains playing the role of
elements, coarse degrees of freedom on subdomain representing degrees of freedom on element,
and matrix KCi representing the element stiffness matrix.

Problem (5.22) is now
ACwC = rC , (5.27)

where rC is the global coarse residual obtained by the assembly of the subdomain contributions
of the form rCi = ψTi ri.

The dimension of the coarse solution wC is equal to the number of all coarse degrees of free-
dom. So, to add the correction to subdomain problems, we first have to restrict it to coarse degrees
of freedom on each subdomain and to interpolate it to the whole subdomain by wCi = ψiwCi. By
extending wCi and wi by zero to other subdomains, these can be summed over the subdomains to
form the final vector w. Finally, the preconditioned residual is obtained as v = Ew.

It is worth noticing that in the case of no constraints on averages, i.e. using only coarse un-
knowns for the definition of the coarse space, matrix AC of problem (5.27) is simply the Schur
complement of matrix A with respect to coarse unknowns. This fact was pointed out in [42]. If
additional degrees of freedom are added for averages, they correspond to new explicit unknowns
in wCi.

Obviously, several mapping operators among various spaces are needed in the algorithm, defin-
ing embedding of subdomains into global problem, local subdomain coarse problem into global
coarse problem etc. We have circumvented their mathematical definition by words for the sake of
brevity.

In [42], another point of view was presented. It emphasised, that exctracting an explicit coarse
space might be redundant, if another suitable solver for (5.20) is available. The following formu-
lation was derived with this fact kept on mind.

First, let us distinguish between two different kinds of coarse degrees of freedom defining
space W̃ . The first kind of coarse degrees of freedom is represented by unknowns at corners.
Let us denote the space of functions continuous across corners as W̃ c. The operators on W̃ c are
obtained by a process called subassembly described in detail by Li and Widlund [42].

The second group represents coarse degrees of freedom associated with satisfying additional
constraints on functions: such as equality of their average values across edges or faces. The
purpose of this choice is to obtain the desirable polylogarithmic condition number bound

κ ≤ C

(
1 + log

H

h

)2

. (5.28)

We refer to, e.g., monograph [58] for the detailed discussion.
Let us denote the space of functions from W̃ c satisfying these additional constraints as W̃ avg.

Then, we can rewrite the hierarchy of spaces (5.17), as

UΓ ⊂ W̃ avg ⊂ W̃ c ⊂ W. (5.29)

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 58

This distinction allows us to think of both kinds of coarse degrees of freedom separately, and to
handle them differently in an implementation.

Subspace W̃ avg may be defined as

W̃ avg =
{
w ∈ W̃ c : Gw = 0

}
, (5.30)

where G is a constraint matrix. Each row of G represents one constraint and contains coefficients
of averages. The constraints are linearly independent, so that G has full rank. As an example,
a particular row k of G that corresponds to a constraint that enforces equality of an arithmetic
average over an edge between two subdomains may appear as

gk = [0 . . . 0 1 1 1 1︸ ︷︷ ︸
edge dof on Ωi

0 . . . 0−1− 1− 1− 1︸ ︷︷ ︸
edge dof on Ωj

0 . . . 0] (5.31)

Note that, e.g., for elasticity in 3D it is natural to split G into three independent rows, each corre-
sponding to displacements in the direction of a principal axis.

Also we need to be careful in coupling edge averages in 3D that belong to more than just
two subdomains and use nonredundant constraint in the same sense as, e.g., [58, Section 6.3.1]
so that G has full rank. We note, that using G naturally leads to nonredundant constraints, since
for a constraint among m subdomains, we can choose a ‘master’ subdomain, and generate m − 1
connections to the remaining subdomains in turn, resulting in m− 1 constraints in G.

Using the space W̃ avg, the algorithm of the BDDC preconditioner (Algorithm 2) can be refor-
mulated as

Algorithm 3 The BDDC preconditioner MBDDC : U ′Γ → UΓ in space W̃ avg is defined as

MBDDC : r → u = Ew, w ∈ W̃ avg : ã (w, z) = 〈r, Ez〉 , ∀z ∈ W̃ avg.

Also the projection E is refined as

E : W̃ avg → UΓ. (5.32)

The ways to actually realize Algorithm 3 are discussed in Sections 5.3 and 5.4.

5.3 Projected BDDC preconditioner
Let us now describe in detail, how to actually realize the abstract BDDC preconditioner described
in Algorithm 3, i.e. restricted to the subspace W̃ avg. The preconditioner consists of two steps:
solving the system

Ãw = ET r, subject to Gw = 0, (5.33)

followed by the computation of the approximate solution u ∈ UΓ as u = Ew.
A natural way to rewrite this statement is based on Lagrange multipliers

Ãw + GTµ = ET r,
Gw = 0.

(5.34)

This system might serve for the actual solution. However, it would not lead to an efficient
parallel implementation and we only refer to it in the following derivations.

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 59

Instead, we propose another way of restricting the action of the preconditioner to space W̃ avg.
The idea is to project the system (5.34) onto the right subspace, i.e. nullspace of G, by orthogonal
projection operator P defined as

P = I −GT
(
GGT

)−1
G. (5.35)

The projected system has then the form

PÃPw = PET r. (5.36)

Because PÃP is singular for nontrivial G (null(G) is a proper subspace of W̃ c), we suggest to
solve instead of (5.36) a modified system[

PÃP + s(I − P)
]
w = PET r, (5.37)

where s > 0 is some scaling constant. Now, the operator PÃP + s(I − P) is regular and the
following two lemmas hold.

Lemma 4 Problems (5.36) and (5.37) have the same solution.

Proof. Operator P is the projection onto null(G). Since null(G) ⊥ range(GT), the complementary
operator I − P is a projection onto range(GT). Therefore

P (ÃPw)︸ ︷︷ ︸
null(G)

+ s(I − P)w︸ ︷︷ ︸
range(GT)

= P (ET r)︸ ︷︷ ︸
null(G)

.

Should w be the solution of (5.36), we get a condition

s(I − P)w = 0, (5.38)

which concludes the proof. As a consequence, from condition (5.38), we see that the solution w
satisfies Pw = w, i.e., w ∈ null(G).

Lemma 5 Problems (5.34) and (5.37) have the same solution.

Proof. From Lemma 4, it is sufficient to show the equivalence of (5.34) and (5.36). First, suppose
w is the solution of (5.36). From the last observation in the proof of Lemma 4, we get for solution
w of (5.36)

Gw = 0,

the second equation in (5.34). Since Pw = w, system reduces to

P (Ãw) = P (ET r).

Putting both terms on one side we get

P (Ãw − ET r) = 0,

which implies that Ãw − ET r ⊥ null(G), i.e. Ãw − ET r ∈ range(GT). If GT has a full column
rank, we get the existence of vector µ that satisfies ET r − Ãw = GTµ. This can be rewritten as

Ãw +GTµ = ET r,

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 60

which is the first equation in (5.34).
Suppose now that w is the solution of (5.34). Since Gw = 0, Pw = w and

Ãw = ÃPw.

We can rewrite the first equation of (5.34) as

ÃPw +GTµ− ET r = 0.

Since this equality holds on the whole space W̃ c, it holds when projected on its subspace null(G)
as well,

P (ÃPw +GTµ− ET r) = 0.

What remains to show is that PGTµ = 0. This may be seen from the definition of P in (5.35) as

(I −GT
(
GGT

)−1
G)GTµ = GTµ−GT

(
GGT

)−1
GGT︸ ︷︷ ︸

I

µ = GTµ−GTµ = 0.

Due to the block structure of G, where each block corresponds to a different glob, and because
by definition each degree of freedom belongs to at most one glob, the action of P in (5.36) and
(5.37) on the matrix Ã can be performed efficiently glob-wise in parallel.

This fact considerably simplifies the explicit construction of the resulting matrix on the left
hand side of (5.37), which is necessary in the algorithm. However, the structure of P gives rise to
dense off-diagonal blocks in a projected system operator PÃP , thus spoiling much of the simpe
structure of the corresponding matrix, which is essential for using BDDC as a preconditioner.
This unpleasant fact corresponds to the ‘re-connection’ of degrees of freedom that belong to the
same glob among subdomains. The next section about generalized change of variables presents
a satisfactory answer to this problem.

5.4 Generalized change of variables
In this section, a generalization of the change of variables described by Li and Widlund [42] is
presented. It allows to prescribe quite general edge or face averages as constraints (in [42], only
arithmetic averages are admitted), and also preserve a minimal fill-in of the projected system op-
erator.

The basic idea is to transform the operator Ã associated with the bilinear form ã on the
space W̃ c into a different basis, in which all averages would be represented by explicit degrees
of freedom.

The dual coupling by matrix of constraints G is then done between these individual degrees
of freedom, resulting in a minimum fill-in of the projected system operator (see Section 5.3). We
note that, obviously, we could treat the degrees of freedom corresponding to averages after the
change of variables as corners, i.e. assemble them as advocated in [42], which would give us no
additional fill-in beyond the one caused by the change of variables. However, we do not adopt
such approach here, mainly because of reasons related to implementation: different dimensioning
of arrays, and loosing the distinction between W̃ c and W̃ avg, which is found useful e.g. in the
concept of adaptive selection of additional constraints described in [47], where dimensions are, in
fact unknown a priori.

The new variables are introduced by transformation

w = Bw, (5.39)

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 61

where operator B is represented by an invertible matrix containing weights of the averages in-
tended to constrain. Let us denote the inverse transformation T , so then T = B−1 and w = Tw.

Now, using the change of basis we can further modify Algorithm 3 as follows:

Algorithm 4 The BDDC preconditionerMBDDC : U ′Γ → UΓ with generalized change of variables
is defined as

MBDDC : r → u = ETw, w = Tw ∈ W̃ avg : ã (Tw, Tz) = 〈r, ETz〉 , z = Bz,∀z ∈ W̃ avg.

Note, that in the action of the preconditioner defined by the previous algorithm, transformation B
is never used and only its inverse T is necessary.

Algorithm 4 consists of two steps: solving the system

T T ÃTw = T TET r, subject to Gw = 0, (5.40)

followed by computation of the approximate solution u ∈ UΓ as

u = ETw. (5.41)

Here, the new operator G is defined as

G = GT, (5.42)

and is obtained by transforming the operator G used in (5.33). By the transformation, constraints
inG simplify to one 1 and one -1 entry on each row. Thus, G is much sparser thanG. The meaning
of G is similar to the matrices enforcing continuity across interface in FETI methods (cf. [19]).

The transformation matrix B is constructed separately for each glob and contains weigths of
n averages on its first n rows, completed by any block, that leads to an invertible matrix. The
choice of this block is arbitrary and driven mainly by the low induced fill-in in transformed matrix.
A block of identity is a reasonable choice. See Section 6.3.2 for details of implementation.

For the application of the preconditioner, we need to explicitly construct the matrix of the
operator on the left hand side of (5.40). However, the inverse of B and its application to the matrix
in (5.40) are performed glob-wise, and thus are quite efficient. This procedure is also described in
detail in Section 6.3.2.

For the case of a single arithmetic average on a glob, the block of B corresponding to the glob
contains only one row of ones and other ones on diagonal, i.e. for a particular glob, it may look as

BG =

 1 1 1
0 1 0
0 0 1

 , (5.43)

with the inverse

TG = B−1
G =

 1 −1 −1
0 1 0
0 0 1

 . (5.44)

Remark 5 The matrix TG in (5.44) is a particular case of the matrix TE considered in [42,
Section 3.3] for the case of arithmetic averages over globs.

For the actual realization of the coupled problem (5.40), the projected BDDC of Section 5.3
may be used.

CHAPTER 5. BDDC DOMAIN DECOMPOSITION METHOD 62

To project the system onto null(G), the orthogonal projection P is introduced as

P = I −GT
(
GG

T
)−1

G.

The projected system (5.40) has the form

PT T ÃTPw = PT TET r. (5.45)

Again, the operator PT T ÃTP is singular for nontrivial G, and it is reasonable to solve instead of
(5.45) a modified system [

PT T ÃTP + s(I − P)
]
w = PT TET r, (5.46)

where s > 0 is some scaling constant. Now, the operator PT T ÃTP + s(I − P) is regular and
also, the solutions of the systems (5.45) and (5.46) are the same (cf. Section 5.3, Lemmas 4 and 5
for the argument).

Finally, let us rewrite the Algorithm 4 in an algebraic form as:

Algorithm 5 The action of the BDDC preconditioner MBDDC : U ′Γ → UΓ projected onto the
space W̃ avg with the generalized change of variables consists of the two steps: solving the system[

PT T ÃTP + s(I − P)
]
w = PT TET r, (5.47)

followed by the computation of the approximate solution u ∈ UΓ as u = ETw.

Chapter 6

Parallel algorithms of the BDDC method

This chapter is devoted to efficient algorithms of the BDDC method introduced in Chapter 5. The
first presented approach uses the frontal algorithm by Irons [33]. It is presented in our paper [54].
The second approach uses a multifrontal method by Duff and Reid [15]. Some tricks useful for the
implementation of these algorithms on parallel computers are also included.

6.1 BDDC by frontal solver
In this section, a detailed description of Algorithm 2, i.e. the BDDC preconditioner with explicit
construction of the coarse problem, is presented. This approach is based on the fact, that while
coarse degrees of freedom introduce new coupling among, otherwise completely separated, sub-
domains in space W , this coupling is extracted into the new global coarse problem, and thus the
independence of subdomain corrections is recovered, and they may be computed in parallel.

We now show how to construct and solve subdomain problem (5.24) and coarse problem (5.27)
using the frontal solver. Both continuity at corners and equality of averages over globs are consid-
ered, however, they are applied in different ways.

The algorithm has been implemented in Fortran 77 programming language and MPI library is
used for parallelization. It is based on standard building blocks of finite element software, and thus
require minimal amount of custom coding.

The frontal solver [33] is a direct factorization method, that resolves a square linear system with
some of the variables having prescribed fixed values. Equations that correspond to the fixed vari-
ables are omitted and the values of these variables are substituted into the solution vector directly.
The output of the solver consists of the solution and the resulting imbalance in the equations, called
reaction forces. More precisely, consider a block decomposition of the vector of unknowns x with
the second block consisting of all fixed variables, and write a system matrix A with the same block
decomposition. Then on exit from the frontal solver,[

A11 A12

A21 A22

] [
x1

x2

]
=

[
f1

f2

]
+

[
0
r2

]
, (6.1)

where fixed variable values x2 and the load vectors f1 and f2 are the inputs, while the solution x1

and the reaction r2 are the outputs.

Notation 3 In this section, we drop the subdomain subscript i.

Let us write subdomain vectors w in the block form with the second block consisting of coarse
unknowns, denoted by the subscript c, and the first block consisting of the remaining degrees
of freedom, denoted by the subscript f . The vector of the coarse degrees of freedom given by

63

CHAPTER 6. PARALLEL ALGORITHMS OF THE BDDC METHOD 64

averages is written as Cw, where each row of C contains the coefficients of the average that
makes that degrees of freedom; zeros and ones for arithmetic averages. Then subdomain vectors
w ∈ W̃ are characterized by wc = 0, Cw = 0. Assume that C = [Cf Cc], with Cc = 0, that
is, the averages do not involve single variable coarse unknowns; then Cw = Cfwf . Denote the
subdomain local stiffness matrix by K. This matrix is obtained by the subassembly of element
matrices only of elements in the subdomain (the global stiffness matrix A may be obtained from
matrices K by assembly over subdomains, but it is not needed). The matrix K is singular for
floating subdomains (subdomains not touching Dirichlet boundary conditions), but the block Kff

is nonsingular if Assumption 1 is satisfied, i.e. enough corners are selected to eliminate rigid body
motions.

The local subdomain problems (5.23) are written in the frontal solver form (6.1) as Kff Kfc CT
f

Kcf Kcc 0
Cf 0 0

 wf
wc
µ

 =

 r
0
0

+

 0
Rea

0

 , (6.2)

where wc = 0, r is the part of the residual in the PCG method in the f block distributed to the
subdomain by the operator ET , and Rea is the reaction. The constraint wc = 0 is enforced by
marking the wc unknowns as fixed, while the remaining constraints Cfwf = 0 are enforced via the
Lagrange multiplier µ. Using the fact that wc = 0, we get from (6.2) that

Kffwf = −CT
f µ+ r, (6.3)

Kcfwf = Rea, (6.4)
Cfwf = 0. (6.5)

From (6.3), wf = K−1
ff

(
−CT

f µ+ r
)
. Now substituting wf into (6.5), we get the dual problem for

µ,
CfK

−1
ff C

T
f µ = CfK

−1
ff r. (6.6)

The matrix CfK−1
ff C

T
f is dense but small, with the order equal to the number of averages on the

subdomain, and it is constructed by solving the system KffU = CT
f with multiple right hand sides

by the frontal solver, and then by multiplication CfU . After solving problem (6.6), we substitute
for µ in (6.3) and find wf from (6.3)–(6.4) by the frontal solver, considering both wc = 0 and
µ fixed. The factorization in the frontal solver for (6.2) and the factorization of the dual matrix
CfK

−1
ff C

T
f need to be computed only once.

Note that while the residual in the PCG method applied to the reduced problem is given at
the interface only, the right hand side in (6.2) has the dimension of all degrees of freedom on
the subdomain. This is corrected naturally by extending the residual to subdomain interiors by
zeros, which is required by the condition that the solution w of (6.2) is discrete harmonic inside
subdomain. Similarly, only interface values of wi are used after solution of (6.2) in further PCG
computation. Such approach is equivalent to computing with explicit Schur complements. Aware
of this, we make no distinction in notation between these vectors given on the whole subdomain
and on the corresponding interface.

The coarse problem (5.22) is solved by the frontal solver just like a finite element problem,
with the subdomains playing the role of elements. It only remains to specify the basis functions
of W̃C on the subdomain and compute the local subdomain coarse matrix efficiently. Each coarse
basis function is a column vector of values of unknowns on the subdomain and it is associated
with one coarse degree of freedom, which has value 1, while all other coarse degrees of freedom
have value 0. Denote by ψc the matrix whose colums are coarse basis functions associated with the
coarse unknowns at corners, and ψavg the matrix made out of the coarse basis functions associated

CHAPTER 6. PARALLEL ALGORITHMS OF THE BDDC METHOD 65

with averages. To find the coarse basis functions, we proceed similarly as in (6.2) and write the
equations for the coarse basis functions in the frontal solver form, now with multiple right-hand
sides, Kff Kfc CT

f

Kcf Kcc 0
Cf 0 0

 ψcf ψavgf

I 0
λc λavg

 =

 0 0
0 0
0 I

+

 0 0
Reac Reaavg

0 0

 , (6.7)

where Reac and Reaavg are matrices of reactions. Let us denote ψf =
[
ψcf ψavgf

]
, ψc =[

ψcc ψavgc

]
=
[
I 0

]
, λ =

[
λc λavg

]
, Rea =

[
Reac Reaavg

]
, and R =

[
0 I

]
with

blocks of the same size. Then (6.7) becomes

Kffψf +Kfcψc = −CT
f λ, (6.8)

Kcfψf +Kccψc = Rea, (6.9)
Cfψf = R. (6.10)

From (6.8), we get ψf = −K−1
ff

(
Kfcψc + CT

f λ
)
. Substituting ψf into (6.10), we derive the dual

problem for Lagrange multipliers

CfK
−1
ff C

T
f λ = −

(
R + CfK

−1
ff Kfcψc

)
, (6.11)

which is solved for λ by solving the system (6.11) for multiple right hand sides. Since ψc is known,
we can use frontal solver to solve (6.8)–(6.9) to find ψf .

Finally, we construct the local coarse matrix corresponding to the subdomain as

KC = ψTKψ = ψT
[
−CT

f λ
Rea

]
=
[
ψTf ψTc

] [−CT
f λ

Rea

]
= −ψTf CT

f λ+

[
I
0

]
Rea,

where ψ =
[
ψc ψavg

]
.

At the end of the setup phase, the matrix of coarse problem is factored by frontal solver, using
subdomain coarse matrices as input. Note that the factorizations in the subdomain solution and in
the computation of the coarse basis functions are the same, and need to be computed only once.

6.2 BDDC by multifrontal solver
As was already mentioned in Section 5.2, the point of view presented in [42] allows the reformu-
lation of the BDDC preconditioner from Algorithm 2 to Algorithm 3.

An efficient parallel solver for problem (5.33) is then the key to a successful implementation.
The simple structure of Ã compared to A should guarantee, that such solutions are performed
much faster, than if we applied the solver to the original problem (5.13) directly, and thus advocate
the use of BDDC as the preconditioner in PCG.

A multifrontal method [15] is well-suited for this purpose. We based our implementation on the
MUMPS package [1], an interesting open source parallel realization of the multifrontal method.

Our algorithm uses the generalized change of variables (Section 5.4), followed by the projected
BDDC described in Section 5.3 and Section 5.4.

Let us describe the procedure more precisely. Let us recall Algorithm 5, where the key part is
to find the solution to problem[

PT T ÃTP + s(I − P)
]
w = PT TET r. (6.12)

CHAPTER 6. PARALLEL ALGORITHMS OF THE BDDC METHOD 66

First we use the trick of a virtual renumbering of the mesh, such that it appears as disconnected
along the interface, except at corners. Then a standard assembly procedure is used to generate
matrix Ã, stored distributed among processors.

This matrix is then transformed glob-by-glob by matrix T from both sides. Finally, projection
P is applied, again, glob-wise to explicitly construct matrix

Ãavg = PT T ÃTP + s(I − P).

Scaling coefficient t is chosen as the absolute value of the largest diagonal entry of the stiffness
matrix.

The MUMPS package is used in the setup phase of the method to factorize matrix Ãavg. The
factors are then reused in each iteration of the PCG method for backsubstitution, thus finding the
solution to problem (6.12) for current residual r of PCG.

The algorithm has been implemented in Fortran 90 programming language and MPI library is
used for parallelization.

6.3 Details of the algorithm
This section describes several tricks used in the algorithm, that are worth noticing.

6.3.1 Algorithm of preconditioned conjugate gradient method for BDDC
Let us return to the abstract definition of the BDDC preconditioner in the form of Algorithm 1
to show the main idea. Minor technical changes for other algorithms of Section 5.2 would be
necessary, however, they are not discussed here.

Since the main part of the BDDC preconditioner is performed in space W̃ , (cf. Section 5.2
for definition), while the PCG method iterates in the continuous space UΓ, double dimensioning
of arrays and matrices seems necessary. However, using both spaces may be circumvented in the
iterative process by redefinition of the PCG algorithm into the larger space W̃ .

The starting point is the standard algorithm of preconditioned conjugate gradient method for
the solution of (5.7) in the form that can be found, e.g., in [27].

Algorithm 6 Standard PCG for system Au = f .

1. u0 = 0, r0 = f , h0 = Mr0, p0 = r0

2. for n=1, 2,. . . Do until convergence:,...

3. αn =
(
rTn−1hn−1

)
/
(
pTn−1Apn−1

)
4. un = un−1 + αnpn−1

5. rn = rn−1 − αnApn−1

6. hn = Mrn

7. βn =
(
rTnhn

)
/
(
rTn−1hn−1

)
8. pn = hn + βnpn−1

9. End Do

CHAPTER 6. PARALLEL ALGORITHMS OF THE BDDC METHOD 67

At this point, a more detailed description of the connection between spaces UΓ and W̃ is
needed. Let us recall, that it is realized by the operator E defined by (5.18) and its transpose.

One of possible realizations of E, used also in our implementation, is to split it into two oper-
ations as E = RTDp, where

Dp : W̃ → W̃ (6.13)

is a weight matrix representing the decomposition of unity on disconnected interface nodes, and

R : UΓ → W̃ (6.14)

is an injection operator. It is realized by a simple copy of designated interface entries into the
disconnected counterparts in W̃ . This means, that a vector v ∈ UΓ injected into W̃ has some
interface entries (except corners) copied in multiple places. Let us give it a special symbol

ṽ ∈ W̃ : ṽ = Rv, where v ∈ UΓ.

Its transpose RT is realized by the sum of all contributions from disconnected interface entries
stored into the designated position.

It holds
ER = RTDpR = IUΓ

. (6.15)

The construction of Dp is somewhat arbitrary, provided that relation (6.15) is satisfied. The
simplest method uses as weigths for an interface node the reciprocal value to the number of sub-
domains adjacent to the node. This corresponds to usage of the mean value for the resulting
continuous function. However, to improve robustness with respect to jumps in coefficients in the
model, more sophisticated constructions are necessary [45]. A weighted average, that uses diago-
nal entries of the system matrix as weights, presents another useful approach. Both options were
implemented into our program, and they are chosen according to the problem properties.

The following relation holds for operators A and Ã

A = RT ÃR. (6.16)

Let us require, that all quantities evaluated within PCG are computed as if we were iterating
with matrix A on vectors from UΓ. We need to derive some equivalences used in our implementa-
tion of PCG.

From (6.16), we get
Ap = RT ÃRp = RT Ãp̃, (6.17)

embedding into W̃ , we get
RAp = RRT Ãp̃,

and since p̃T = pTRT , we also get

pTAp = pTRT ÃRp = p̃T Ãp̃.

The action of the preconditioner can be evaluated as follows. From (5.20), we have

M = EÃ−1ET = RTDpÃ
−1DT

pR.

Then, we can evaluate

h = Mr = RTDpÃ
−1DT

pRr = RTDpÃ
−1DT

p r̃.

CHAPTER 6. PARALLEL ALGORITHMS OF THE BDDC METHOD 68

Since h̃ = Rh and r̃T = rTRT , we get

rTh = rTRTDpÃ
−1DT

p r̃ = r̃TDpÃ
−1DT

p r̃.

We note that from (6.15), we also have

‖r‖ =
√
rT r =

√
rTRTDPRr =

√
r̃TDpr̃.

We are ready to present the version of PCG used in the implementation.

Algorithm 7 Modified PCG embedded into W̃ for system Au = f .

1. f̃ = Rf , ũ0 = Ru0

2. r̃0 = f̃ −RRT Ãũ0

3. z̃0 = DP Ã
−1DP r̃0

4. h̃0 = RRT z̃0

5. p̃0 = h̃0

6. For n = 1, 2,. . . Do until convergence:

7. αn =
(
r̃Tn−1z̃n−1

)
/
(
p̃Tn−1Ãp̃n−1

)
8. ũn = ũn−1 + αnp̃n−1

9. r̃n = r̃n−1 − αnRRT Ãp̃n−1

10. z̃n = DP Ã
−1DP r̃n

11. h̃n = RRT z̃n

12. βn =
(
r̃Tn z̃n

)
/
(
r̃Tn−1z̃n−1

)
13. p̃n = h̃n + βnp̃n−1

14. End Do

The convergence for tolerance tol is obtained in the nth iteration if

‖rn‖
‖f‖

=

√
r̃TnDP r̃n√
f̃TDP f̃

< tol. (6.18)

CHAPTER 6. PARALLEL ALGORITHMS OF THE BDDC METHOD 69

6.3.2 Efficient inverse of transformation matrix
The role of this section is to support the generalized change of variables described in Section 5.4.
Let us recall, that the change of variables is given by

w = Bw, (6.19)

where operator B is represented by an invertible matrix containing weights of the averages in-
tended to constrain.

We then need to construct an explicit matrix T T ÃT to use it for preconditioning, where T =
B−1 is the inverse of B.

At the first sight, such construction might be a perfect nightmare for any numerical mathemati-
cian – there are two matrix-matrix multiplications and an explicit inverse of a matrix of dimension
of space W̃ , i.e. even larger than the original problem.

However, let us have a deeper look at these operations. The first important fact is, that matrix
B has very special structure. The change of variables transforms degrees of freedom only within
a glob, without coupling several globs together. This fact results in a block diagonal structure of
B with size of blocks given by number of degrees of freedom within that glob, and identity in
all degrees of freedom outside globs (interiors of subdomains and corners). This means, that the
inverse T has the same block diagonal structure and may be found glob by glob, as well as the
application of T to Ã.

Moreover, if equivalence of only one average is requested on every admissible glob (the case
of arithmetic averages), only a single line of the block ofB corresponding to each glob is not a row
of identity matrix, and its inverse may be written directly as in example (5.44), and in [42].

But even in the case of equivalence of several averages on a glob (e.g. in adaptive selection
of constraints [47]), we can proceed quite efficiently. Let us now consider change of variables in
a block of the global transformation matrix corresponding to only one glob BG. We have already
mentioned that the prescribed averages can be quite general: their number is limited by the number
of degrees of freedom on this glob.

Let us denote by BAV G the block of the matrix BG that prescribes the averages, i.e.

BAV G =

 vT1
...
vTn

 ,
where v1, . . . , vn are weigths of n averages. Let us assume that the vectors v1, . . . , vn are linearly
independent. Then, we can complete BG by block of identity as

BG =

[
BAV G

0 I

]
=

[
V W
0 I

]
, (6.20)

to arrive at an invertible matrix. Above, we have schematically split the block BAV G =
[
V W

]
for the only reason: the inverse TG = B−1

G can be found more effectively by inverting only much
smaller block V , with the size n, i.e. the number of averages, as

TG =

[
V −1 −V −1W

0 I

]
. (6.21)

It is not obvious, and in fact, it is often not the case, that block V is readily invertible. However,
we may first perform a factorization of the rectangular block BAV G with column permutations as

BAV G = LUP,

CHAPTER 6. PARALLEL ALGORITHMS OF THE BDDC METHOD 70

where L is a lower triangular matrix, rectangular matrix U has zeros under its diagonal, and P is
the matrix of column permutations. It holds, that

null (BAV G) = null (UP) , (6.22)

which means, that constraints in UP define the same subspace as those in BAV G.
Let us now define matrix B′G, such that BG = B′GP . Because for permutation, P−1 = P ,

TG = B−1
G = P (B′G)−1.

We can thus obtain matrix TG by permutation of the inverse of matrix B′G, where we repeat the
trick with block inverse above, just using block U instead of BAV G as

B′G =

[
U

0 I

]
=

[
V ′ W ′

0 I

]
. (6.23)

Then

TG = P

[
(V ′)−1 − (V ′)−1W ′

0 I

]
,

where (V ′)−1 is the inverse of a square triangular matrix of the size of number of averages on glob
n.

In the case of linearly dependent rows in BAV G, only the meaningful block of U is used in
(6.23) and rows of zeros are excluded. The identity block is then extended in place of these
truncated rows. By (6.22), the subspace defined by such constraints remains the same.

Let us now relate the general matrix BG from (6.20) to the one used for one arithmetic average
in (5.43), and extend it to a glob of general size. The general block BAV G is in this case reduced
into the first line of the matrix BG, and so the block V from (6.20) is reduced just to the diagonal
entry of 1. It is also remarkable that in this case, the inverse of transformation matrix for glob of
any size is explicitly known. It is given as

BG =

1 1 . . . 1

1
. . .

1

 , TG = B−1
G =

1 −1 . . . −1

1
. . .

1

 . (6.24)

This formula may be trivially verified by (6.20), and it was the core of the change of variables
presented in [42].

6.3.3 Storing the matrices in memory

When using Algorithm 5, both marices Ã and
[
PT T ÃTP + s(I − P)

]
are necessary simultane-

ously; the former in the modified PCG algorithm (Algorithm 7 in Section 6.3.1), and the latter in
the BDDC preconditioner (cf. Sections 5.4 and 6.2).

Because it is the input format of the MUMPS package (Section 6.2), the coordinate format
is used to store the sparse matrix in computer memory. It consists of two integer arrays and one
real array of the length of number of nonzero entries in the matrix. For each nonzero entry, they
represent the row index, the column index, and the value, respectively. Multiple entries with the
same row and column indices are allowed, and sum of such values is considered.

To save the memory space, we would like to distinguish between the entries of original matrix
Ã, and of matrix

[
PT T ÃTP + s(I − P)

]
.

CHAPTER 6. PARALLEL ALGORITHMS OF THE BDDC METHOD 71

First, we need to construct matrix T T ÃT . Since this transformation, in general, does not
preserve entries in Ã, we would have to put zeros into the original matrix, rewriting all the new
entries behind the original matrix. However, that is not desired for the iterative process.

This may be circumvented by using matrix

T = T − I (6.25)

instead of T , where I stands for identity matrix. With this modification, the transformation of
sparse matrix only adds new entries, leaving original entries unchanged. The transformation in the
implementation is done by

T T ÃT = (I + T T)Ã(I + T) = Ã+ ÃT + T T Ã+ T T ÃT . (6.26)

This formulation allows to only put new entries in memory behind the original matrix. In case of
symmetric matrix Ã, we can observe, that the third block may be written as (ÃTT)T , which for
this case simplifies to (ÃT)T , i.e. just transposition of the previous block. If only one triangle
of the final matrix is stored, we can proceed by flipping one triangle of ÃT along diagonal and
doubling diagonal entries to find both blocks ÃT and T T Ã. However, block T T (ÃT) must be
determined before this flip.

Remark 6 It is worth emphasizing, that the trick in (6.25) leads to a very simple matrix, if no
permutation is applied in (6.3.2) (cf. Section 6.3.2). For example, in the case of arithmetic averages
on globs, matrix TG in (6.24) simplifies to

TG =

0 −1 . . . −1

0
. . .

0

 . (6.27)

Thus, appart of the desired leaving the original entries of matrix unchanged, this approach leads
to much more efficient usage of memory and lower time of the whole transformation.

However, the latter advantage is lost, if the identity block of (6.3.2) is scattered by the permu-
tation P in construction of TG.

After the matrix is transformed, we need to apply projection P to get
[
PT T ÃTP + s(I − P)

]
(cf. Sections 5.3 and 5.4). Let us now denote A ≡ T T ÃT .

The way to proceed from A to
[
PAP + s(I − P)

]
is summarized in the following algorithm.

Algorithm 8 Projection of matrix A onto the nullspace of matrix of constraints G.

1. Use QR-algorithm to factor G
T

= QR and store R.

Then G
T
(
GG

T
)−1

G = G
T
R−1R−TG = F TF , where F is unknown. Since F = R−TG,

we also have that RTF = G.

2. Solve RTF = G as a system with multiple right-hand sides and store F (as a dense matrix).

Substituting P = I − F TF into (5.47), we get[
A− F TFA−AF TF + F TFAF TF + tF TF

]
u =

(
I − F TF

)
T TET r. (6.28)

CHAPTER 6. PARALLEL ALGORITHMS OF THE BDDC METHOD 72

3. Multiply sparse A by dense F T to get dense AF T = H and store H (as a dense matrix).

The equation (6.28) can now be written as[
A− F THT −HF + F TFHF + tF TF

]
u =

(
I − F TF

)
T TET r. (6.29)

4. Use sparse matrix A and dense H and F to compute the matrices in (6.29).

Note that, again, the matrix in (6.29) allows the storage of original entries of A independently
of the new entries obtained by the projection.

Let us summarize the final ordering of consecutive parts of entries of the sparse matrix in
BDDC, as they are stored in the computer memory:

1. original entries of matrix Ã,

2. new entries from the generalized change of variables described in (6.26),

3. new entries from projection to nullspace of G described in (6.29).

While we iterate only with entries of the first item, we pass entries of all the above-mentioned
items to the preconditioner.

Chapter 7

Numerical results

This chapter binds together numerical results obtained with the methods presented in the thesis.
The semiGLS method proposed in Chapter 4 has been applied to both steady and unsteady

problems of Navier-Stokes flow. The accuracy of the stabilized method was analyzed by methods
proposed in Section 4.3. Several results of these experiments are presented in Section 7.1.

Although it was not the main aim of the work, the algorithm of BDDC described in Chapter 6
was first extensively tested on problems of linear elasticity (5.1) – (5.3), and some results are
presented in Section 7.2. This problem has symmetric positive definite bilinear form and thus is
covered by the theory of BDDC preconditioner.

The applicability of the BDDC preconditioner was then successfully investigated on problem of
the Stokes flow, which is not covered by the theory presented in Chapter 5 due to its indefiniteness.
These results are presented in Section 7.3.

The reader shoud note, that the semiGLS stabilization has not been implemented into the BDDC
program yet. This means that results presented in Section 7.1 were obtained simply by a serial
direct solver (unsymmetric frontal method). Results of Sections 7.2 and 7.3 were obtained by
parallel implementation of BDDC, however, all these results are obtained without stabilization.

7.1 Applications of semiGLS stabilization to Navier-Stokes flow
The semiGLS method was tested on several problems for verification and to review its behaviour.
Both enclosed flows (∂Ω = ∂Ωg) and inflow/outflow cases (∂Ωdn 6= 0) are considered. Results
obtained by the algorithm are marked as semiGLS algorithm results.

7.1.1 Steady flow of lid driven cavity
A popular benchmark problem for testing numerical schemes for viscous flows is the ‘lid driven
cavity’. Computational domain is of square shape with unit lenght of side. Dirichlet boundary
conditions are prescribed on the whole boundary: value of horizontal velocity is prescribed on the
upper side, zero boundary conditions on the rest of the boundary representing a wall.

Many solutions of this problem were presented by various authors. Here are some represen-
tatives: in [29], solutions for Reynolds numbers 1,000, 3,200, and 5,000 obtained on nonuniform
grid of approximately 8,800 elements are presented; in [24], a result for Reynolds number 7,500
on quasi-uniform mesh of 96×96 elements is presented; solutions for Reynolds number 10,000
obtained by several methods on the mesh of 64×64 elements are published in [59].

Solution by the developed algorithm was performed on three uniform meshes of quadrilateral
elements – of 32×32 (1,024) elements, of 64×64 (4,096) elements, and of 128×128 (16,384)

73

CHAPTER 7. NUMERICAL RESULTS 74

elements.
To observe the effect of stabilization, solutions obtained by the Newton method without stabi-

lization together with solutions computed by the semiGLS algorithm for Reynolds number 10,000
on all three meshes are presented in Figures 7.1–7.3. Moreover, we can review the sensitivity to
the fineness of the computational mesh in these figures.

Differences of solutions obtained by the semiGLS method from those obtained by the Newton
method computed by (4.23) are summarized in Table 7.1. They are quite high for the problem of
cavity.

Comparisons of a posteriori error estimates for problems of 32×32, 64×64, and 128×128
elements at Reynolds number 10,000 are presented in Figures 7.4–7.6. In presented plots, AEE
is an abbreviation for a posteriori error estimator from equation (4.24). Let us note that, as was
already suggested at the end of Section 4.3, our error estimator does not yield the exact value of
the approximation error. Still it is satisfactory enough to detect elements where the inaccuracy
is higher compared with other elements. To present such comparisons, Reynolds number for this
experiment was restricted to value, for which we are able to obtain solution also by Galerkin
method without stabilization. It does not depreciate an important advantage of this evaluation –
we are able to get an idea about the error distribution for any Reynolds number, for which the
stabilized method converges. We can observe in these plots, that the inacurracy introduced by the
stabilization remains present in the computation even if we are refining the mesh.

mesh 32×32 64×64 128×128
δuh1

[%] 41.69 39.07 21.42
δuh2

[%] 70.81 49.12 22.24
δph

[%] 197.90 137.10 42.82

Table 7.1: Differences between solutions obtained with and without stabilization

To extend results to higher Reynolds numbers, solution for Re = 100,000 on the mesh of
128×128 is presented in Figure 7.7.

Althought the continuation method was applied to achieve higher Reynolds numbers, we de-
tected limits of convergence of the Newton method for all three meshes. We observed, that on the
mesh of 32×32, we were not able to get results above Re ≈ 28,000, on the mesh of 64×64 above
Re ≈ 50,000, and on the mesh of 128×128 above Re ≈ 120,000. For comparison, such limit was
around Re ≈ 12,500 on the mesh of 32×32 for the method without stabilization.

Another interesting effect was observed during the computations. Since it is known, that stabi-
lized methods are, in general, sensitive to stabilization parameters, we tried to modify the computed
parameter τ by a quotient 0.7 to 1.5. This improved the convergence, and we were able to reach
higher Reynolds numbers, e.g. Re = 70,000 on the mesh of 64×64 elements.

Finer mesh is able to catch more vortices and provides better resolution, moreover presented
experiments showed another important conclusion – suitable refinement of the mesh significantly
improves stability of solution, i.e. convergence.

7.1.2 Steady flow in channel with sudden extension of diameter
Steady flow in 2D channel with abruptly extended diameter (Figure 7.8) is another testing problem.
This problem is complicated due to singularities of solution in the vicinity of nonconvex internal
corners. The aspect of suitable mesh generation for such problems was studied in [7] and [53].
Streamlines are presented in Figure 7.9 for Reynolds number 1,000. For the symmetry of the
problem, solution is found only on the upper half of the section. Differences between solutions

CHAPTER 7. NUMERICAL RESULTS 75

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.1: Streamlines by the Newton method without stabilization (left) and by the semiGLS
algorithm (right), Re = 10,000, mesh 32×32

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.2: Streamlines by the Newton method without stabilization (left) and by the semiGLS
algorithm (right), Re = 10,000, mesh 64×64

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 7.3: Streamlines by the Newton method without stabilization (left) and by the semiGLS
algorithm (right), Re = 10,000, mesh 128×128

CHAPTER 7. NUMERICAL RESULTS 76

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AEE
6
5
4
3
2
1
0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AEE
6
5
4
3
2
1
0

Figure 7.4: A posteriori errors on elements, cavity problem, Re = 10,000, uniform mesh 32×32
without stabilization (left) and by semiGLS method (right)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AEE
6
5
4
3
2
1
0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AEE
6
5
4
3
2
1
0

Figure 7.5: A posteriori errors on elements, cavity problem, Re = 10,000, uniform mesh 64×64
without stabilization (left) and by semiGLS method (right)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

AEE
6
5
4
3
2
1
0

AEE
6
5
4
3
2
1
0

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 7.6: A posteriori errors on elements, cavity problem, Re = 10,000, uniform mesh 128×128
without stabilization (left) and by semiGLS method (right)

CHAPTER 7. NUMERICAL RESULTS 77

Figure 7.7: Streamlines (left) and pressure contours (right) by the semiGLS algorithm on the mesh
of 128×128, Re = 100,000

computed by (4.23) are listed in Table 7.2 and the a posteriori error estimates are presented in
Figure 7.10.

Parabolic horizontal velocity distribution is prescribed on the inflow (left) part of the boundary,
‘do nothing’ boundary condition (2.5) is considered on the outflow (right) part of it, zero velocity
is prescribed on the upper part of the boundary representing wall with ‘no slip’ and symmetry is
considered on the lower part of it (see [53] for details). Again, we can observe, that the error of
semiGLS is spread to much larger region around the corner singularity than for the case of the
solution without stabilization.

3000 3000

9000

Æ
4

0
0

0

Æ
2

0
0

0

Figure 7.8: Geometry of the channel

Figure 7.9: Streamlines in the channel by the Newton method without stabilization (left) and
streamlines by the semiGLS algorithm (right), Re = 1,000

Additionally, we present streamlines, plots of velocities and pressure for Reynolds number
80,000 in Figures 7.11–7.12.

CHAPTER 7. NUMERICAL RESULTS 78

mesh channel (Figure 7.8)
δuh1

[%] 0.0718
δuh2

[%] 2.7202
δph

[%] 0.5139

Table 7.2: Differences between solutions obtained with and without stabilization

0 2 4 6 8
0

1

2

3

AEE

4.73684
4.21053
3.68421
3.15789
2.63158
2.10526
1.57895
1.05263
0.526316
0

0 2 4 6 8
0

1

2

3

AEE

4.73684
4.21053
3.68421
3.15789
2.63158
2.10526
1.57895
1.05263
0.526316
0

Figure 7.10: A posteriori error estimates in the channel for the Newton method without stabiliza-
tion (left) and by the semiGLS method (right), Re = 1,000

Figure 7.11: Streamlines (left) and plot of velocity uh1 (right) by the semiGLS algorithm,
Re = 80,000

Figure 7.12: Plot of velocity uh2 (left) and pressure (right) by the semiGLS algorithm, Re = 80,000

CHAPTER 7. NUMERICAL RESULTS 79

7.1.3 Flow past NACA 0012 airfoil
Flow past NACA 0012 airfoil was investigated as a more practical application. The computational
mesh is shown in Figures 7.13 and 7.14. It contains 6,220 elements, 18,478 nodes, and 43,085
degrees of freedom. We consider unit horizontal velocity on the left part of the boundary and ‘do
nothing’ boundary condition (2.5) on the rest of it. For unsteady problem, zero initial condition is
considered.

Results of the unsteady problem for angle of incidence of 34 deg and Reynolds number 1,000
obtained by the unconditionaly stable projection FEM were presented by Guermond and Quar-
tapelle in [29]. In Figures 7.15–7.19, these results are compared to ours obtained by the semiGLS
algorithm. Streamlines and pressure contours for the problem with Reynolds number 100,000 in
several time layers are presented in Figures 7.20–7.23. Time step sizes for simulation for Reynolds
number 1,000 are 0.01 and for Reynolds number 100,000 are 0.005 (see [53] for details).

Streamlines of the steady flow at Reynolds number 100 are presented in Figure 7.24. The
Reynolds number for computing of the steady state was lowered to correspond to the real behaviour
of the system – steady solution is unstable for higher Reynolds numbers where periodic solution
plays the role of the stable state of the system. The a posteriori error estimates are presented in
Figure 7.25. Again, the region with increased error estimate is larger than for the method without
stabilization, indicating a loss of accuracy compared to the classical Galerkin method.

Figure 7.13: Computational mesh for NACA 0012 problem, angle of incidence of 34 ˚

CHAPTER 7. NUMERICAL RESULTS 80

Figure 7.14: Computational mesh for NACA 0012 problem - details

Figure 7.15: Streamlines by the semiGLS algorithm (left) and by [29] (right), t = 1.6s, Re = 1,000

Figure 7.16: Pressure contours by the semiGLS algorithm (left) and by [29] (right), t = 1.6s,
Re = 1,000

CHAPTER 7. NUMERICAL RESULTS 81

Figure 7.17: Streamlines by the semiGLS algorithm (left) and by [29] (right), t = 2.6s, Re = 1,000

Figure 7.18: Streamlines by the semiGLS algorithm (left) and by [29] (right), t = 3.6s, Re = 1,000

Figure 7.19: Streamlines by the semiGLS algorithm (left) and by [29] (right), t = 6.0s, Re = 1,000

CHAPTER 7. NUMERICAL RESULTS 82

Figure 7.20: Streamlines (left) and pressure contours (right) by the semiGLS algorithm, t = 1.6s,
Re = 100,000

Figure 7.21: Streamlines (left) and pressure contours (right) by the semiGLS algorithm, t = 2.6s,
Re = 100,000

Figure 7.22: Streamlines (left) and pressure contours (right) by the semiGLS algorithm, t = 3.6s,
Re = 100,000

CHAPTER 7. NUMERICAL RESULTS 83

Figure 7.23: Streamlines (left) and pressure contours (right) by the semiGLS algorithm, t = 6.0s,
Re = 100,000

0 1 2 3

−1

0

1

0 1 2 3

−1

0

1

2

Figure 7.24: Streamlines (left) and pressure contours (right), Re = 100

Figure 7.25: A posteriori error on elements for the Newton method without stabilization (left) and
by the semiGLS method (right), Re = 100

CHAPTER 7. NUMERICAL RESULTS 84

7.2 Applications of BDDC to linear elasticity
This section contains a selection of results obtained by one of the implementations of the BDDC
precondtitioner described in Chapter 6. A short description of parallel computers used for these
calculations is summarized in Table 7.3 for reference.

hastrman Compaq Alpha server ES 47,4x Alpha EV7/1000 MHz,OS Tru64 IT CAS, Prague, CR
altix SGI Altix 3700,32x Intel Itanium,OS Linux CTU, Prague, CR
rex SGI Altix 4700,32x Intel Itanium,OS Linux CTU, Prague, CR
lomond Sun Fire server E15k,52x UltraSPARC III Cu/1.2 GHz,OS Solaris EPCC, Edinburgh, UK
HPCx IBM eServer 575 nodes,2560x IBM POWER5/1.5 GHz,OS AIX Daresbury, UK
frost IBM Blue Gene/L,2048x PowerPC-440/700 MHz,OS AIX NCAR, Boulder, CO

Table 7.3: Parallel computers used for testing

In this section, the model of linear elasticity (5.2)–(5.3) is considered. First, several test prob-
lems are computed, followed by computations of several practical problems from mechanical en-
gineering.

7.2.1 Cube problem
The problem of unit cube is a classical problem of domain decomposition methods. In our case,
the cube is made of steel – Young’s modulus 2.1 · 1011 Pascal, Poisson’s ratio 0.3. It is fixed at
one face and loaded by force of 1,000 Newton, acting on one edge opposite to the fixed face in
direction parallel to it and pointing outwards of the cube.

Various uniform discretizations of the cube by linear finite elements are used, as well as various
divisions into subdomains.

The purpose of the first set of experiments is testing the preconditioner with respect to variable
space W̃ avg (see (5.30), Section 5.2). In presented tables, W̃ c represents the space of functions
continuous across corners, ‘edges’ means, that equivalence of arithmetic averages across all edges
is enforced, and ‘faces’ stands for equivalence of arithmetic averages across all faces.

We are interested in the quality of preconditioning, represented by number of PCG interates
and a condition number estimate [52, Section 6.7.3], but also in the outcome of saving the compu-
tational time. Although this is not always the case in domain decomposition literature, we consider
this to be the main goal of our efforts. Measurements of time are divided into time of precondi-
tioner setup with factorizations of matrices, and times of the PCG run. The total wall time is also
provided. Note, that it contains even some subsidiary operations, that are not included in the previ-
ous two rows, so it is not a simple sum of them. All these computation are performed to precision
tol = 10−6 of the relative residual in the form (6.18).

In Table 7.4, results of this experiment for cube divided into 43 = 64 subdomains and 163 =
4, 096 finite elements are presented. Such division results in the ratio of the reference size of
subdomain to the reference size of element H/h = 4, and in 14, 739 degrees of freedom. The
computational mesh and division into subdomains is depicted in Figure 7.26.

In Table 7.5, results for cube divided into 64 subdomains and 323 = 32, 768 finite elements
are presented. This corresponds to H/h = 8 and 107, 811 degrees of freedom. The computational
mesh and division into subdomains is depicted in Figure 7.27. Times were obtained by solution
of the problem by the implementation based on frontal solver described in Section 6.1 and are
presented in seconds.

CHAPTER 7. NUMERICAL RESULTS 85

Figure 7.26: Computational mesh for cube problem, 64 subdomains, H/h = 4

coarse problem W̃ c W̃ c + edges W̃ c + faces W̃ c + edges and faces
iterations 33 17 22 10

cond. number est. 19.1 5.4 9.2 2.3
factorization (sec) 9 9 9 8

PCG iter (sec) 128 68 29 15
total (sec) 140 81 40 26

Table 7.4: Variable W̃ avg on cube with 64 subdomains, H/h = 4, frost – 64 processors, frontal
implementation

Figure 7.27: Computational mesh for cube problem, 64 subdomains, H/h = 8

CHAPTER 7. NUMERICAL RESULTS 86

coarse problem W̃ c W̃ c + edges W̃ c + faces W̃ c + edges and faces
iterations 55 20 33 14

cond. number est. 55.1 7.8 27.4 4.2
factorization (sec) 94 157 108 93

PCG iter (sec) 1213 457 225 109
total (sec) 1391 701 420 288

Table 7.5: Variable W̃ avg on cube with 64 subdomains, H/h = 8, frost – 64 processors, frontal
implementation

Obtained computational times confirm, that using additional constraints, such as equivalence
of arithmetic averages across faces and edges of subdomains, leads to improvement of precondi-
tioning. It also shows, that for the implementation based on frontal solver, decrease in number of
iterations can lead to considerable saving of computational time.

The same experiment is now performed with the implementation based on multifrontal solver
described in Section 6.2. In the first test, the previous setting is considered, i.e. division into 64
subdomains and 32, 768 finite elements as in Figure 7.27. Note, that in these experiments, the
original right hand side f of problem (5.7) is considered, instead of the reduced right hand side
of (5.13). This approach saves one extra factorization, that is necessary for finding the right hand
side. However, iterations are not performed in the space of functions with minimal energy, and
larger number of them is necessary. Results are presented in Table 7.6. Here, an extra column is
added – using the MUMPS package for preconditioning of PCG, a natural question arises: how
long does the solution by the MUMPS package applied directly to problem (5.7) take. This time is
put into the last column of the following tables. Times are in seconds.

A larger experiment was performed on the cube divided into 8 subdomains and 643 = 262, 144
elements, H/h = 32, resulting in 823, 875 degrees of freedom. Such problem size is closer to
the target problem size for such parallel implementations. The computational mesh is depicted in
Figure 7.28, and times are presented in Table 7.7.

Next experiment serves for comparison of efficiency of presented approaches to enforcing con-
straints. Cube of 64 subdomains and 32, 768 finite elements is considered, and equality of averages
over all edges and faces is enforced. Results are summarized in Table 7.8, where ‘LM’ stands for
approach using global dual problem for Lagrange multipliers, ‘PB’ stands for the projected BDDC
method described in Section 5.3, and ‘PCV’ for the generalized change of variables followed by
projection described in Section 5.4.

coarse problem W̃ c W̃ c + edges W̃ c + faces W̃ c + edges and faces MUMPS
PCG iterations 103 49 41 24 -

cond. number est. 292.8 76.4 60.5 11.7 -
analysis (sec) 7.5 9.7 26.5 30.9 9.8

factorization (sec) 1.1 1.7 3.2 5.0 25.6
PCG iter (sec) 50.0 23.9 20.7 12.2 -

total (sec) 62.6 47.4 69.8 75.6 39.4

Table 7.6: Variable W̃ avg on cube with 64 subdomains, H/h = 8, frost – 64 processors, multi-
frontal implementation

CHAPTER 7. NUMERICAL RESULTS 87

Figure 7.28: Computational mesh for cube problem, 8 subdomains, H/h = 32

coarse problem W̃ c W̃ c + edges W̃ c + faces W̃ c + edges and faces MUMPS
PCG iterations 131 75 n/a n/a -

cond. number est. 5,941.0 903.1 n/a n/a -
analysis (sec) 25.6 23.5 n/a n/a 27.1

factorization (sec) 1,097.4 1,426.4 n/a n/a 12,998.0
PCG iter (sec) 743.4 356.2 n/a n/a -

total (sec) 1,885.1 1,890.3 n/a n/a 13,060.6

Table 7.7: Variable W̃ avg on cube with 8 subdomains, H/h = 32, altix – 8 processors, multifrontal
implementation

approach LM PB PCV
matrix transformation - - 6.5

projection - 13.6 5.9
analysis 2.9 42.2 12.2

factorization 0.2 41.3 0.6
dual factorization 1,698.2 - -

PCG iter 316.6 8.4 7.1
total 2,034.9 106.3 33.2

Table 7.8: Comparison of approaches to enforcing constraints – times in seconds

CHAPTER 7. NUMERICAL RESULTS 88

On the largest problem of cube, we can observe several tendencies typical for larger problems.
Although the quality of preconditioning is still improved by enforcing additional contraints, this
may not lead to savings in total computational time proportionally to the number of iterations.
Enforcing additional constraints leads to worse structure of the matrix, which in turn results in
more expensive factorization and backsubstitution in problem (5.47) solved by MUMPS in the
action of preconditioner. Except of that, corresponding new entries generated by transformation
and projection of the matrix in (5.47), or its factors, may not fit into the computer memory, and
then we are not able to obtain the solution at all. This behaviour is particularly significant for
averages on faces, and it is the case of ‘n/a’ symbols in Table 7.7.

Presumably, the MUMPS package itself applied to the original problem performs better than
BDDC for small problems, while it is less efficient for larger problems.

7.2.2 Steam turbine entry nozzle
The implementation was applied to the analysis of the nozzle box of a ŠKODA steam turbine 28
MW, loaded by steam pressure and temperature.

The body of the turbine nozzle box was divided into 2, 696 isoparametric quadratic finite el-
ements resulting in 40, 254 degrees of freedom. The problem and the computational mesh were
provided by Jaroslav Novotný, Institute of Thermomechanics of the Czech Academy of Sciences,
and Jan Leština, Vamet Ltd.

Division into 16 subdomains is depicted in Figure 7.29. It was obtained by the METIS package
[34]. Such division leads to 37 corners, 14 edges, and 30 faces.

Figure 7.29: Mesh for turbine nozzle, 16 subdomains

Scaling results for variable number of processors of rex computer are presented, obtained by
implementation based on frontal solver of Section 6.1. In Table 7.9, only continuity across corners
is assumed, without any additional constraints. Continuity of averages across all edges and faces
is considered for all computations in Table 7.10.

These results show a reasonable scalability of the implementation, even on an industrial appli-
cation.

In Table 7.11, the experiment with variable W̃ avg is presented.
On this problem, we can observe, that the division into subdomains affects the preconditioner

through forming the topology of interface. Edge averages are clearly not sufficient for a good pre-
conditioning for this case, while adding face averages considerably improves the preconditioner.

CHAPTER 7. NUMERICAL RESULTS 89

processors 1 2 4 8 16
factorization (sec) 5.2 2.7 1.4 0.8 0.5

PCG iter (sec) 41.2 21.8 11.1 6.3 4.8
total (sec) 48.3 25.5 13.0 7.4 5.5

Table 7.9: Scaling results for turbine nozzle with 16 subdomains, continuity at corners, rex

processors 1 2 4 8 16
factorization (sec) 7.1 3.6 1.9 1.2 0.7

PCG iter (sec) 16.7 9.2 4.7 2.5 1.8
total (sec) 25.7 13.8 7.1 4.0 2.6

Table 7.10: Scaling results for turbine nozzle with 16 subdomains, averages on edges and faces,
rex

coarse problem W̃ c W̃ c + edges W̃ c + faces W̃ c + edges and faces
PCG iterations 99 78 41 36

cond. number est. 2,933 1,546 164 142
factorization (sec) 0.5 0.6 0.8 0.7

PCG iter (sec) 4.8 3.8 3.1 1.8
total (sec) 5.5 4.6 4.4 2.6

Table 7.11: Variable W̃ avg on turbine nozzle with 16 subdomains, rex – 16 processors

CHAPTER 7. NUMERICAL RESULTS 90

Improvement of the preconditioner by additional constraints leads to markable savings of time also
for this problem.

7.2.3 Shaft with a groove
In this problem, a simplified model of a drilling rod is analyzed. Stress and maximal deflection are
investigated to observe the influence of a spiral groove on the mechanics of the drilling rod.

The computational mesh consists of 483,400 linear elements, 505,312 nodes, and 1,515,936
degrees of freedom. It is presented in Figure 7.30. Computation of this problem took 1,470
minutes by serial frontal algorithm on computer ‘hastrman’. The problem and the computational
mesh were provided by Svatopluk Pták, Institute of Thermomechanics of the Czech Academy of
Sciences.

The mesh was initially divided into 512 subdomains, and 10,000 corners were selected. This
division is depicted in Figure 7.31.

Scaling results obtained on variable number of processors of HPCx cluster are presented in
Table 7.12. These results were computed by an early version of the implementation based on
frontal solver (Section 6.1). Note, that no average constraints were allowed in that version and the
quality of the preconditioner was controled by number of corners. Also, the coarse problem was
solved in serial manner on the master processor. This clearly became the bottleneck of the setup
due to its huge size compared to subdomain problems. Only total times in minutes are presented.

Later, the mesh was divided into 16 subdomains, and only 100 corners were selected. The divi-
sion is depicted in Figure 7.32. This problem was used for comparison of the two implementations
desribed in Section 6.1 and Section 6.2, respectively. Results are presented in seconds in Table
7.13.

This comparison reflects all the important properties of both implementations. Implementation,
that uses condensed right hand side requires lower number of iterations. However, the approach
of the frontal solver, that uses the out-of-core processing, is expensive with respect to time, which
amounts to much longer time of factorization, but also slightly affects each iteration. Another
source of longer factorization time is the need of two factorizations of the interior unknows. On
the other hand, the out-of-core approach would be the only possible way, if we wanted to solve
even larger problems, because they would not fit into the computer memory. This would be the
limitation of the implementation based on multifrontal solver.

Figure 7.30: Mesh for shaft with a groove

processors 16 32 64
total (minutes) 130 87 72

Table 7.12: Scaling results for shaft with 512 subdomains, continuity at corners, HPCx

CHAPTER 7. NUMERICAL RESULTS 91

Figure 7.31: Division of the mesh for the shaft into 512 subdomains

Figure 7.32: Division of the mesh for the shaft into 16 subdomains

implementation Section 6.1 Section 6.2
PCG iterations 80 256

cond. number est. 335.9 5494.0
analysis (sec) - 58.2

factorization (sec) 7041.1 82.8
PCG iter (sec) 1433.5 1101.1

total (sec) 9778.9 1264.3

Table 7.13: Comparison of implementation based on frontal solver (left) and multifrontal solver
(right), rex – 16 processors

CHAPTER 7. NUMERICAL RESULTS 92

7.3 Numerical experiments with BDDC for steady Stokes flow
The applicability of the preconditioner to the problem of Stokes flow was tested, and results are
presented in this section. The system matrix of the Stokes problem is symmetric, but indefinite
(cf. e.g. [16, Section 5.5, Section 6]). Note, that for this reason, the theory of Section 5.2 does not
cover this case.

However, it was observed, that the BDDC method leads to an indefinite preconditioner, which
is able to make the preconditioned operator positive definite, and thus allow the use of PCG
method.

An alternative way to assure positive definiteness of the preconditioned operator based on
BDDC was presented in [41].

7.3.1 Lid driven cavity
Problem of lid driven cavity was introduced in Section 7.1.1. It was solved using the Navier-Stokes
model therein. In this section, we investigate the steady Stokes flow in this domain.

The case of uniform mesh of 128× 128 quadratic square elements was chosen. It was divided
into 8 subdomains by METIS package (Figure 7.33). We selected 9 corners.

Resulting streamlines and plot of pressure for Reynolds number 10, 000 are presented in Fig-
ure 7.34. Streamlines are symmetric for the Stokes problem, unlike in the Navier-Stokes case
presented in Section 7.1.1.

Solution of the problem by a serial frontal algorithm took 231 seconds on one processor of
the rex computer, compared to 17.2 seconds on 8 processors of the same computer necessary for
the solution by BDDC. Due to the corner singularities in pressure, the prescribed accuracy was
lowered to tol = 10−3 in this case, resulting in 59 PCG iterations.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 7.33: Mesh and its division into 8 subdomains for lid driven cavity, 128× 128 elements

7.3.2 Channel with sudden extension of diameter
Another geometry introduced already in Section 7.1.2 for the case of Navier-Stokes flow, is the
channel with abrupt extension of diameter.

It was divided into 4 subdomains by METIS package (Figure 7.35). We selected 5 corners.

CHAPTER 7. NUMERICAL RESULTS 93

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 7.34: Streamlines (left) and pressure (right) for lid driven cavity, 128× 128 elements

Resulting streamlines and plot of pressure for Reynolds number 2, 000 are presented in Fig-
ures 7.36 and 7.37, respectively. Due to the corner singularities in pressure, the prescribed accuracy
was lowered to tol = 10−3 in this case, resulting in 26 PCG iterations. Note, that fluid flows from
right to left in the plot of pressure in order to show the situation at corners. However, this problem
is too small to meaningful comparisons of time.

0 2 4 6 8
0

2

Figure 7.35: Mesh and its division into 4 subdomains for channel with sudden extension of diam-
eter

0 2 4 6 8
0

2

Figure 7.36: Streamlines for channel with sudden extension of diameter, Re = 2,000

7.3.3 Channel with sudden reduction of diameter
In the last example, a geometry with a sudden reduction of diameter is considered. Flow in this
geometry described by the Navier-Stokes model was studied in [7], with respect to precise solution

CHAPTER 7. NUMERICAL RESULTS 94

Figure 7.37: Pressure for channel with sudden extension of diameter, Re = 2,000

of corner singularities. The channel geometry is presented in Figure 7.38.
Due to the symmetry of the channel, only the upper part is considered in the computation.

Division into 4 subdomains obtained by METIS is presented in Figure 7.39.
Solution obtained by BDDC method at Reynolds number 250 for the Stokes flow is presented

in Figures 7.40 and 7.41. Due to the corner singularities in pressure, the prescribed accuracy was
lowered to tol = 10−3 also for this case, which resulted in 59 PCG iterations. Note, that fluid
flows from right to left in the plot of pressure in order to show the situation at corners. Again,
comparisons of time are not relevant for such a small problem.

(185)

14530 10

Æ
1
9

Æ
2
5

Figure 7.38: Geometry of the channel with abrupt reduction of diameter

0 0.05 0 1 0.15
0

.

Figure 7.39: Mesh and its division into 4 subdomains for channel with sudden reduction of diam-
eter

CHAPTER 7. NUMERICAL RESULTS 95

0.02 0.03 0.04 0.05 0.06
0

0.01

Figure 7.40: Detail of streamlines for channel with sudden reduction of diameter, Re = 250

Figure 7.41: Detail of pressure for channel with sudden reduction of diameter, Re = 250

Chapter 8

Conclusion

Despite its importance, analysis of incompressible flow fields in various problems of mechanical
engineering is still not completely resolved. This includes the practically important case of flows
at high Reynolds numbers. A stabilization represents a way to improve the applicability of the fi-
nite element method to larger set of problems of fluid mechanics. Domain decomposition presents
a mathematical method suitable for parallel computers, allowing the solution of very large prob-
lems in acceptable times. It is an important goal of computational fluid dynamics to combine both
methods in new solvers.

In the presented thesis, stabilized finite element method for solving incompressible flows is
discussed, together with applications of nonoverlapping domain decomposition methods. The
theoretical introduction to models of incompressible flows and to the finite element method for flow
problems is presented in Chapters 2 and 3, respectively. In Chapter 4, a new stabilization technique
is derived and analyzed. The aspect of accuracy of stabilized FEM is important, but unclear. In an
attempt to answer this issue, two methods for evaluation of the accuracy are proposed.

The Balancing Domain Decomposition by Constraints (BDDC) [13] is recalled in Chapter 5
and several reformulations and improvements are introduced. In Chapter 6, two algorithms of the
preconditioner suitable for massively parallel computers are presented, including various imple-
mentational details. Numerical results are summarized in Chapter 7. Applications of the semiGLS
method to steady and unsteady Navier-Stokes flows are presented in Section 7.1. The BDDC
method has been tested on problems of linear elasticity (Section 7.2) (which leads to positive def-
inite matrices) and also successfully applied to the Stokes problem (Section 7.3) (which leads to
indefinite matrices).

My main original results and achievements are:

• Derivation of semiGLS, a new algorithm for stabilization of the FEM for solving incompress-
ible viscous flows. This algorithm is derived as a modification of the earlier GLS algorithm
from [32]. The semiGLS was also presented in journal paper [8].

• Proposing two ways for evaluating the accuracy of the stabilized method: the first based on
comparison of discrete solutions with and without stabilization, the second on a posteriori
error estimates for the Navier-Stokes equations introduced in [6]. This helps to control
the error we introduce to the solution by stabilization, which is crucial for its successful
application. This work was also presented in journal papers [7, 8, 9, 10].

• A reformulation of the BDDC algorithm motivated by implementation. Identification and
definition of the second intermediate space described in Section 5.2, formulation of projected
BDDC described in Section 5.3, and generalization of the change of variables from [42] for

96

CHAPTER 8. CONCLUSION 97

efficient enforcing of additional constraints on averages in BDDC (Section 5.4). This work
reflects joint research with Prof. Jan Mandel and Bedřich Sousedı́k from the Department of
Mathematical and Statistical Sciences, University of Colorado Denver, and it is presented in
this thesis for the first time.

• Design of two parallel algorithms of the BDDC method and development of corresponding
programs. The first proposed algorithm is based on standard tools of finite element software
and requires minimal amount of custom coding. It was recently presented in [54]. The
second algorithm is more experimental, but easily extensible and was developed mainly to
test new formulations of the BDDC method, including projected BDDC and generalized
change of variables introduced in this thesis, directly in parallel environment. It was also
extended to solutions of the Stokes flow.

• Developed programs were not only carefully tested on many benchmarks problems, but also
brought new results in technical applications, when successfully solving several large time-
demanding industrial problems.

While main goals of the dissertation were fulfilled, the field offers many new directions for
further research. Study and testing of other stabilization techniques still presents an interesting
topic. Application of the BDDC method to other types of problems (indefinite and unsymmetric)
is desired, although not obvious, and the full connection of the BDDC method and flow described
by the Navier-Stokes equations, possibly with stabilization, is still an open problem, which I would
like to work on. Extensions of the BDDC implementation to adaptive selection of constraints [47]
and multilevel approach [49] are other interesting goals of my research for near future.

Bibliography

[1] AMESTOY, P. R., DUFF, I. S., AND L’EXCELLENT, J.-Y. Multifrontal parallel distributed
symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Engrg. 184 (2000), 501–
520.

[2] BRENNER, S. C. The condition number of the Schur complement in domain decomposition.
Numer. Math. 83, 2 (1999), 187–203.

[3] BRENNER, S. C., AND SCOTT, L. R. The mathematical theory of finite element methods,
second ed., vol. 15 of Texts in Applied Mathematics. Springer-Verlag, New York, 2002.

[4] BRENNER, S. C., AND SUNG, L.-Y. BDDC and FETI-DP without matrices or vectors.
Comput. Methods Appl. Mech. Engrg. 196, 8 (2007), 1429–1435.

[5] BREZZI, F., AND FORTIN, M. Mixed and hybrid finite element methods, vol. 15 of Springer
Series in Computational Mathematics. Springer-Verlag, New York, 1991.

[6] BURDA, P., NOVOTNÝ, J., AND SOUSEDÍK, B. A posteriori error estimates applied to flow
in a channel with corners. Math. Comput. Simulation 61, 3-6 (2003), 375–383.

[7] BURDA, P., NOVOTNÝ, J., AND Š ÍSTEK, J. Precise FEM solution of a corner singularity
using an adjusted mesh. Internat. J. Numer. Methods Fluids 47, 10–11 (2005), 1285–1292.

[8] BURDA, P., NOVOTNÝ, J., AND Š ÍSTEK, J. On a modification of GLS stabilized FEM for
solving incompressible viscous flows. Internat. J. Numer. Methods Fluids 51, 9–10 (2006),
1001–1016.

[9] BURDA, P., NOVOTNÝ, J., AND Š ÍSTEK, J. Numerical solution of flow problems by stabi-
lized finite element method and verification of its accuracy using a posteriori error estimates.
Math. Comp. Simul. 76, 1–3 (2007), 28–33.

[10] BURDA, P., NOVOTNÝ, J., AND Š ÍSTEK, J. Accuracy of SemiGLS stabilization of FEM for
solving Navier–Stokes equations and a posteriori error estimates. Internat. J. Numer. Methods
Fluids 56, 8 (2008), 1167–1173.

[11] CHORIN, A. J., AND MARSDEN, J. E. A mathematical introduction to fluid mechanics.
Springer-Verlag, New York, 1979.

[12] CONCUS, P., GOLUB, G. H., AND O’LEARY, D. P. A generalized conjugate gradient
method for the numerical solution of elliptic PDE. In Sparse Matrix Computations, J. R.
Bunch and D. J. Rose, Eds. Academic Press, New York, 1976, pp. 309–332.

[13] DOHRMANN, C. R. A preconditioner for substructuring based on constrained energy mini-
mization. SIAM J. Sci. Comput. 25, 1 (2003), 246–258.

98

BIBLIOGRAPHY 99

[14] DOUGLAS, JR., J., AND WANG, J. P. An absolutely stabilized finite element method for the
Stokes problem. Math. Comp. 52, 186 (1989), 495–508.

[15] DUFF, I. S., AND REID, J. K. The multifrontal solution of indefinite sparse symmetric linear
equations. ACM Trans. Math. Software 9, 3 (1983), 302–325.

[16] ELMAN, H. C., SILVESTER, D. J., AND WATHEN, A. J. Finite elements and fast iterative
solvers: with applications in incompressible fluid dynamics. Numerical Mathematics and
Scientific Computation. Oxford University Press, New York, 2005.

[17] FARHAT, C., LESOINNE, M., LE TALLEC, P., PIERSON, K., AND RIXEN, D. J. FETI-
DP: a dual-primal unified FETI method. I. A faster alternative to the two-level FETI method.
Internat. J. Numer. Methods Engrg. 50, 7 (2001), 1523–1544.

[18] FARHAT, C., LESOINNE, M., AND PIERSON, K. A scalable dual-primal domain decompo-
sition method. Numer. Linear Algebra Appl. 7 (2000), 687–714. Preconditioning techniques
for large sparse matrix problems in industrial applications (Minneapolis, MN, 1999).

[19] FARHAT, C., AND ROUX, F.-X. A method of finite element tearing and interconnecting and
its parallel solution algorithm. Internat. J. Numer. Methods Engrg. 32 (1991), 1205–1227.

[20] FRANCA, L. P., AND FREY, S. L. Stabilized finite element methods. II. The incompressible
Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 99, 2-3 (1992), 209–233.

[21] FRANCA, L. P., AND HUGHES, T. J. R. Convergence analyses of Galerkin least-squares
methods for symmetric advective-diffusive forms of the Stokes and incompressible Navier-
Stokes equations. Comput. Methods Appl. Mech. Engrg. 105, 2 (1993), 285–298.

[22] FRANCA, L. P., JOHN, V., MATTHIES, G., AND TOBISKA, L. An inf-sup stable and
residual-free bubble element for the Oseen equations. SIAM J. Numer. Anal. 45, 6 (2007),
2392–2407 (electronic).

[23] FRANCA, L. P., AND MADUREIRA, A. L. Element diameter free stability parameters for
stabilized methods applied to fluids. Comput. Methods Appl. Mech. Engrg. 105, 3 (1993),
395–403.

[24] GELHARD, T., LUBE, G., OLSHANSKII, M. A., AND STARCKE, J.-H. Stabilized finite
element schemes with LBB-stable elements for incompressible flows. J. Comput. Appl. Math.
177, 2 (2005), 243–267.

[25] GIRAULT, V., AND RAVIART, P.-A. Finite element methods for Navier-Stokes equations,
vol. 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.
Theory and algorithms.

[26] GLOWINSKI, R. Finite element methods for incompressible viscous flow. In Handbook of
numerical analysis, Vol. IX, Handb. Numer. Anal., IX. North-Holland, Amsterdam, 2003,
pp. 3–1176.

[27] GREENBAUM, A. Iterative methods for solving linear systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1997.

[28] GRESHO, P. M., AND SANI, R. L. Incompressible flow and the finite element method. John
Wiley & Sons Ltd., Chichester, 2000.

BIBLIOGRAPHY 100

[29] GUERMOND, J.-L., AND QUARTAPELLE, L. Calculation of incompressible viscous flows
by an unconditionally stable projection FEM. J. Comput. Phys. 132, 1 (1997), 12–33.

[30] HUGHES, T. J. R. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann
formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput.
Methods Appl. Mech. Engrg. 127, 1-4 (1995), 387–401.

[31] HUGHES, T. J. R., FRANCA, L. P., AND BALESTRA, M. Errata: “A new finite element
formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condi-
tion: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order
interpolations”. Comput. Methods Appl. Mech. Engrg. 62, 1 (1987), 111.

[32] HUGHES, T. J. R., FRANCA, L. P., AND HULBERT, G. M. A new finite element formulation
for computational fluid dynamics. VIII. The Galerkin/least-squares method for advective-
diffusive equations. Comput. Methods Appl. Mech. Engrg. 73, 2 (1989), 173–189.

[33] IRONS, B. M. A frontal solution scheme for finite element analysis. Internat. J. Numer.
Methods Engrg. 2 (1970), 5–32.

[34] KARYPIS, G., AND KUMAR, V. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20, 1 (1998), 359–392 (electronic).

[35] KLAWONN, A., AND WIDLUND, O. B. Selecting constraints in dual-primal FETI methods
for elasticity in three dimensions. In Domain Decomposition Methods in Science and En-
gineering, R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Widlund, and J. Xu, Eds.,
Lecture Notes in Computational Science and Engineering. Springer, 2004, pp. 67–81. Pro-
ceedings of the 15th International Conference on Domain Decomposition Methods in Berlin,
Germany, 2003.

[36] KLAWONN, A., AND WIDLUND, O. B. Dual-primal FETI methods for linear elasticity.
Comm. Pure Appl. Math. 59, 11 (2006), 1523–1572.

[37] KLAWONN, A., WIDLUND, O. B., AND DRYJA, M. Dual-primal FETI methods for three-
dimensional elliptic problems with heterogeneous coefficients. SIAM J. Numer. Anal. 40, 1
(2002), 159–179.

[38] KOLÁŘ, V., KRATOCHVÍL, J., ŽENÍŠEK, A., AND ZLÁMAL, M. Technical, physical, and
mathematical principles of the finite element method. In Rozpravy ČSAV, 81, 2. Academia,
Praha, 1971.

[39] KRUIS, J. Domain decomposition methods for distributed computing. Saxe-Coburg Publica-
tions, Kippen, Stirling, Scotland, 2006. ISBN-13: 978-1-874672-23-4, ISBN-10: 1-874672-
23-7.

[40] LESOINNE, M. A FETI-DP corner selection algorithm for three-dimensional problems. In
Domain Decomposition Methods in Science and Engineering, I. Herrera, D. E. Keyes, and
O. B. Widlund, Eds. National Autonomous University of Mexico (UNAM), México, 2003,
pp. 217–223. 14th International Conference on Domain Decomposition Methods, Cocoyoc,
Mexico, January 6–12, 2002. http://www.ddm.org.

[41] LI, J., AND WIDLUND, O. B. BDDC algorithms for incompressible Stokes equations. SIAM
J. Numer. Anal. 44, 6 (2006), 2432–2455 (electronic).

BIBLIOGRAPHY 101

[42] LI, J., AND WIDLUND, O. B. FETI-DP, BDDC, and block Cholesky methods. Internat. J.
Numer. Methods Engrg. 66, 2 (2006), 250–271.

[43] MANDEL, J. Balancing domain decomposition. Comm. Numer. Methods Engrg. 9, 3 (1993),
233–241.

[44] MANDEL, J., AND BREZINA, M. Balancing domain decomposition for problems with large
jumps in coefficients. Mathematics of Computation 65, 216 (1996), 1387–1401.

[45] MANDEL, J., AND DOHRMANN, C. R. Convergence of a balancing domain decomposition
by constraints and energy minimization. Numer. Linear Algebra Appl. 10, 7 (2003), 639–659.

[46] MANDEL, J., DOHRMANN, C. R., AND TEZAUR, R. An algebraic theory for primal and
dual substructuring methods by constraints. Appl. Numer. Math. 54, 2 (2005), 167–193.

[47] MANDEL, J., AND SOUSEDÍK, B. Adaptive selection of face coarse degrees of freedom in
the BDDC and the FETI-DP iterative substructuring methods. Comput. Methods Appl. Mech.
Engrg. 196, 8 (2007), 1389–1399.

[48] MANDEL, J., AND SOUSEDÍK, B. BDDC and FETI-DP under minimalist assumptions.
Computing 81 (2007), 269–280.

[49] MANDEL, J., SOUSEDÍK, B., AND DOHRMANN, C. R. Multispace and Multilevel BDDC.
arXiv:0712.3977, 2007.

[50] MANDEL, J., AND TEZAUR, R. On the convergence of a dual-primal substructuring method.
Numer. Math. 88 (2001), 543–558.

[51] QUARTERONI, A., AND VALLI, A. Domain decomposition methods for partial differential
equations. Numerical Mathematics and Scientific Computation. Oxford University Press,
New York, 1999. Oxford Science Publications.

[52] SAAD, Y. Iterative methods for sparse linear systems, second ed. Society for Industrial and
Applied Mathematics, Philadelphia, PA, 2003.

[53] Š ÍSTEK, J. Stabilization of finite element method for solving incompressible viscous flows,
2004. Master thesis.

[54] Š ÍSTEK, J., NOVOTNÝ, J., MANDEL, J., ČERTÍKOVÁ, M., AND BURDA, P. BDDC by a
frontal solver and the stress computation in a hip joint replacement. arXiv:0802.4295, 2008.

[55] SMITH, B. F., BJØRSTAD, P. E., AND GROPP, W. D. Domain decomposition. Cambridge
University Press, Cambridge, 1996. Parallel multilevel methods for elliptic partial differential
equations.

[56] TEMAM, R. Navier-Stokes equations, third ed., vol. 2 of Studies in Mathematics and its Ap-
plications. North-Holland Publishing Co., Amsterdam, 1984. Theory and numerical analysis,
With an appendix by F. Thomasset.

[57] TEZDUYAR, T., AND SATHE, S. Stabilization parameters in SUPG and PSPG formulations.
J. Comput. Appl. Mech. 4, 1 (2003), 71–88 (electronic).

[58] TOSELLI, A., AND WIDLUND, O. Domain decomposition methods—algorithms and theory,
vol. 34 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 2005.

BIBLIOGRAPHY 102

[59] TUREK, S. Efficient solvers for incompressible flow problems, vol. 6 of Lecture Notes in
Computational Science and Engineering. Springer-Verlag, Berlin, 1999. An algorithmic
and computational approach, With 1 CD-ROM (“Virtual Album”: UNIX/LINUX, Windows,
POWERMAC; “FEATFLOW 1.1”: UNIX/LINUX).

