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Abstract

A 3D finite volume solver aimed at solving atmospheric boundary layer flows and pollutant
dispersion in domains with complex geometry was developed. It features two methods based
on different sets of equations. First is based on the general equations of compressible flow,
and employs low Mach preconditioning to accelerate its convergence. Second is based on the
simplified equations of atmospheric boundary layer flow under the assumption of incompress-
ibility and the Boussinesq approximation, and its solution relies on the artificial compressibility
method. Reynolds-averaged Navier-Stokes approach is used for the turbulence modelling. The
comparable accuracy and computational performance of both methods was demonstrated on
example problems.

The effects of the vegetation were included in the fluid flow model and in the employed k-ε
turbulence model. A detailed, physically based model of the dry deposition of aerosol particles on
the vegetation surface was implemented to account for the filtering properties of the vegetation.
The applicability of the models was assessed by comparison with the available field measure-
ments. The developed methods were then utilized on the problem of a near-road vegetation
barrier optimization.

A moment method for solution of the dispersion problems of particulates of a wide size range
was further examined, and the dry deposition model was adapted for use with the method. The
method was shown to provide a computationally efficient alternative to the simpler sectional
method.

Keywords: Atmospheric boundary layer, RANS modelling, Pollution dispersion, Vegetation mod-
elling, Moment method

Abstrakt

V této práci byl vyvinut 3D řešič postavený na metodě konečných objemů, zaměřený na problémy
proudění v mezní vrstvě atmosféry a šíření zplodin v geometricky komplexních oblastech. Řešič
obsahuje dvě metody založené na dvou sadách rovnic. První je založena na obecných rovnicích
stlačitelného proudění, a pro urychlení konvergence využívá předpodmínění pro nízká Machova
čísla. Druhá metoda je založena na zjednodušených rovnicích pro proudění v mezní vrstvě at-
mosféry za předpokladu nestlačitelnosti proudění a Boussinesqovy aproximace. Pro modelování
turbulence byl nasazen přístup Reynoldsova průměrování Navier-Stokesových rovnic. Srov-
natelná přesnost a výpočetní náročnost obou metod byla demonstrována na dvou ukázkových
problémech.

Efekty vegetace byly začleněny do modelu proudění a použitého k-ε turbulentního modelu.
Filtrační schopnost vegetace byla zachycena detailním, na fyzikálních principech postaveným
modelem suché depozice aerosolových částic na povrch vegetace. Použitelnost modelů byla
zhodnocena porovnáním s dostupnými měřeními. Vyvinuté metody byly poté využity na prob-
lém optimalizace vegetační bariéry u silniční komunikace.

Dále byla zkoumána momentová metoda, vhodná k řešení problémů šíření pevných částic
velkého rozsahu velikostí. Model suché depozice byl adaptován pro použití s touto metodou.
Bylo ukázáno, že metoda poskytuje výpočetně méně náročnou alternativu jednodušší sekční
metodě.

Klíčová slova: Mezní vrstva atmosféry, RANS modelování, Šíření zplodin, Modelování vegetace,
Momentová metoda
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Chapter 1

Introduction

1.1 Motivation

In this work we deal with the numerical modelling of the flow and pollution dispersion
in the atmospheric boundary layer. The atmospheric boundary layer (ABL) is the lowest
part of the atmosphere, roughly below 2 kilometers, and it is the part of the atmosphere
directly affected by the ground surface. Its interest to researches stems from the fact that
the ABL is where humans live and work, and it is also where most human-made pollutant
are released into the atmosphere. The modelling of the ABL has several important areas
of applications: wind energy production, pollution dispersion, or problems of the urban
flow.

Urban areas are of special interest regarding the ABL research and modelling. With
the continuing urbanization, more and more people move to the densely packed metro-
politan areas. The inhabitants’ health is negatively affected by the increased air pollution
in the urban zones, caused by the road traffic, industrial sources of air pollutants, or
residential burning. Furthermore, urban planning and architecture has a direct impact on
the wind comfort of the pedestrians. Heat stress and thermal comfort are another factors
affected by the wind flow around the buildings. Detailed understanding of the processes
in the ABL and our capability to accurately predict their effects is therefore crucial for
mitigating the negative effects of the urbanization and improving the well-being of the
urban inhabitants.

Modelling of the wind flow and pollutant dispersion in the urban areas can be classi-
fied as belonging to the general class of microscale problems of atmospheric flows. These
focus on the phenomena occurring on the scales roughly below one kilometer. This
distinguishes them from the mesoscale problems, occurring on scales of few kilometers to
hundreds of kilometers, and synoptic scale problems on scales of thousands of kilometers.

Vegetation plays an important role in the microscale problems, and especially so in
the urban areas. Urban vegetation, such as parks, street trees, roof gardens, or green
walls, can block or slow down the air flow, and therefore can affect the wind and thermal
comfort of the pedestrians. Urban vegetation was also proposed as a measure for mitig-
ating the impacts of the air pollution due to its capability to act as an air filter. Indeed,
the dry deposition process can capture particulate matter on the leaves of the vegetation,
and thus reduce the pollution levels in the neighbourhood.
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Numerical modelling is an indispensable tool in the effort of understanding the re-
lated phenomena. It can provide answers not obtainable by any other method. Field
experiments, while necessary for validation, are generally expensive, and the measured
data provide only limited view on the underlying physical processes. Furthermore, only
flow around already existing buildings or other features can be investigated, limiting
the role of the field experiments in the design process. Wind tunnel modelling, on the
other hand, has to deal with the problem of scaling, which is - especially for vegetation
- challenging. Moreover, even with the modern measurement techniques, wind tunnel
studies cannot offer such detailed information about the flow fields as the computational
fluid dynamics (CFD) can.

Several characteristics of the ABL and urban flow especially have to be taken into
account when considering using a CFD solver for above outlined problems: Such flow
are generally fully turbulent with very high Reynolds numbers, and low Mach numbers.
Thermal and stratification effects can play important role in the flow. The geometry of
the problems is often very complex, prohibiting the use of structured grids. Finally, the
effects of the vegetation on the flow field and on the pollutant concentration has to be
modelled in some way. This work is devoted to development and validation of such
solver.

1.2 State of the art

1.2.1 Equations of the fluid flow

The task of the computational modelling of the fluid flow in the ABL starts with the
choice of the physical model describing the equations. Various models and equation
sets were employed. For urban flow application where the thermal and stratification ef-
fects can be neglected the Navier-Stokes equations of the incompressible flow consisting
of four equations (non-divergence constraint and three velocity components in 3D) are
often used (Balogh et al., 2012; Blocken et al., 2012; Vranckx et al., 2015). Compelling
advantage of such approach is that the incompressible flow model is often present in the
publicly available open source and commercial CFD solvers. However, this simple model
allows investigation only of the flow in the neutrally stratified atmosphere without any
heat sources. Considering that the urban heat island is mentioned as one of the major
problems of modern cities (Rizwan et al., 2008), and that the atmospheric stratification
has a direct influence on the diffusion and dispersion of the pollutants (Arya, 1999), the
four-equation incompressible flow model is an oversimplification for our purpose.

More advanced class of models of the ABL flow can be labeled as variable density in-
compressible flow models using the Boussinesq approximation. These models generally
use five equations (non-divergence constraint and velocity components as above, plus
one additional equation, typically for temperature or potential temperature). Zeytounian
(2003) provides a view on the history and applicability of the approximation and shows
that the applications goes far beyond the ABL flows. Models using the Boussinesq ap-
proximation are widespread in the atmospheric research (e.g. Apsley and Castro, 1997b;
Eidsvik and Utnes, 1997; Dupont and Brunet, 2008b; Mehta et al., 2014), and were also
used at the author’s department before (Bodnár, 2003; Beneš et al., 2011; Bodnár et al.,
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2012). Strict focus of these models on the atmospheric research however limits their
applicability and reuse elsewhere, and, conversely, calls for a dedicated solver for the
ABL flows only. Furthermore, these models are limited to low Mach flows, and problems
with mixed low and high speed flows are outside of their domain of applicability. Such
mixed speeds problems may appear in the ABL, for example the flow around the fast
moving tip of the wind turbine blade, or extreme weather events such as tornadoes,
where Mach number can rise above 0.3.

Usage of the models of compressible flow, based on the equations of conservation
of mass, momentum, and energy, is less common for atmospheric applications. Their
main disadvantage is that the compressible flow solvers suffer from slow convergence
when applied to the low speed flow problems due to the disparity of the acoustic and
convective wave speeds. Nevertheless, few studies using such models exist. Duarte
et al. (2014) studied moist atmosphere flows using the compressible Euler equations.
They used an explicit temporal discretization, and the time step in their simulation was
limited by the acoustic CFL condition. In their investigated cases the condition was not
severely restrictive, but it makes the scheme impractical for small scale flows. Yang and
Cai (2014) modelled atmospheric flow with an compressible Euler solver, although using
the equation for potential temperature instead of the energy equation. They solved the
time step restriction problem by employing an implicit temporal scheme together with
the additive Schwarz preconditioner. Another approach was taken by Jafari (2014), who
used the low Mach preconditioning technique of Weiss and Smith (1995) to develop an
efficient solver for wind energy applications.

To summarize, the general formulation for the compressible flow offers some ad-
vantages over the ABL flow formulation, and the low Mach preconditioning techniques
promise to overcome its drawbacks. In this work we plan to compare the two options to
see whether the comparable performance can be obtained.

1.2.2 Turbulence modelling

Another question is the choice of the turbulence modelling methodology. The main
approaches used today are the Reynolds-averaged Navier-Stokes (RANS) equations that
allows the simulation of the mean values of the flow variables, and the Large eddy
simulation (LES) which resolves the large scale motions and models only the subgrid
turbulence motions. For the flow through the vegetation both RANS (Svensson and
Häggkvist, 1990; Katul et al., 2004; Steffens et al., 2012; Gromke and Blocken, 2015;
Vranckx et al., 2015) and LES (Su et al., 1998; Dupont and Brunet, 2008a; Dupont et
al., 2011; Mueller et al., 2014) were used. Comparing both approaches in the context
of urban applications (although without any vegetation present), Blocken (2015) noted
that RANS is the usually preferred choice due to the lower computational costs, but also
due to the lacking extensive validation and missing best-practice guidelines for the LES
approach. In their review of CFD simulations of urban pollution dispersion, Tominaga
and Stathopoulos (2013) found that LES gives more accurate results than RANS, but also
that the difference between the approaches is smaller for the mean flow variables than for
the pollutant concentration. Better accuracy of LES, but also higher computational costs
were observed also for simulations with vegetation present (Gromke and Ruck, 2012).
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The computational cost of the simulation was a significant factor in our decision, and we
opted for the RANS approach in this work.

1.2.3 Computational method and mesh

Crucial component of any CFD simulation is the computational method employed and
the mesh on which is the simulation performed. For the flows above a reasonably smooth
terrain without obstacles a structured grid may be used (as e.g. in Bodnár et al., 2012),
and one may thus benefit from the easier implementation of the algorithms as well as the
higher order methods for structured grids, using both finite difference and finite volume
method. This approach however becomes less feasible for the geometrically complex
domains with obstacles. For such applications are the finite volume solvers based on
the unstructured grids a better option, although they have an alternative, which is the
Immersed Boundary Method (IBM). IBM uses a Cartesian mesh that does not conform to
the obstacle or terrain surface, and instead adds a forcing to the cells that interact with
the boundary. Advantages of the method are fast and easy grid generation and relatively
simple incorporation of body motion, while its main disadvantage is more complicated
implementation of the boundary conditions. IBM was originally developed for biological
flows, but it was since applied to atmospheric flows as well (Jafari, 2014). In this work,
we opt for the approach using body-fitted unstructured meshes, mainly because reliable
grid generators of unstructured meshes are available and because the problem of body
motion is irrelevant to our intended application.

1.2.4 Dry deposition

The effect of the vegetation on the pollutant dispersion and its filtration properties has
been investigated by researchers in their effort to mitigate the negative effects of the air
pollution in the urban areas. Overview of this effort can be found in the reviews by
Litschke and Kuttler (2008) or Janhäll (2015). Aerosol particles are removed from the air
by the vegetation via the dry deposition process. Models of the dry deposition have a
long history in the field of large scale air quality models (Slinn, 1982; Zhang et al., 2001;
Petroff et al., 2008b; Petroff et al., 2009; Petroff and Zhang, 2010), in which the flow inside
the canopy is not explicitely resolved.

In small scale numerical simulations, however, the approach to the dry deposition
varies. In some small scale dispersion studies the process was not considered at all,
such as in (Buccolieri et al., 2011), where the authors cited the low filtering potential
of the vegetation as the main reason. Other used a constant rate of pollutant deposition,
ignoring the rich physical background of the dry deposition (Vranckx et al., 2015), or
various models based on the underlying processes of different level of detail (Tiwary
et al., 2005; Bruse, 2007; Steffens et al., 2012). However, there is currently no generally
accepted and extensively validated dry deposition model for the microscale vegetation
flow problems.
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1.2.5 Summary

To summarize, it is apparent from the above overview that a number of works related to
the microscale atmospheric flows exists. However, if we consider our intended applica-
tion to urban flows and pollutant dispersion in areas with vegetation present, the existing
solvers fall short of one or more of the following aspects:

• Capability to capture the thermal and stratification effects.

• Suitability for geometrically complex domains.

• Capability to model the effects of the vegetation on the fluid flow.

• Dry deposition model which takes into account the dependence of the deposition
rate on the properties of the particles and the vegetation.

These shortcoming lead us naturally to the declaration of the aims of this work.

1.3 Aims of the work

The main objective of the work is to devise, implement, and validate an efficient method for the
solution of the air flow and pollution dispersion microscale problems with vegetation present. The
partial goals pursued in order to fulfill the main one are as follows:

• To develop a RANS-based CFD solver for microscale ABL flows working on un-
structured grids.

The solver requirements come from our need for an efficient solver (therefore it
should be RANS-based) that is capable of solving the problems of urban flows with
complex geometry.

• To compare the accuracy and performance of the schemes based on the compress-
ible flow equations and on the Boussinesq approximation.

This shall be performed in the developed framework.

• To implement and validate suitable vegetation models.

Models of the flow through the vegetation as well as of the dry deposition of the
aerosol particles on the vegetation should be included.

1.4 Structure of the work

The work is structured in the following way. Chapters 2 and 3 can be read as a description
of the computational solver developed as a part of this work. In Chapter 2 we present
the mathematical background of the fluid flow solver. The equations of the fluid flow
models are introduced, and the RANS approach to the turbulence modelling is detailed.
We follow with the discussion of the boundary conditions for ABL flows. The chapter
concludes with the description of the employed models of the vegetation, discussing both
the fluid flow and the dry deposition. In Chapter 3 we deal with the numerical methods
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used to solve the mathematical equations. Methods of artificial compressibility and low
Mach preconditioning, modifying the original equations, are described. The spatial and
temporal discretization methods used in the finite volume solver are elaborated upon.

Following two chapters deal with the validation and application of the developed
solver. In Chapter 4 we validate the physical models and their implementation. The
accuracy and performance of the compressible flow and ABL flow formulation are com-
pared, and the suitability of the vegetation models is assessed. Chapter 5 presents an
application of the developed models: a CFD optimization of a near-road vegetation
barrier.

In Chapter 6 we step aside and pursue an alternative approach for modelling the pol-
lutant dispersion called the moment method. The method is useful when the behaviour
of particles in a wide size range is of concern.

Finally, the work in concluded with Chapter 7, where the work is summarized, and
future perspectives are given.

Note on the software implementation. The models and numerical methods described
in Chapters 2 and 3 were implemented in the developed CFD solver nicknamed Atifes.
Atifes originated from the software platform used previously at the author’s department
for the simulation of the electric discharge in a high voltage electric fields (Karel, 2014),
although the further development proceeded independently. Atifes is written in C++
language.

The moment method solver described in Chapter 6 was developed separately using
the OpenFOAM platform.
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Chapter 2

Mathematical models of the fluid
flow in the ABL

The content of this chapter is an expanded version of the model description in: Šíp, V. and Beneš, L.
(2016d). RANS solver for microscale pollution dispersion problems in areas with vegetation:
Development and validation. arXiv e-print. https://arxiv.org/abs/1609.03427 (Submitted).

In this chapter we introduce the models of the fluid flow in the atmosphere. We present
two sets of the flow equations on which our solver is based: the compressible flow
equations and the equations of the atmospheric boundary layer flow. We continue with
the description of the passive scalar equation used for the modelling of the pollutant
dispersion. Problem of turbulence modelling is discussed, and the turbulence models
implemented in the solver are presented. The chapter follows with the overview of the
boundary conditions related to the atmospheric boundary layer flows. In the last section
of the chapter we then present the employed models of the vegetation, both regarding its
effect on the flow field and its function as a filter of the polluted air.

2.1 Fluid flow equations

We present two fluid flow models that form the basis of the developed solver. First, it
is the model of the compressible flow in the conservative form. The model is derived
directly from the conservation laws and employs no approximation specific to the flows
in the atmosphere. Similar models are often present in the general purpose CFD solvers,
but are rarely used for modelling of the atmospheric flows.

Second presented model employs the non-divergence constraint and the so called
Boussinesq approximation. This model or some of its variations is often used in the
atmospheric research due to its relative simplicity. However, it is generally unavailable
outside of the specialized research community. When researchers want to use a general
purpose CFD solver for problems of atmospheric flows, they may be tempted to choose
the closely related model of incompressible flow. While the fully incompressible model
have its use cases, it is unable to capture many phenomena appearing in the ABL flows
and thus may be a worse option that the above mentioned model of compressible flow.
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2.1.1 Equations of the compressible flow

The principal equations of fluid dynamics are derived from the three conservation laws:
conservation of mass, conservation of momentum, and conservation of energy. These
three laws give rise to the continuity equation, momentum equation, and energy equation
respectively. Detailed derivation of the equations can be found elsewhere (e.g. Feistauer
et al., 2003; Blazek, 2001) and is not pursued here.

Continutity equation

The law of the mass conservation states that the amount of mass in a closed system cannot
change. For a fluid with the density ρ(x, t) and velocity u(x, t), this can be expressed in
the differential form,

∂ρ

∂t
+ div (ρu) = 0. (2.1)

Momentum equation

The law of the conservation of momentum states that the rate of change of the momentum
of a piece of fluid is equal to the force acting on it. The forces acting on the piece of fluid
are body forces, acting on directly on the fluid, and surface forces, acting on the surface of a
control volume.

The body forces per unit volume can be expressed as ρf . The body forces in the
atmospheric simulations can include gravitational force or Coriolis force, and we will
describe them later in greater detail.

The surface forces are expressed through the stress tensor T = (Tij)
3
i,j=1, and then the

momentum equation can be written in vector form as

∂(ρu)

∂t
+ div (ρu⊗ u) = ρf + div T . (2.2)

The stress tensor consists of an isotropic pressure component and a viscous stress
tensor τ ,

T = −pI + τ . (2.3)

For Newtonian fluids the viscous stress tensor τ = (τij)
3
i,j=1 has the form

τ = (λ div u)I + 2µD, (2.4)

where

D = (Dij)
3
i,j=1, Dij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(2.5)

is the strain rate tensor, µ denotes the dynamic viscosity coefficient and λ is the second
viscosity coefficient. The viscosity coefficients are tied together through the Stokes’ hy-
pothesis,

λ+
2

3
µ = 0. (2.6)
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Using relation (2.3) in Eq. (2.2), we obtain the final form of the momentum equation,

∂(ρu)

∂t
+ div (ρu⊗ u) = −∇p+ ρf + div τ , (2.7)

with τ specified by (2.4) and (2.6).

Energy equation

The energy equation is a mathematical representation of the law of conservation of en-
ergy. The law states that the changes in total energy inside the volume are caused by the
power of forces acting on the volume and the heat transmitted to it.

The mathematical form of the law is written in terms of the total energy per unit mass,

E = e+
|u|2

2
, (2.8)

where e is the specific internal energy.
The density of the heat sources per unit mass is denoted as q. The heat flux q is

expressed through the Fourier’s law,

q = −kL∇T. (2.9)

Here k is the heat conduction coefficient and T is the temperature of the fluid. Then the
energy equation can be written as

∂(ρE)

∂t
+ div (ρEu) = ρf · u− div (pu) + div (τu) + div (kL∇T ) + ρq. (2.10)

External forces

Two external forces are relevant for the atmospheric simulations. First, it is the gravita-
tional force,

fg = (0, 0,−g)T , (2.11)

where g is the gravitational acceleration. Secondly, it is the Coriolis force,

f c = 2Ω× u, (2.12)

with Ω being the angular velocity vector. Vertical component, orders of magnitude
smaller than other terms in the equations, is however often neglected, and the force is
simplified to

f c = (fcu2,−fcu1, 0)T . (2.13)

Here
fc = 2Ω sinφ (2.14)

is the Coriolis parameter, Ω = 2πrad/24 hours is the angular velocity, and φ is the latitude.
The force acting can then be expressed as a sum of the gravitational and Coriolis force,

f = fg + f c. (2.15)
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2.1.2 Thermodynamical relations

To close the system of equations (2.1, 2.7, 2.10), additional relations between p, ρ, T and e
have to be specified. The dry air in the atmosphere can be considered to be an ideal gas,
for which the equation of state has the form

p = ρRT, (2.16)

where R > 0 is the gas constant. The gas constant R can be expressed as a difference
between the specific heat at constant pressure, cp, and specific heat at constant volume,
cv,

R = cp − cv. (2.17)

Furthermore, internal energy of an ideal gas is given by

e = cvT. (2.18)

Speed of sound in the fluid is defined as

a =

√(
∂p

∂ρ

)
s

, (2.19)

where the derivative is taken at constant entropy. In ideal gas, this can be simplified to

a =

√
γ
p

ρ
. (2.20)

2.1.3 Atmospheric boundary layer flow model

The second set of equations used in this work is derived specifically for flows in the
atmospheric boundary layer. It is based on two major assumptions:

1. The flow can be approximated as incompressible.

2. Boussinesq approximation: perturbations of density from the background state in
hydrostatic balance can be neglected everywhere except for the gravity term.

These points will be discussed here. Again, detailed derivation of the model is not
pursued here, as it can be found elsewhere (Bodnár, 2003; Seinfeld and Pandis, 2006,
chap. 16).

Before we proceed, let us introduce some terms and notation related to the atmo-
spheric dynamics. Potential temperature θ is defined as temperature that a parcel of air
would have if it were brought adiabatically to a reference pressure pref from its initial
pressure p. In ideal gas the following formula can be derived,

θ = T

(
pref

p

)R/cp
. (2.21)

Potential temperature will be useful when reasoning about the atmospheric stability in
Sec. 2.1.3.
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Hydrostatic equation relates the pressure and density in the atmosphere at rest. If
we take Eq. (2.7), neglect the viscosity and assume steady, horizontal flow, the vertical
velocity equation will reduce to

−1

ρ

∂p

∂z
= g. (2.22)

This equation represents the balance between the forces resulting from the pressure gradi-
ent on one side and gravitational acceleration on the other side. When pressure and
density satisfy this equation, the fluid is said to be in a hydrostatic balance.

Let pressure, density and potential temperature be decomposed into their background
components dependent only on the height coordinate, denoted with subscript 0, and their
fluctuations, denoted with superscript ∗,

p = p0 + p∗,

ρ = ρ0 + ρ∗, (2.23)
θ = θ0 + θ∗.

The background component represents the state of the air at hydrostatic balance, so that
Eq. (2.22) is satisfied for p0 and ρ0. Background potential temperature is related to the
background pressure and density through the equation of state (2.16) and through the
potential equation formula (2.21).

Incompressibility assumption

The assumption of the incompressibility of the flow may simplify the flow equations. The
flow is said to be incompressible if the material derivative of the density vanishes,

Dρ

Dt
≡ ∂ρ

∂t
+ u · ∇ρ = 0, (2.24)

which together with the continuity equation (2.1) implies

div u = 0. (2.25)

Flow in the atmospheric boundary layer can often be considered incompressible if
some conditions are satisfied. Atkinson (1995) derives one such condition that states
that the vertical length scale of the air circulation has to be significantly smaller than the
density scale depth of the atmosphere,

Lz =
uz

div u
� α0

dα0/dz
= Ha ∼ 8 km, (2.26)

where α0(z) is the background component of the specific volume of the fluid at hydro-
static balance. Baines (1995) states that for the flow forced by topography the divergence
constraint (2.25) can be used if |u| < 100 m s−1 everywhere in the modelled domain and

N2H2

a2
� 1. (2.27)
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Here N = −g
ρ
∂ρ
∂z is the buoyancy frequency, H is vertical length scale and a is the speed

of sound. He further notes that this criterion is satisfied for H < 10 km.
When the incompressibility assumption cannot be used, the anelastic approximation is

often employed instead,
div (ρu) = 0. (2.28)

However, in this work we restrict ourselves only to the incompressible assumption (2.25).

Boussinesq approximation

We further employ the Boussinesq approximation. When using this approximation, den-
sity perturbations are assumed to be small compared to its background state,

ρ∗ � ρ0, (2.29)

and it is assumed that the perturbations can be neglected everywhere in the flow equa-
tions except in the gravitational term.

With this assumption, following line of thought can be further pursued. Vertical
momentum equation contains a large pressure gradient, mostly balanced by the gravity.
Using the hydrostatic equation (2.22) and the assumption that the density perturbations
are small compared to the background density, Atkinson (1995) derives the following
approximation:

−1

ρ

∂p

∂z
− g ≈ − 1

ρ0

∂p∗

∂z
+
θ∗

θ0
g. (2.30)

This approximation removes from the vertical momentum equation the large balanced
terms and leaves only the small perturbations. Finally, further approximation consisting
of replacing the background density by a reference constant value, e.g. the density at the
ground level,

1

ρ0
∇p∗ ≈ 1

ρref
∇p∗, (2.31)

allows us later to use a conservative finite volume scheme for the numerical solution of
the equations.

System of equations

Finally, to remove the density from the momentum equation altogether, we use the ki-
nematic viscosity, ν = µ/ρ, instead of the dynamic viscosity as in (2.7). One more
approximation is used in the viscous terms,

1

ρ
div (µ∇u) ≈ div (ν∇u) (2.32)

Using the ingredients outline above, we obtain the following equations describing the
flow in the atmospheric boundary layer. First, it is the divergence constraint,

div u = 0. (2.33)
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Secondly, there are the momentum equations,

∂u

∂t
+ div (u⊗ u) = − 1

ρref
∇p∗ + div (ν∇u) + fB, (2.34)

where fB = fBg + f c is the sum of the gravitational force formulated in the Boussinesq
approximation, fBg = (0, 0, θ

∗

θ0
g)T and of the Coriolis force f c given by Eq. (2.13). Lastly,

the energy equation is replaced by the potential temperature equation,

∂θ

∂t
+ div (θu) = div

(
kL
ρrefcp

∇θ
)

+
q

cp
. (2.35)

This equation shows that if we neglect the thermal diffusion and assume no heat source,
the potential temperature is simply carried by the flow.

Stability of the atmosphere

Potential temperature θ is connected to the notion of stability of the atmosphere. Atmo-
sphere is said to be statically stable if parcel of air after vertical displacement returns to its
original position. It is unstable if accelerates in the direction of displacement and neutral
if it stays at the new position.

This can be put more rigorously using the adiabatic lapse rate, which is the rate of
decrease of the temperature in the adiabatic atmosphere,

Γd = −dTa
dz

=
g

cp
(2.36)

It can be then shown (see e.g. Holton, 2004) that in the sense described above the atmo-
sphere is

• stable if ∂T/∂z > Γd or equivalently ∂θ/∂z > 0,

• neutral if ∂T/∂z = Γd or equivalently ∂θ/∂z = 0,

• unstable if ∂T/∂z < Γd or equivalently ∂θ/∂z < 0.

The form of the gravitational force in the momentum equation (2.34) allows to eas-
ily investigate effect of a vertical displacement. Recall that the potential temperature
does not change after an adiabatic displacement. In the stable atmosphere, parcel of
air displaced upwards has lower potential temperature than its surroundings, therefore
the perturbation θ∗ is negative and the force fBg is oriented downwards. Similarly, a
downward displacement results in a positive θ∗ and upward oriented gravitational force.
The opposite holds true for the unstable atmosphere. In the neutral atmosphere, the
potential temperature perturbation is always zero after an adiabatic displacement, and
the displaced parcel stays at rest.
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2.1.4 Flow in the neutrally stratified atmosphere

As a side note, we mention one further simplification of the model of the atmospheric
flow that is not implemented in the developed solver. In neutrally stratified atmosphere
without any heat sources and adiabatic walls, the potential temperature equation (2.35)
will reduce to θ = const. From this it follows that θ∗ = 0 and fBg = 0. Assuming that
the Coriolis force can be neglected, we can rewrite the equations (2.33), (2.34) and (2.35)
to give us the usual form of the incompressible flow equations,

div u = 0,

∂u

∂t
+ div (u⊗ u) = − 1

ρref
∇p∗ + div (ν∇u). (2.37)

Due to its availability in the commercial and open-source CFD solvers, such model is
often used in the urban scale models (e.g. Balogh et al., 2012; Blocken et al., 2012; Vranckx
et al., 2015). However, it is unable to capture the thermal or stratification effects that may
be encountered in such situations.

2.1.5 Summary

We described two systems of equations, applicable to the problems of flows in the at-
mospheric boundary layer. First one is derived directly from the conservation laws, and
consists of the continuity equation, the momentum equations and the energy equation,

∂ρ

∂t
+ div (ρu) = 0,

∂(ρu)

∂t
+ div (ρu⊗ u) = −∇p+ div τ + ρf ,

∂(ρE)

∂t
+ div (ρEu) = −div (pu) + div (τu) + div (kL∇T ) + ρq + ρf · u. (2.38)

In the following text, we will use the name compressible flow model when referring to this
system.

The second system is built on the assumption of incompressibility of the flow and on
the Boussinesq approximation. The equations read

div u = 0,

∂u

∂t
+ div (u⊗ u) = − 1

ρref
∇p∗ + div (ν∇u) + fB,

∂θ

∂t
+ div (θu) = div

(
kL
ρrefcp

∇θ
)

+
q

cp
. (2.39)

We will call this system the ABL flow model.
Both systems are capable of capturing the rich dynamic of flows in the atmospheric

boundary layer. This includes stratification and thermal effects, that may play significant
role in the mesoscale flows affected by the topography and in the microscale urban flows.
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Vector form of the equations

In the following text, a vector form of the equations will occasionally be more suitable to
work with. Both systems (2.38) and (2.39) can be written as

A
∂W

∂t
+

3∑
j=1

∂F j(W )

∂xj
=

3∑
j=1

∂Rj(W ,∇W )

∂xj
+Q(W ), (2.40)

Here W is the state vector, F j(W ) are the inviscid fluxes, Rj(W ,∇W ) are the viscous
fluxes, and Q(W ) are the sources and sinks. In the compressible flow equations, these
have the form

W = (ρ, ρu1, ρu2, ρu3, ρE)T

F j = (ρuj , ρuju1 + δ1jp, ρuju2 + δ2jp, ρuju3 + δ3jp, ρuj(E + p/ρ))T (2.41)

Rj = (0, τE1j , τ
E
2j , τ

E
3j , τ

E
j1u1 + τEj2u2 + τEj3u3 − puj + (kL + µT cp/PrT ) (∂T/∂xj))

T

Q = (0, ρf1, ρf2, ρf3, ρq + ρf · u)T .

In the ABL flow model the terms are

W = (p∗, u1, u2, u3, θ)
T

F j = (uj , uju1 + δ1jp
∗/ρref , uju2 + δ2jp

∗/ρref , uju3 + δ3jp
∗/ρref , ujθ)

T (2.42)

Rj = (0, νE(∂u1/∂xj), νE(∂u2/∂xj), νE(∂u3/∂xj), (kL/ρrefcp + νT /PrT ) (∂θ/∂xj))
T

Q = (0, fB1 , f
B
2 , f

B
3 , q/cp)

T .

MatrixA is an identity matrix in the compressible flow equations, and

A =



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(2.43)

in the ABL equations, where it eliminates the pressure from the non divergence con-
straint. The vector forms of these and of other systems of equations used in this work are
summarized in Appendix B.

2.2 Passive scalar equation

One of the important intended applications of the atmospheric flow solver is a modelling
of a pollutant dispersion. This pollutant might be a leaked harmful gas, smoke from a
residential heating, or a dust raised by the road traffic. The numerical simulation of the
dispersion is significantly simplified if the pollutant can be modelled as passive scalar.
This is possible under several conditions: the pollutant should be present only in small
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amount so that the physical properties of the air are not altered. It should be chemically
inactive and cause no significant thermodynamical effects, such as water vapour under-
going the phase transition to liquid form. If that is the case, the pollutant dispersion
may be described by the passive scalar equation written in terms of the pollutant mass
concentration c (in SI units given in kg m−3). The equation can be derived from the mass
conservation law of the pollutant, which states that the change of the pollutant mass in a
control volume is equal to the amount of pollutant that enters the volume via advection
and diffusion, plus the amount of pollutant emitted to (or removed from) the control
volume by the pollutant sources (or sinks). Its form is

∂c

∂t
+ div (cu) + div (cus) = div (kc∇c) + Sc. (2.44)

In this equation, the term div (cus) represents the gravitational settling of the particles
heavier than air, and is discussed in the following subsection. Coefficient kc is the molecu-
lar diffusion coefficient of the pollutant, and Sc stands for the volume sources and sinks
of the pollutant (given in kg m−3 s−1). The source term Sc may include physical sources
and sinks of the material, such as pollutant emissions or sinks due to the deposition on
the vegetation, discussed in Sec. 2.5.2.

2.2.1 Gravitational settling of the particles

Particles of a higher density than the surrounding air settle down due to the gravitational
force acting on them. This is modelled by the term

div (cus) = −us
∂c

∂z
. (2.45)

in Eq. (2.44). Here us = (0, 0,−us) is the gravitational settling velocity vector oriented
towards the ground. The settling velocity us of the particle of the diameter dp and density
ρp is given by the Stokes’ equation,

us = (d2
pρpgCC)/(18µ), (2.46)

where

CC = 1 + 2
λ

dp

(
1.257 + 0.4 exp

(
−1.1

dp
2λ

))
(2.47)

is the Cunningham correction factor and λ = 0.066 µm is the mean free path of the particle
in the air (Seinfeld and Pandis, 2006).

2.3 Turbulence modelling

In the atmospheric boundary layer the Reynolds number is above 107, and the flow
is turbulent everywhere. This has to be reflected in the modelling techniques. Three
approaches to modelling turbulent flow are generally used:
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Direct Numerical Simulation (DNS) aims at simulation of the turbulent flow in its en-
tirety, i.e. resolving all scales. Due to the range of the spatial scales of the turbu-
lent flow, number of grid point needed in DNS scales as Re9/4, which constitutes
major difficulty from the computational performance viewpoint. DNS is however
sometimes used for investigating the properties of the atmosphere under special
conditions (Sun et al., 2015).

Large Eddy Simulation (LES) is based on the idea of resolving only the large eddies and
modelling the small ones using a subgrid scale model. LES is able to capture the
unsteady turbulent dynamics at significantly lower costs than DNS. It is used for
many problems of atmospheric flows, including wind farm aerodynamics (Mehta
et al., 2014), urban simulations (Blocken et al., 2011), pollutant dispersion (Fuka and
Brechler, 2012), or vegetation flow (Dupont et al., 2011). Its computational costs are
however still much higher than of the RANS approach.

Reynolds averaged Navier-Stokes (RANS) is the approach adopted in this work. It is
based on the idea of a decomposition of the flow variables into their averaged and
fluctuating components, which leads to the equations of the averaged variables that
are then solved. It offers low costs compared to LES, but it is incapable of capturing
the unsteady turbulent dynamics and provides only averaged quantities as a result.
Its accuracy depends to a large extent on a turbulence model used.

In the following section we outline the idea of RANS approach and present the final
form of the equations. Further details of can be found e.g. in (Wilcox, 1993) or (Blazek,
2001).

2.3.1 Reynolds and Favre averaging

The main idea of the RANS approach is to simulate the behaviour of the averaged quan-
tities instead of their instantaneous values. The temporal Reynolds average of the quantity
a(x, t) is defined as

a(x, t) =
1

T

∫ t+T

t
a(x, t′)dt′, (2.48)

where the size of the time window T is much larger than the temporal scale of the turbu-
lent processes T1, but much smaller than the temporal scale of the mean flow variations
T2, i.e. T1 � T � T2. The quantity can be then decomposed into the mean and the
fluctuations,

a(x, t) = a(x, t) + a′(x, t). (2.49)

When the density is present in the equations, it is often practical to use the Favre (or mass)
averaging,

ã(x, t) =
1

ρ(x, t) T

∫ t+T

t
ρ(x, t′) a(x, t′)dt′, (2.50)

where ρ is the Reynolds averaged density. The decomposition then reads

a(x, t) = ã(x, t) + a′′(x, t). (2.51)
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Using the Reynolds averaging on the density and pressure and the Favre averaging
on the other variables present in the equations, the compressible flow equations (2.38)
can be transformed to their averaged form. For clarity, here we write the equations using
the Einstein notation.

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0

∂(ρũi)

∂t
+

∂

∂xj
(ρũj ũi) =− ∂p

∂xi
+

∂

∂xj
(τ̃ji − ρũ′′i u′′j ) + ρfi, i = 1, 2, 3

∂(ρẼ)

∂t
+

∂

∂xj
(ρẼũj) =− ∂

∂xj
(p̃ũj) +

∂

∂xj

(
ũi(τ̃ij − ρũ′′i u′′j )

)
+

∂

∂xj

(
kL

∂T̃

∂xj
− ρũ′′jh′′

)
+ ρq + ρfj ũj (2.52)

Applying Reynolds averaging to the Boussinesq system of equations (2.39) yields

∂uj
∂xj

= 0

∂ui
∂t

+
∂

∂xj
(ujui) =− 1

ρref

∂p∗

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj
− u′iu′j

)
+ fBi , i = 1, 2, 3

∂θ

∂t
+

∂

∂xj
(θuj) =

∂

∂xj

(
kL
ρrefcp

∂θ

∂xj
− θ′u′j

)
+

q

cp
(2.53)

These set of equations are called the Reynolds averaged Navier-Stokes (RANS) equa-
tions. Strictly speaking, first set should be called Favre-Reynolds averaged equations, we
will however use only the term RANS equations for simplicity.

2.3.2 Eddy viscosity hypothesis

The averaged equations (2.52) and (2.53) are, apart from the averaging operators, similar
in form to the original equations (2.38) and (2.39). They however feature some additional
correlations between the velocity fluctuations and the correlations between the velocity
fluctuations and enthalpy or potential temperature fluctuations.

First of these terms is modelled using the Boussinesq (or eddy viscosity) hypothesis (do
not confuse with the Boussinesq approximation, sec. 2.1.3). The hypothesis assume that
there is a linear dependence between the Reynolds stresses τR = (τRij )3

i,j=1 and the mean
rate of strain, specifically

τRij = −ρũ′′i u′′j = 2µT D̃ij −
(

2µT
3

)
∂ũk
∂xk

δij −
2

3
ρk̃δij (2.54)

for the Favre averaged equations and

τRij = −ρ0u′iu
′
j = 2µTDij −

2

3
ρ0kδij (2.55)

for the Reynolds averaged equations. Here k = 1/2 (u′iu
′
i) is the turbulent kinetic energy

and µT is the so called turbulent (or eddy) viscosity. We further use an approximation
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suitable for low Mach number flows, which is neglecting the last term on the right hand
side of equations (2.54) and (2.55).

Similar assumption is made for the turbulent heat transfer vector, which is assumed
to be proportional to the temperature gradient. We can write it in the following form,

ρũ′′jh
′′ = −µT cp

PrT

∂T̃

∂xj
(2.56)

and

ρ0u′jθ
′ = − µT

PrT

∂θ

∂xj
, (2.57)

where PrT is the turbulent Prandtl number, usually taken as PrT = 0.9.
Naming µE = µ+ µT as the effective dynamic viscosity and

τE = (τEi,j)
3
i,j=1 =

(
−2

3
µE div u

)
I + 2µED (2.58)

as the effective stress tensor, Eq. (2.52) can be rewritten to

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0,

∂(ρũi)

∂t
+

∂

∂xj
(ρũj ũi) =− ∂p

∂xi
+
∂τ̃Eji
∂xj

+ ρfi, i = 1, 2, 3

∂(ρẼ)

∂t
+

∂

∂xj
(ρẼũj) =− ∂

∂xj
(p̃ũj) +

∂

∂xj

(
ũiτ̃Eij

)
+

∂

∂xj

(
(kL + µT cp/PrT )

∂T̃

∂xj

)
+ ρq + ρfj ũj , (2.59)

which has the same form as (2.38) except for the averaging operators and the replacement
of the viscosity and heat conduction coefficient by their effective counterparts. Similarly,
Eq. (2.53) can be casted in the form

∂uj
∂xj

= 0,

∂ui
∂t

+
∂

∂xj
(ujui) =− 1

ρref

∂p∗

∂xi
+

∂

∂xj

(
νE

∂ui
∂xj

)
+ fBi , i = 1, 2, 3

∂θ

∂t
+

∂

∂xj
(θuj) =

∂

∂xj

(
(kL/ρrefcp + νT /PrT )

∂θ

∂xj

)
+

q

cp
, (2.60)

analogous to Eq. (2.39). Here νE = ν + νT is the effective kinematic viscosity. What now
remains to determine is the turbulent viscosity. In the RANS approach this problem is
dealt with by a turbulence model. We describe the implemented turbulence models in
Sec. 2.3.4.

We must note that the Boussinesq hypothesis used here have its limits and is not
always suitable for atmospheric flows simulations. Garratt (1992, chap. 2) states that the
assumption is suitable when the flow is dominated by small eddies, e.g. in neutral or
stably stratified atmosphere, but fails if the flow is dominated by large eddies, e.g. in the
highly convective unstable ABL. In such cases, it is necessary to use other approaches,
such as the higher order RANS models or even LES.
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2.3.3 Passive scalar equation

The same process consisting of the averaging and using the eddy viscosity hypothesis
can be used also for the passive scalar equation (2.44). After averaging we obtain

∂c

∂t
+

∂

∂xj
(cuj)−

∂

∂x3
(cus) =

∂

∂xj

(
kc
∂c

∂xj
− c′u′j

)
+ Sc. (2.61)

The unknown turbulence fluxes are modelled using the eddy viscosity hypothesis,

−c′u′j =
νT
ScT

∂c

∂xj
, (2.62)

where ScT is the turbulent Schmidt number. It their review, Tominaga and Stathopoulos
(2007) noted that its choice has large influence on the accuracy of the results. However,
the optimal value depends on the problem geometry and flow characteristics, and is
distributed over the interval [0.2, 1.3] for different problems of atmospheric flows. The
choice should therefore be made on a case by case basis.

Since the turbulent diffusivity in the atmospheric flows is typically much larger than
the molecular diffusivity, kc � νT

ScT
, the molecular diffusivity can be neglected. Putting it

together, we obtain the final form,

∂c

∂t
+

∂

∂xj
(cuj)−

∂

∂x3
(cus) =

∂

∂xj

(
νT
ScT

∂c

∂xj

)
+ Sc. (2.63)

2.3.4 Turbulence models

Two turbulence models are implemented in the solver and referenced in the following
sections: algebraic mixing length model, and standard k-ε model.

Please note that here and in the remaining text we will drop the averaging operators
to make the equations easier to read. It will however be the averaged variables we will
generally refer to.

Mixing length model

The mixing length model is a conceptually simple and computationally effective model.
It is an algebraic model, that is, one does not need to solve any partial differential equa-
tion, and the turbulent viscosity is obtained from an algebraic relation. Unlike the stand-
ard k-ε model presented below, it limits the length scale in the upper parts of the ABL.
Among its disadvantages its its incapability of capturing the behaviour in flows where
separation occurs, or its assumption that the mixing length depends only on the geometry
and not on the flow field or its history. Therefore, its applicability for ABL flows is limited,
especially for complex geometries of urban flow problems.

The model employs the mixing length hypothesis of Ludwig Prandtl. The hypothesis
postulates that in a turbulent flow a parcel of fluid retains its momentum for a distance
lm, called the mixing length, before it dissolves in the neighbouring fluid. Under this
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hypothesis the turbulent viscosity in the ABL can be written as

µT = ρl2m

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]1/2

. (2.64)

The mixing length itself is specified using the model proposed by (Blackadar, 1962) (but
see also (Estoque and Bhumralkar, 1969), where the model is extended by the stability
effects, here neglected). The model gives the following formula for the mixing length:

lm =
κ(z + z0)

1 + κ(z+z0)
l∞

, (2.65)

where κ is the Von Kármán constant, usually set to value κ ∼ 0.41, z is the vertical
coordinate, z0 is the roughness length (discussed more in Sec. 2.4.2 below), and

l∞ = 0.00027
G

fc
(2.66)

is the limit on the mixing length in the upper part of the boundary layer, where G is the
geostrophic wind speed, and fc the Coriolis parameter (2.14).

Standard k-ε model

Two equation turbulence models are commonly used in the engineering applications and
they are often used in the atmospheric research as well. They model the transport of
two turbulence related variables, which in the case of the k-ε model are the turbulent
kinetic energy, k = 1

2(u′iu
′
i), and its dissipation ε. The standard k-ε model used here was

proposed by Launder and Spalding (1974).
We chose to implement and use the model for the following reasons:

• it is still a relatively simple model, both from the implementation viewpoint as well
as from the viewpoint of the computational performance,

• it is widely used in the literature,

• it was shown to perform adequately in the range of subproblems of atmospheric
flows: urban flow (Tominaga and Stathopoulos, 2013), street canyon models (Kout-
sourakis et al., 2012) or flow over complex terrain (dos Santos et al., 2009; Abdi and
Bitsuamlak, 2014). The model is generally shown to perform comparably to the
related RNG k-ε model, although it poorly represents the separation flow near the
upwind corner of the buildings (Tominaga and Stathopoulos, 2013).

The transport equations for both variables consist of the time derivative, advection,
diffusion, its production and its dissipation:

∂(ρk)

∂t
+ div (ρku) =div

((
µL +

µT
σk

)
∇k
)

+ Pk − ρε, (2.67)

∂(ρε)

∂t
+ div (ρεu) =div

((
µL +

µT
σε

)
∇ε
)

+ Cε1
ε

k
Pk − Cε2ρ

ε2

k
. (2.68)
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The production of the turbulent kinetic energy has the form

Pk = τRij
∂ui
∂xj

. (2.69)

The turbulent viscosity is coupled to the modelled variables through the relation

µT = Cµρ
k2

ε
. (2.70)

Constants of the standard model are presented in Tab. 2.1. In this work we will
however use a modified set of constants, presented under the title ABL flows in Tab.
2.1. This choice allows the model to correctly reproduce the horizontally homogeneous
unperturbed ABL flows, and is discussed in more detail in Sec. 2.4.2.

Cε1 Cε2 Cµ σk σε

Standard k-ε 1.44 1.92 0.09 1.0 1.3

ABL flows 1.44 1.92 0.09 1.0 1.167

Table 2.1: Constants of the k-ε model

Since the turbulent viscosity in the ABL is typically much larger than the laminar
viscosity, µT � µL, the latter could be usually left out of the equations (2.67) and (2.68)
without introducing any significant error.

Two important aspects of the stratified atmospheric boundary layer flows are how-
ever not included in the the standard k-ε model as presented here and used in this work.
First, it is the limit on the length scale of the turbulence eddies in the upper parts of the
ABL, leading to the overprediction of the eddy viscosity compared to the observations.
This effect can be safely ignored as long as we focus on the area of our interest, which are
the urban areas in the lowest part of the ABL.

Second neglected effect is more substantial, and that is the effect of buoyancy in
the stratified atmosphere on the turbulence, which promotes either generation of the
turbulence kinetic energy (in the unstable atmosphere) or its suppression (in the stable
atmosphere). One might argue that in the geometrically complex urban areas the turbu-
lence generation by shear overshadows the buoyancy effects, and this simplification is
thus justifiable for our purpose, but this is difficult to state with certainty. There are wind
tunnel experiments (Uehara et al., 2000) and numerical investigations using LES (Tomas
et al., 2016) showing that the atmospheric stratification can significantly affect the flow
field as well as the pollutant dispersion even in the geometrically complex urban areas.
However, without dedicated numerical experiments it is difficult to say how much of
these effects should be attributed to the buoyancy generated turbulence (which is missing
in our k-ε model), and how much would be properly captured by the flow equations,
which do support stratification effect in our formulation. To conclude, this remains to be
an issue that should be dealt with. Possible adaptations of the k-εmodel aimed at solving
the issue is presented in (Apsley and Castro, 1997a) or (Sogachev et al., 2012).
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2.4 Boundary conditions for the ABL flows

2.4.1 Thermodynamic variables

In a typical simulation of the ABL flow we assume that the vertical profiles of the thermo-
dynamic variables at the inlet correspond to the atmosphere at equilibrium, i.e. satisfying
the hydrostatic balance equation (2.22). The three thermodynamic variables - pressure,
density and temperature - are further related through the state equation (2.16). Of these
three, we can prescribe the temperature profile to fit the measured data or the considered
atmospheric conditions. As noted in section 2.1.3, the temperature profile determines the
static stability of the atmosphere.

Knowing the temperature profile T (z) and prescribing the reference pressure at the
ground level pref , we can then integrate the hydrostatic balance equation (2.22) using the
density expressed from the state equation. For the linear temperature profile T (z) =
Tref−Γz with the temperature at the ground Tref and a constant lapse rate Γ this will give
us the following formula for vertical profile of pressure (Jacobson, 2005, Sec. 2.4):

p(z) =

pref

(
Tref−Γz
Tref

) g
ΓR if Γ 6= 0,

pref exp
(
− gz
RTref

)
if Γ = 0.

(2.71)

The density then may be calculated using the state equation.

2.4.2 Velocity profile

For the flow over rough surfaces the so called logarithmic wind profile law can be derived
analytically and is well supported by the full scale measurements (Arya, 1999, chap. 4).
It expresses the wind velocity as

u(z) =
u∗
κ

ln

(
z + z0

z0

)
, (2.72)

where u∗ is the friction velocity, κ is the von Kármán constant and z0 is the surface
roughness length. Friction velocity can be set to the measured value, while the roughness
length depends on the modelled surface such as grass, bushes, trees, or buildings, and is
related to the height of the obstacles. Its typical values are given in Tab. 2.2.

2.4.3 Boundary conditions for the k-ε model

A reasonable requirement on the model is its capability to sustain the inlet profiles inside
a domain without any obstacles. Special care must be taken to achieve this horizontal
homogeneity of the flow over a flat topography without any obstacles. In the ABL, the
wind velocity profile is sustained by the balance of the shear stress acting at the top of the
domain and the retarding shear stress acting at the ground. Reynolds stresses, modelled
using the k-ε turbulence model, maintain this balance. Compatibility of the boundary
conditions for the turbulence variables with the model and the wall functions must be
considered. Such compatible inlet profiles and wall functions for the standard k-ε model
were proposed by Richards and Hoxey, 1993, and these are described below.
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Surface z0 [m]

Snow 10−3

Uncut grass 0.05

Full-grown root crops 0.1

Tree covered 1

Low-density residential 2

Table 2.2: Surface roughness lengths for various surfaces. From (Seinfeld and Pandis,
2006).

Vertical profiles of k and ε

The inlet profiles are given as follows: wind velocity is prescribed by the log-wind profile
(2.72), turbulent kinetic energy is set to

k(z) =
u2
∗√
Cµ

(2.73)

and turbulent dissipation to

ε(z) =
u3
∗

κ(z + z0)
. (2.74)

If the flow described by these profiles is to be in equilibrium, the constants of the standard
k-ε model has to be set such that

σε =
κ2

(Cε2 − Cε1)
√
Cµ

. (2.75)

This precludes the use of the of usually employed constants. The constants satisfying this
relation are listed in Tab. 2.1.

It shall be noted that this formulation of the inlet profiles allows only a constant
turbulent kinetic energy profile, which may not be satisfactory when measured values are
available and indicating different profile. To overcome this, Gorlé et al. (2009) adapted
the constants of the k-ε model so that the use of a turbulence kinetic energy profile of a
form k(z) =

√
A ln(z + z0) +B is possible. Furthermore, Parente et al. (2011) introduced

changes to the turbulence model to accommodate arbitrary turbulence kinetic energy
profiles. None of these improvements are however implemented in our solver yet.

Wall functions

To capture the behaviour of the flow near the solid walls, one would need restrictively
small cells at the near-ground layer. To avoid that, wall functions are often used. They are
based on the applicability of the law of the wall, which states that the flow in near wall
region is divided into the viscous sublayer and the logarithmic region, in which the flow
behaves according to the universal properties of the near wall flow. Our code implements
the wall functions in the following way. In the near ground cell with the center at height
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zp, the flow is retarded by the wall shear stress τRw . The wall shear stress is calculated
using the velocity and TKE in the near-wall cell (Apsley, 1995),

τRw =
κC0.25

µ k0.5U

ln
(
zp+z0
z0

) . (2.76)

This term is added to the momentum equations of the near-wall cells as a source term
τRw (A/V ), where A is the face area and V is the volume of the cell. With the wall shear
stress already added, the boundary condition for velocity is then implemented as a slip
wall.

The turbulent kinetic energy production and the dissipation are prescribed following
(Richards and Hoxey, 1993) in the formulation by Parente et al. (2011):

Pk,w =
(τRw )2

ρκC0.25
µ k0.5(zp + z0)

, (2.77)

εw =
C0.75
µ k1.5

κ(zp + z0)
, (2.78)

As the dissipation ε is prescribed, Eq. (2.68) is not solved in the near-ground cells. The
boundary condition for TKE is set as k = 0 at the wall.

2.5 Models of the vegetation

2.5.1 Fluid flow and turbulence

The models of the vegetation canopy flow have to deal with a number of associated
difficulties. First, the structure of the vegetation is notably complex: it consist of thick
trunks, number of branches and myriad of small elements, such as leaves or needles. All
of these are mingled together in an inhomogeneous three dimensional mixture of varying
density. Small elements are flexible and can change their orientation and shape under the
varying wind speed. The flow through the vegetation is typically fully turbulent.

To make things even more complicated, the options for an experimental investigation
of the canopy flow are limited. Only small plants or small plant parts can be investigated
in a wind tunnel in real scale. Scaled models either represent a vegetation without any
foliage, or some small scale foliage replacement have to be carefully designed. Appropri-
ateness of such replacement may be questioned. Outdoor campaigns, on the other hand,
are expensive and challenging due to the impossibility of controlling the atmospheric
conditions.

To obtain a model useful for the desired purpose, the level of the vegetation paramet-
erization has to be carefully considered. Most applications focused on the urban-scale
vegetation flows employ the averaging approach originally developed by Wilson and
Shaw (1977). Under this approach, individual vegetation elements are not resolved and
the canopy is modelled as a horizontally homogenous porous block via additional terms
in the momentum and turbulence equations. Details of this approach, used in this work,
will be given in the following text.
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While more detailed modelling approaches are useful for validating the parameter-
ization in the coarser models, they are generally unsuitable for efficient solvers of the
complex urban flow problems. We will mention two examples of alternative approaches.
Endalew et al. (2009) simulated the airflow through the 3D canopy resolved to the level
of branches, and left only the leaves parameterized as a porous volumes. Looking at
much smaller scale, a model of a flow around a single leaf aimed at investigation of the
stomatal transpiration was presented in (Defraeye et al., 2014).

Description of the vegetation

Under the employed assumption of the horizontally homogeneous vegetation, the vege-
tation is described by its leaf area density (LAD) profile. LAD profile (given in m2 m−3 or
simply m−1) is defined as a total one-sided leaf area per unit volume and can vary with
the height of the vegetation block. Its integral over the height of the canopy specifies the
leaf area index (LAI),

LAI =

∫ h

0
LAD(z)dz, (2.79)

which, in other words, is the ratio of the leaf area per ground area. Both LAI and LAD
profile can be measured by the direct (destructive) methods, or indirect optical methods.
When only the LAI is known, once can use the analytical formulas that were devised to
reconstruct the LAD profile. One such empirical relation is given in (Lalic and Mihailovic,
2004). They propose

LAD(z) = Lm

(
h− zm
h− z

)n
exp

(
n

(
1− h− zm

h− z

))
, (2.80)

n =

{
6 if 0 ≤ z < zm,

0.5 if zm ≤ z ≤ h,

where h is the height of the vegetation, zm is the height where the LAD attain its max-
imum, and Lm is the maximal value of LAD. This value is chosen so that LAI fits the
known value. The authors have shown that this profile can reasonably approximate the
measured profiles of various full grown trees, both deciduous and conifers.

k-ε vegetation model

Wilson and Shaw (1977) summarized the effects of the vegetation on the air flow in four
points:

1. It extracts the momentum from the mean flow due to the aerodynamic drag of the
vegetation elements.

2. The extracted energy is converted to the turbulence kinetic energy in the wakes
formed behind the obstructions.

3. The energy of the large-scale turbulent motions is transformed into smaller scale
turbulent motions, enhancing the turbulent dissipation in the canopy.
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4. The TKE production is increased due to the heat transfer between the plant surface
and the air.

The last phenomenom is often neglected as having little effect, however, all other mech-
anisms should be reflected in the vegetation model.

In the following description, we will for simplicity assume that the ABL flow equa-
tions (2.39) are used. All models can however be formulated also for the compressible
flow model (2.38). When using the k-ε turbulence model, the above mentioned effects
may be modelled through the additional source terms in the momentum equations (2.34)
and k-ε equations (2.67) and (2.68) (Katul et al., 2004),[

∂u

∂t

]
veg

= Su,

[
∂ρk

∂t

]
veg

= ρSk,

[
∂ρε

∂t

]
veg

= ρSε. (2.81)

The momentum sink caused by the form drag is given by

Su = −(CdLAD U)u, (2.82)

where Cd is the drag coefficient. Typical values are 0.1 ≤ Cd ≤ 0.5 (Katul et al., 2004;
Endalew et al., 2009). Viscous drag is considered negligible relative to the form drag, and
is not included in the momentum sink. The source term in the TKE equation reads as

Sk = CdLAD(βpU
3 − βdUk). (2.83)

The positive part of the term represents the energy converted from the mean flow kinetic
energy to the turbulence kinetic energy, and parameter βp is the fraction of the converted
energy. The negative part reflects the short-circuiting of the Kolgomorov cascade. Finally,
the dissipation term was formulated as

Sε = CdLAD
(
Cε4βp

ε

k
U3 − Cε5βdUε

)
(2.84)

based on the dimensional analysis.
Several models fitting this general form were proposed (Svensson and Häggkvist,

1990; Green, 1992; Liu et al., 1996; Katul et al., 2004), differing in the terms included as
well as in the choice of the constants. Kenjereš and ter Kuile (2013) compared four such
models together with a momentum-only model (i.e. Sk = Sε = 0) and concluded that the
model described by Katul et al. (2004) (βp = 1.0, βd = 5.1, Cε4 = Cε5 = 0.9) provides the
best agreement to the experimental measurements and is sufficiently numerically stable.
With the choice Cε4 = Cε5 the Eq. (2.84) can be rewritten to simpler

Sε = Cε4
ε

k
Sk. (2.85)

2.5.2 Dry deposition

The aerodynamic blocking of the flow is not the only effect of the vegetation. Due to
the mechanism of the dry deposition, green canopies serve as a sink of the atmospheric
aerosols. This phenomenom attracts increasing research interest, especially in relation to
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the problem of reducing urban air pollution (Litschke and Kuttler, 2008; Janhäll, 2015). It
is the urban environment and its inhabitants that suffer most from the increased partic-
ulate matter concentration. Among the most important sources of the particulate matter
pollution is the road traffic, industrial processes, or residential burning.

Filtration properties of the vegetation are investigated using the experimental as well
as the numerical approaches. Modelling of the dry deposition is a complicated matter, as
it is a complex process depending on the physical and chemical properties of the aerosol,
micrometeorological conditions, or vegetation surface properties. Petroff et al. (2008a)
identifies four main mechanisms of the dry deposition:

• Brownian diffusion, affecting mainly small particles with diameter dp < 0.1 µm.

• Interception, occurring when a particle following the streamline passes too close to
the obstacle and gets captured on it.

• Impaction, i.e. a collision of the particle which does not follow the streamline with
the obstacle due to the inertia of the particle. Impaction is further differentiated
into the inertial and the turbulent impaction by its cause.

• Sedimentation, which stands for the collision of the particle with the obstacle due to
the downward motion of the particle caused by the gravitational force. Sedimenta-
tion is the dominant process for particles sizes dp > 10 µm.

Other processes are also mentioned by some authors, such as thermophoresis, caused by
the temperature gradients, or electrophoresis, caused by the electric charge (Litschke and
Kuttler, 2008), however, they are usually neglected in the dry deposition models due to
their small effect.

The collection efficiency of the vegetation is often described through the deposition
velocity ud (usually given in cm s−1). Deposition velocity is defined as a ratio of the
mass flow rate towards the leaf surface and the particulate matter concentration in the
atmosphere. The dry deposition may then be modelled as a sink term in the passive
scalar equation (2.44), [

∂c

∂t

]
veg

= −LADudc. (2.86)

In (Litschke and Kuttler, 2008) the authors reviewed published values of the measured
deposition velocities for different plant species, wind speeds, and particles sizes. They
concluded that the values differ by up to four orders of magnitude, with most of them
concentrated in the range [0.01, 10] cm s−1.

Detailed deposition velocity models have a long history in the regional air quality
models (Slinn, 1982; Zhang et al., 2001; Petroff et al., 2008b; Petroff et al., 2009; Petroff and
Zhang, 2010). In the regional models the flow through the vegetation is not explicitely
resolved, and the deposition velocity is calculated at some height above the canopy. In
this framework the resistance formulation of (Slinn, 1982) is often used,

ud(z) = us +
1

RA(z) +RS
, (2.87)
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where us is the gravitational settling velocity, RA is the aerodynamic resistance and RS is
the surface layer resistance. The aerodynamic resistance reflects the turbulent transport
of the particles between the height z and the canopy, and the surface layer resistance
models the deposition processes named above, i.e. diffusion, interception and impaction.
Sedimentation is acting in parallel via the settling velocity us.

In the microscale CFD models the flow through the vegetation is modelled directly,
and the aerodynamic resistance RA can be left out. The surface resistance RS is typically
derived under some simplified assumptions on the flow through the canopy, which is in
the regional models often represented by a single parameter: the friction velocity above
the canopy u∗. Such models are unlikely to represent well the deposition velocity in
small vegetation patches, typical for urban vegetation, as opposed to the continuous
forest cover.

In (Petroff et al., 2008b) the authors developed a an alternative approach consisting of
solving a 1D aerosol transport equation inside the canopy, which allowed detailed spe-
cification of the canopy morphology. The method was originally designed to deal with
the vegetation consisting of cylindrical, needle-like obstacles, and was later extended to
planar obstacles such as broadleaves (Petroff et al., 2009). In their method, the authors
provided expressions for the deposition velocities associated with each of the underlying
processes acting inside the canopy. 1 These expressions are also suitable for the use in the
CFD models, and will be described here.

The model assumes that the physical mechanisms of the dry deposition act inde-
pendently, and the deposition velocity can thus be written as a sum of the deposition
velocities of all processes,

ud = 2(uBD + uIN + uIM + uTI + uSE), (2.88)

where the subscripts of the velocities on the right hand side stand for the Brownian
diffusion, interception, inertial impaction, turbulent impaction, and sedimentation re-
spectively. The factor 2 is included because the deposition velocities of the underlying
processes are expressed for two-sided LAD in the original formulation, whereas here we
use the one-sided LAD.

The deposition velocities associated with each process are summarized in Tab. 2.3.
Formulas presented here are derived for the canopies with the leaf (or needles) of equal
size, although other leaf size distributions are also considered in the original papers. In
the table, dp is the particle diameter, ρp is the particle density, and de is the dimension of
the vegetation element (i.e. needle diameter or leaf width).

The contribution of the Brownian diffusion is expressed in terms of the Schmidt and
Reynolds numbers, Sc = ν/DB and Re = Ude/ν, where DB = (CCkbT )/(3πµdp) is the
Brownian diffusion coefficient, kb = 1.380 648 52× 10−23 J K−1 is the Boltzmann constant
and

CC = 1 + 2
λ

dp

(
1.257 + 0.4 exp

(
−1.1

dp
2λ

))
is the Cunningham correction factor with λ = 0.066 µm being the mean free path of the
particle in the air. The interception deposition velocity depends on the ratio of the particle

1Note that in the original article the term collection velocity was used for these deposition velocities to
distinguish them from the deposition velocity acting above the vegetation canopy.

29



Needles Broadleaves

uBD UCBSc
−2/3RenB−1

uIN 2Ukx
dp
de

1
2Ukx

dp
de

(
2 + ln(4de

dp
)
)

uIM UkxEIM

uTI
ufKTI1τ

+
p

2 if τ+
p < 20

ufKTI2 if τ+
p ≥ 20

uSE kzgρpCCd
2
p/(18µa)

Table 2.3: Deposition velocities expressions given in (Petroff et al., 2008b; Petroff et al.,
2009)

size and the vegetation element size dp/de, and differs for the needle and broadleaf
elements. The deposition velocity associated with the impaction is calculated from the
impaction efficiency,

EIM =

(
St

St+ β

)2

where St = τpU/de is the Stokes number, and τp =
ρpCcd2

p

18µ is the particle relaxation
time. The turbulent impaction contribution is given in terms of the nondimensionalized
particle relaxation time, τ+

p = τpu
2
f/ν, and the local friction velocity uf (where u2

f =

−u′xu′z in the coordinate system rotated so that the x-axis is aligned with the horizontal
flow direction).

Coefficients of the model are given in Tab. 2.4. Constants CB and nB are derived

Needles Broadleaves

CB 0.467 0.664

nB 0.5

β 0.6 0.47

KTI1 3.5 · 10−4

KTI2 0.18

Table 2.4: Deposition velocity model coefficients

for a laminar boundary layer around the vegetation elements, expected in the denser
canopies. Parameters kx and ky stand for the ratios of the leaf surface projected on the
plane perpendicular to the flow direction and on the horizontal plane respectively to the
total leaf surface. Authors of the original papers derived these coefficients based on the
angular distribution of the leaves in the canopy. Their values are presented in Tab. 2.5.

Fig. 2.1 shows the deposition velocity as a function of the particle size and demon-
strates its dependency on the wind speed and element size. In general, the deposition
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Needles Broadleaves

kx kz kx kz

Horizontal 0.20 0.32 0.00 0.50

Planophile 0.24 0.27 0.14 0.43

Plagiophile 0.27 0.22 0.22 0.34

Erectophile 0.30 0.13 0.27 0.21

Vertical 0.32 0.00 0.32 0.00

Extremophile 0.26 0.19 0.19 0.30

Uniform 0.27 0.20 0.20 0.32

Table 2.5: Projection coefficients kx and kz according to (Petroff et al., 2008b; Petroff
et al., 2009). Planophile refers to leaf orientation distribution with horizontal leaves
most frequent, plagiophile to most frequent oblique leaves, erectophile to most frequent
vertical leaves, extremophile to oblique leaves least frequent, uniform to all leaves
equally frequent.

velocity is minimal for particle sizes between 0.1 µm and 1 µm. Below that, the Brownian
diffusion is dominant, above that, all other processes play significant role with the sedi-
mentation eventually becoming the driving force behind the deposition.

Several effect of possible importance are not captured by this model. Real leaves may
have a limited capacity to capture the aerosol particles, which is decreasing when the leaf
gets dirty, and which is possibly refreshed by a cleaning effect of a rainfall. This effect
is not included in the model, since no theoretical models or experimental measurements
of this phenomena are known to the author. Changing orientation of the leaves due to
the fluid-structure interaction is also not modelled nor parametrized, but it may be taken
into account by changing the leaf angle distribution parameters.
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Figure 2.1: Examples of the deposition velocity dependence on particle size. (A)
Contributions of all processes. Parameters of the model: needle-like elements, ρp =
1000 kg m−3, de = 3 mm, U = 1 m s−1, uf = 0.1 m s−1, plagiophile leaf distribution.
Shortcuts refer to those in Eq. (2.88). (B) Dependence on the wind speed. Parameters
as in panel A, except for the varying U . (C) Dependence on the vegetation element
size for needle-like elements. Parameters as in panel A, except for the varying de. (D)
Dependence on the vegetation element size for broadleaf elements. Parameters as in
panel A, except for the element type and the varying de.
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Chapter 3

Numerical methods

The content of this chapter is an expanded version of the numerical methods description in: Šíp, V.
and Beneš, L. (2016d). RANS solver for microscale pollution dispersion problems in areas with
vegetation: Development and validation. arXiv e-print. https : / / arxiv. org / abs / 1609 . 03427
(Submitted).

In this chapter, we describe the numerical methods used for implementation of the math-
ematical models discussed in the previous chapter. The main characteristics of the de-
veloped solver are following:

• The solver is based on a finite volume method on an unstructured grids.

Computational domains for the urban flow simulations can be very complex. As
such, the usage of the structured grids would be very cumbersome, if not im-
possible.

• Fully implicit temporal discretization.

Explicit time stepping schemes would introduce a major constraint on the length of
the time step. Implicit schemes as implemented here allows more efficient imple-
mentation.

• Two implemented fluid flow solvers based on the compressible flow equations and
ABL flow equations.

Both sets of equations described previously are implemented. The method of arti-
ficial compressibility is used for the pressure resolution when ABL flow equations
are used.

The chapter is structured as follows: In Sec. 3.1 we describe the artificial compress-
ibility method for ABL flow equations, and in Sec. 3.2 we discuss the related low Mach
preconditioning for the compressible flow equations. Spatial and temporal discretization
of the modified equations are detailed in Sections 3.3 and 3.4 respectively. Section 3.5
elaborates on how are the ingredients put together to make the computational solver.
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3.1 Artificial compressibility

Let us start with the question of the pressure resolution. The system of the compress-
ible flow equations (2.38) consists of five equations, from which the density, velocity
components and total energy can be calculated. From these, using the state equation,
the pressure can be calculated. That is not the case for the system of ABL equations
(2.39). While the velocity components and potential temperature can be calculated, the
pressure is coupled to the rest through the momentum equations and the non-divergence
constraint,

div u = 0.

Two main approaches are in use for this or similar system. First is the class of the
pressure-based or methods, prominently represented by the SIMPLE method of Patankar
and Spalding (1972). These methods solve the Poisson equation for pressure corrections,
and use this correction to obtain a divergence-free velocity field. Second approach is
the so-called artificial compressibility proposed by Chorin (1967). With this approach, an
additional pressure derivative is added to the non-divergence constraint, thus obtaining
a hyperbolic system for which the conceptually simple time stepping methods may be
applied. It is this simplicity that was the main reason for our choice to use the artificial
compressibility method in our solver. The details of the method are given here.

In our formulation, a time derivative of the pressure fluctuation is added to the non-
divergence constraint,

1

β

∂p∗

∂t
+ div u = 0 (3.1)

where β > 0 is the artificial compressibility parameter. Physically, this means that the
pressure waves with finite artificial speed of sound are introduced in the system. This
way, a prognostic equation for the pressure (or in our case for the pressure fluctuation)
appears. The choice of the artificial compressibility parameter β does not affect the
steady-state solution, but it can have strong impact on the convergence properties. Some
authors recommended for

√
β to be equal to some representative convective velocity,

however, the optimal value is generally case dependent (Muldoon and Acharya, 2007).
In a vector form, the equations now read

Γ
∂W

∂t
+

3∑
j=1

∂F j

∂xj
=

3∑
j=1

∂Rj

∂xj
+Q, (3.2)

where

Γ =



1/β 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


. (3.3)

Recall that the state vector of the ABL equations isW = (p∗, u1, u2, u3, θ)
T .
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It was noted by Turkel (1985) that the resulting preconditioned equations are not sym-
metrizable. He proposed a generalized formulation, which (if extended for the potential
temperature equation) reads as

Γ =



1/β 0 0 0 0

αu1/β 1 0 0 0

αu2/β 0 1 0 0

αu3/β 0 0 1 0

αθ/β 0 0 0 1


. (3.4)

For α = 0 we obtain the original formulation, while a choice α = 1 results in the
symmetrizable system. This is the value we will use in the further work, unless noted
otherwise.

This modification obviously changes the solution to the equations. However, the
modified system of equations can be used directly if we are interested only in the steady-
state solutions. For such solutions the time derivative vanishes and we are left with the
non-divergence constraint satisfied again. Unsteady solutions have to be dealt with via
the pseudo time stepping. A preconditioned time derivative in a pseudo time τ is added
to the original equations,

Γ
∂W

∂τ
+A

∂W

∂t
+

3∑
j=1

∂F j

∂xj
=

3∑
j=1

∂Rj

∂xj
+Q. (3.5)

Recall that the matrix A given by Eq. (2.43) is an identity matrix with the empty first
row. In every physical time step, we advance the solution in the pseudo time until
the pseudo time derivative ∂W /∂τ vanishes. Then we are left with the solution to the
original equations.

In the developed solver, the generalized artificial compressibility for steady state
problems is implemented in the following way. We note that

Γ
∂W

∂t
=



1
β
∂p∗

∂t

u1
1
β
∂p∗

∂t + ∂u1
∂t

u2
1
β
∂p∗

∂t + ∂u2
∂t

u3
1
β
∂p∗

∂t + ∂u3
∂t

θ 1
β
∂p∗

∂t + ∂θ
∂t


(3.6)

and that from Eq. (3.1) 1
β
∂p∗

∂t = −div u, so that the equations can be rewritten as

∂W

∂t
+

3∑
j=1

∂F̃ j

∂xj
=

3∑
j=1

∂Rj

∂xj
+ Q̃, (3.7)
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where

F̃ j =



βuj ,

uju1 + δ1jp
∗/ρref ,

uju2 + δ2jp
∗/ρref ,

uju3 + δ3jp
∗/ρref ,

ujθ


, (3.8)

i.e. the first term is multiplied by β, and

Q̃ = Q+



0

u1 div u

u2 div u

u3 div u

θ div u


. (3.9)

With these equations we use the timestepping schemes as described in Sec. 3.4 for the
state vector W = (p∗, u1, u2, u3, θ)

T . For the unsteady problems we follow the same
route, and we end up with a similarly modified system

∂W

∂τ
+A

∂W

∂t
+

3∑
j=1

∂F̃ j

∂xj
=

3∑
j=1

∂Rj

∂xj
+ Q̃. (3.10)

3.2 Low Mach preconditioning

Applying the methods designed for compressible flows to low Mach number flows - such
as the flows in the atmospheric boundary layer - is notoriously difficult. Main problem
here stems from the disparity of the acoustic wave speed, a+U , and the convective speed,
U . Maximal timestep is limited by the former (due to the CFL condition when using
explicit schemes or due to the stiffness of the equations when using the implicit schemes),
but the system mainly evolves on the timescale given by the latter. This results in a
slow convergence of the computational solvers. Preconditioning schemes try to remove
this disparity by multiplying the time derivative by a matrix designed to equalize the
acoustic and convective speeds. In other words, the matrix A in the vector form of the
equations (2.40), equal to identity matrix in the non-preconditioned form, is replaced by
a preconditioning matrix Γ. In the actual implementation we work with its inverse, so
the equations can be written as

∂W

∂t
+ Γ−1

3∑
j=1

∂F j

∂xj
= Γ−1

3∑
j=1

∂Rj

∂xj
+ Γ−1Q. (3.11)

Variety of different formulations of the preconditioning matrix were proposed. Turkel
(1987) extended his incompressible flow preconditioning discussed in section 3.1 also to
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the low speed compressible flows. Van Leer et al. (1991) devised an optimal precon-
ditioner in a sense that it achieves the lowest attainable ratio of maximal and minimal
wave speeds. Choi and Merkle (1993) and Weiss and Smith (1995) derived their precon-
ditioners from the Navier-Stokes equations expressed in terms of the primitive variables
(p, u, v, w, T ). Weiss-Smith preconditioner was found to be most robust (Colin et al., 2011;
Jafari, 2014), and it is the one implemented in the software. If the Navier-Stokes equations
are written in terms of conservative variables, the preconditioning matrix inverse reads
(Turkel, 1999)

Γ−1 = I − (1− ε)(γ − 1)

a2



U2

2 −u1 −u2 −u3 1

u1
U2

2 −u2
1 −u1u2 −u1u3 u1

u2
U2

2 −u1u2 −u2
2 −u2u3 u2

u3
U2

2 −u1u3 −u2u3 −u2
3 u3

hU
2

2 −u1h −u2h −u3h h


, (3.12)

where h = E + p
ρ is the enthalpy, γ is the specific heat ratio, and ε is the preconditioning

parameter. The choice of this parameter is discussed in (Turkel, 1999). It should be
proportional to the square of the Mach number M2 for the preconditioner to be efficient,
however, to avoid singularity at M = 0 in the original formulation, ε should be limited
from below. Furthermore, it is desirable that the preconditioning is disabled for the
supersonic flow. The parameter is therefore set as

ε = min(1,max(KM2
ref ,M

2)), (3.13)

where K = 0.5 and Mref is some reference Mach number, e.g. the free stream Mach
number.

As is the case with the artificial compressibility approach for ABL flow equations,
the low Mach preconditioning changes the pseudo-time behaviour of the system, and as
such, it is in the described form useful only for steady state problems. For the unsteady
problems, dual time stepping (Eq. (3.5)) would have to be employed. However, this
is not yet implemented in the software, and for the unsteady problem presented in this
work (Sec. 4.1) the non-preconditioned set of equations is used, since the computational
performance was satisfactory in that case.

3.3 Spatial discretization

As discussed in the introduction, the problems of the flow in urban areas often bring the
need to deal with geometrically complex geometries, for which a structured grid is hard
or impossible to construct. The finite volume method, which we employ in the solver,
allows us to use the unstructured grids, and it is thus a natural choice for these problems.

The systems of RANS equations of the compressible flow (2.59) and of the flow in the
ABL (2.60), as well as the equations of the k-ε model (2.67), (2.68) and the passive scalar
equation (2.44) can all be rewritten into the following form:

∂W

∂t
+

3∑
j=1

∂F j(W )

∂xj
=

3∑
j=1

∂Rj(W ,∇W )

∂xj
+Q(W ). (3.14)
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Here W is the state vector, F j(W ) are the inviscid fluxes (including the pressure contri-
bution), Rj(W ,∇W ) are the viscous fluxes, and Q(W ) are the sources and sinks. The
full form of all terms for the mentioned systems of equations is given in Appendix B.

The equations are spatially discretized using the cell centered finite volume method
(see e.g. Blazek, 2001; LeVeque, 2004). The computational domain is divided into a
finite number of non-overlapping volumes Vi. We allow the computational cells to be
of any shape, with the restriction that the faces of the cells have to be either triangular
or quadrilateral. The number of faces of any cell is not restricted. The restriction on the
shape of the faces is present because of the current implementation of the calculation of
the gradient on the cell faces, described in Sec. 3.3.2.

We can then integrate over the control volumes, and with the use of the divergence
theorem, the equations for each volume can be written as

∂W i

∂t
=

1

|Vi|

− 3∑
j=1

∫
∂Vi

(F jnj −Rjnj)dS +

∫
Vi

Qdx

 , (3.15)

where W i is the mean value of W in cell Vi, |Vi| is the volume of the cell, ∂Vi is its
boundary surface, and n = (n1, n2, n3) is the surface normal oriented outwards.

As in (Blazek, 2001), we assume that the fluxes are constant at every individual face,
and we evaluate them at the centers of the faces. Sources are assumed to be constant
in each cell, and they are evaluated at the centers of the cells. Then ,if the volume Vi is
enclosed by Nf faces marked as fs with the area |fs| and normals nfs , the equation can
be rewritten to

∂W i

∂t
=

1

|Vi|

− 3∑
j=1

Nf∑
s=1

(F fs,jnfs,j |fs| −Rfs,jnfs,j |fs|)

+Qi, (3.16)

where F fs,j andRfs,j are the inviscid and viscous fluxes at the face fs.

3.3.1 Inviscid fluxes

Numerical flux AUSM+-up

The numerical flux AUSM+-up is used both for the compressible flow and ABL equa-
tions. The flux belongs to the AUSM (Advection Upstream Splitting Method) family
of numerical fluxes. At the core of the method lies the idea that the inviscid fluxes
consists of two parts: convective and pressure fluxes, first of which is convected by
the velocity, while the second is governed by the acoustic wave speed. Principle of up-
winding based on the underlying physical process is employed for each part separately.
The original version named AUSM (Liou and Steffen, 1993) and later improved version
AUSM+ (Liou, 1996) were designed for transsonic and supersonic flows, and suffered
of a loss of accuracy and reduced convergence rate at lower Mach numbers. This was
improved by the AUSM+-up version (Liou, 2006), which introduced rescaling of the
terms so that the speed of sound and convective speed are of the same order. Resulting
formulation is robust and efficient for all speeds, therefore suitable also for low Mach
atmospheric flows.
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Here we provide a brief overview of the flux, for details we refer to the original
paper. The implementation of the flux differs for the two sets of equations we use. We
first describe the flux as it is used in the compressible flow formulation (for which it
was originally formulated), and then comment on the changes needed when the ABL
equations are used.

Compressible flow equations. Following the notation in the original paper, let us de-
note the inviscid flux over the face f by F 1/2 =

∑3
j=1 F fs,jnfs,j and the velocity normal

to the face by u = u · nf . The inviscid term on each face is calculated from the state
vector on the left side of the face W L and on the right side of the face WR. The sides
are marked so that the right cell is in the direction of the face normal nf . The orientation
of this normal, however, is set arbitrarily, except on the boundary, where it is outwards
oriented.

The basic idea of the approach is to split the inviscid flux into two parts, namely into
the convective and the pressure flux,

F 1/2 = F c
1/2 + P 1/2. (3.17)

The convective flux is expressed using the oriented mass flow ṁ1/2 through the face f ,

F c
1/2 = ṁ1/2ψL/R, (3.18)

where the advected vector ψ = (1, u1, u2, u3, h)T is determined by an upwind rule,

ψL/R =

{
ψL if ṁ1/2 ≥ 0,

ψR if ṁ1/2 < 0.
(3.19)

The mass flow is given as

ṁ1/2 = a1/2M1/2

{
ρL if M1/2 ≥ 0,

ρR if M1/2 < 0,
(3.20)

where the speed of sound at the interface is calculated as an average of the left and right
states, a1/2 = (aL + aR)/2. The interface Mach number is calculated from the left and
right Mach numbers ML/R =

uL/R

a1/2
as

M1/2 =M+
(4)(ML) +M−(4)(MR) +Mp. (3.21)

The split Mach numbersM±(4) are polynomials of the indicated degree, defined as

M±(2)(M) = ±1

4
(M ± 1)2 (3.22)

M±(4)(M) =

{
1
2(M ± |M |) if |M | ≥ 1,

M±(2)(M)(1∓ 16βaM∓(2)(M)) otherwise.
(3.23)
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The pressure diffusion term Mp is defined as

Mp = −Kp

fa
max(1− σM2

, 0)
pR − pL
ρ1/2a

2
1/2

, (3.24)

where ρ1/2 = (ρL + ρR)/2 and the M2
= 1

2(M2
L + M2

R) is the mean local Mach number.

The factor fa is given as fa = Mo(2−Mo), where M2
o = min(1,max(M

2
,M2
∞)), and M∞

is the reference Mach number.
The pressure flux is given as

P 1/2 = (0, nf,1p1/2, nf,2p1/2, nf,3p1/2, 0)T , (3.25)

where
p1/2 = P+

(5)(ML)pL + P−(5)(MR)pR + pu. (3.26)

The fifth degree polynomial split functions are given as

P±(5)(M) =

{
1
M (M ± |M |) if |M | ≥ 1,

M±(2)(M)((±2−M)∓ 16αaMM∓(2)(M)) otherwise.
(3.27)

Finally, the velocity diffusion term has the form

pu = −KuP+
(5)(ML)P−(5)(MR)(ρL + ρR)faa1/2(uR − uL). (3.28)

The parameters and constants of the numerical flux are set to αa = 3
16(−4 + 5f2

a ), βa = 1
8 ,

Kp = 0.25, Ku = 0.75, and σ = 1.

ABL flow equations. Similar approach is taken also for the ABL flow model. As in
(3.17), the flux is split into the convective flux F c

1/2 and the pressure flux P 1/2. The
convective flux is calculated as

F c
1/2 = a1/2M1/2ψL/R. (3.29)

The original ABL system does not support the pressure waves, however, it does when
the artificial preconditioning approach is used. These artificial waves then have the
numerical speed of sound a =

√
β + u2. The interface speed of sound is then calculated

as before, a1/2 = (aL + aR)/2, as are the left and right Mach numbers, ML/R =
uL/R

a1/2
.

The advected vector is ψ = (β, u1, u2, u3, θ)
T . The interface Mach number is calculated

using Eq. (3.21), where the pressure diffusion term depends on the difference of pressure
fluctuations,

Mp = −Kp

fa
max(1− σM2

, 0)
p∗R − p∗L
ρrefa

2
1/2

(3.30)

with fa and M as detailed above.
The pressure flux is given by

P f =

(
0,

nf,1p1/2

ρref
,
nf,2p1/2

ρref
,
nf,3p1/2

ρref
, 0

)T
, (3.31)
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and p1/2 is calculated as

p1/2 = P+
(5)(ML)p∗L + P−(5)(MR)p∗R + pu (3.32)

with the velocity diffusion term

pu = −KuP+
(5)(ML)P−(5)(MR)2ρreffaa1/2(uR − uL). (3.33)

This formulation of the numerical flux was found to prevent the artificial pressure
oscillations (known as “checkerboarding”) that appeared when using simpler fluxes such
as the central flux. However, to achieve that, the constant Kp had to be increased to the
value 1.0, compared to 0.25 used for the compressible flow formulation. Still, this value
falls into the allowed interval (Kp ∈ [0, 1]) given in the original paper.

Second order scheme

Using the neighbouring cell values of the state vector as W L and WR in the inviscid
flux calculation results only in first order accuracy in space. Second order scheme is
obtained using the process of linear reconstruction. Let us consider cell c with faces
fs, s = 1, . . . , Nf . Value of each variable φ from the state vector W at face fs is obtained
by the first order Taylor expansion,

φfs = φc + ψc (∇φ)c · pfs . (3.34)

where the subscript c denotes the value at the center of the cell c, ψc is the limiting
coefficient at cell c and pfs is the vector from the cell center to the center of the face
fs (see Fig. 3.1).

pf1f1

f2

f3c

pf2 pf3
cn3

cn2

cn1

Figure 3.1: Depiction of one cell and its neighbours used in the second order reconstruc-
tion. For simplicity only 2D cells are shown here, however the algorithm is implemented
for 3D meshes.

The gradient is computed using the least square reconstruction:

(∇φ)c = Tc · φ̃c, (3.35)

where

φ̃c =


φcn1 − φc
φcn2 − φc

...

φcnNf
− φc

 , (3.36)
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is the vector of the differences between the values at the cell c and its neighbouring cells
cns (for s = 1 . . . , Nf ). Further,

Tc = (MTM)−1MT , (3.37)

in which

M =


∆x1 ∆y1 ∆z1

...
...

...

∆xNf
∆yNf

∆zNf

 , (3.38)

with (∆xs,∆ys,∆zs) being the distance between the centers of the cells c and cns .
The limiting coefficient ψc is calculated using the limiter by Venkatakrishnan (1995),

designed to obtain better convergence properties in the near-constant regions of the flow
solution. It does so by introducing a smooth alternative to a min function and by sup-
pressing the effects of the limiter in the regions of uniform flow.

3.3.2 Viscous fluxes

To evaluate the viscous fluxes Rfs,j , the gradients of the flow variables at the faces of
the computational cells are needed. They are calculated using the so called diamond cell
method (Coudière et al., 1999) in the formulation given in (Karel, 2014, Sec. 3.1), where the
details of the method, here omitted for brevity, can be found. We will outline the method
for quadrilateral faces, the triangular faces are treated as a limit case of a quadrilateral
faces with one edge vanishing, i.e. with two vertices overlapping.

The method is as follows. For each face f (given by vertices ABCD) we construct
an associated diamond cell by extruding two pyramids to the centers of gravity of the
two neighbouring cells, denoted as L and R (Fig. 3.2). The gradient at the face is then

A

D

C

B

RL

Figure 3.2: Diamond cell associated with the face ABCD. Points L and R denote the
centers of gravity of the left and right cell respectively.

calculated using the Gauss-Green theorem, and the following expression is obtained:

(∇φ)f =
1

3|Vf |
((φA − φC)nBRDL|fBRDL|+ (φB − φD)nALCR|fALCR|

+ (φR − φL)nf |f |).
(3.39)

Here nBRDL = (nBRD + nDLB)/2, nALCR = (nALC + nCRA)/2 are expressed in terms
of normals to the planes given by three points. Contributions are weighted by the face
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areas, where |fBRDL| = |fBRD|+ |fDLB| and |fALCR| = |fALC |+ |fCRA|. Term |Vf | stands
for the volume of the diamond cell associated with the face f . Finally, the variable values
at the centers of gravity φL and φR are taken as the mean values in the left or right cells,
and the values at vertices are calculated as an average of their neighbouring cells using a
distance weighting procedure. We refer to (Karel, 2014) for further details.

3.3.3 Boundary conditions

The concept of ghost cells is applied to deal with the boundary conditions. For each cell at
the boundary, a mirrored ghost cell is created outside of the computational domain. Then,
every time the fluxes through the boundary are to be evaluated, the state vectors at the
ghost cells are first filled with the values according to the boundary condition specified
and the value on the inner side of the domain boundary. This way, the fluxes through the
boundary faces can be calculated the same way as for the inner faces.

Let us describe the implementation of the often used boundary conditions. In the
following paragraphs, c denote the inner cell at the boundary and c′ its ghost counterpart.
Outwards oriented normal of the boundary face is denoted as n. The values of the
variable φ at the inner and ghost cells are denoted as φc and φc′ respectively.

Dirichlet BC, i.e. φ = φprescribed at the boundary. The ghost cell is filled with the
prescribed value, φc′ = φprescribed.

Homogeneous Neumann BC, i.e. ∂φ
∂n = 0 at the boundary. The value in the ghost cell is

extrapolated from inside, φc′ = φc.

In the following text we will often drop the “homogeneous” attribute, and use only
“Neumann BC” when talking about this boundary condition. This should not cause
any confusion, as the inhomogeneous Neumann boundary conditions (i.e. with
∂φ
∂n = q for some nonzero q) are not used in this work.

Slip wall BC represents a solid wall in the inviscid flow. There is no flow across the
boundary, u · n = 0, but the flow parallel to the wall is unrestricted. In this
case, the velocity in the ghost cell is then calculated as uc′ = uc − 2(uc · n)n.
Assuming adiabatic wall, the density and the total energy (for the compressible
flow equations) or the pressure fluctuation and the potential temperature (for the
ABL flow equations) are set using the Neumann BC.

No-slip wall BC represents a solid wall in the viscous flow. The velocity of the flow is
zero at the boundary, u = 0, due to the friction exerted by the wall. The velocity in
the ghost cell is calculated as uc′ = −uc. If the wall is adiabatic, the density and the
total energy or the pressure fluctuation and the potential temperature are as in the
slip wall case set using the Neumann BC.

Wall functions used for turbulence modelling were described in Sec. 2.4.3. If the wall
functions formulation prescribes a value in the inner cell, the value in the ghost cell
is irrelevant, as the equations are not solved for the inner cell. This is in the im-
plementation achieved by zeroing all fluxes to the inner cell, as well as the volume
sources in the inner cell.
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3.4 Temporal discretization

3.4.1 Time stepping in physical time

Unless the time stepping in pseudo time is employed, the problem is after the spatial
discretization reduced to a system of ordinary differential equations (ODE) in the form

∂Y

∂t
= G(Y , t), (3.40)

where the global state vector Y = (W T
1 ,W

T
2 , . . . ,W

T
N ) is a concatenation of the state

vectorsW i in all cells. The system is complemented by a given initial condition Y (t = 0).
Two general classes of numerical method exist for the solution of such ODEs in dis-

crete time. The explicit methods calculate the state in the next time step directly from the
current state (and possible some past states). Their computational demands for one time
step are low, however, this is offset by the need to use small time steps lengths to maintain
numerical stability, especially for stiff systems. Their overall computational demands
may thus be prohibitively high. The implicit methods may allow arbitrarily large time step
lengths, but one has to solve a system of linear or nonlinear (as in our case) equations in
every time step. Nevertheless, even with this obstacle the implicit methods could be more
efficient than the explicit methods. In our solver, two implicit time-stepping schemes are
implemented: backward Euler method and BDF2 method.

Backward Euler method

Let Y n stand for the discretized solution at the time tn and let ∆tn = tn+1 − tn stand for
the time step length. The implicit Euler method can be written as

Y n+1 − Y n = ∆tnG(Y n+1, tn+1), n = 0, 1, . . . (3.41)

The method is unconditionally A-stable and of a first order of accuracy. As such, it is
better suited for steady-state problems where the temporal evolution of the solution is
of no interest. In that case, the timestep ∆tn is continuously increased to achieve faster
convergence to steady-state solution, for whichG(Y , t) = 0.

BDF2 method

Second order method from the BDF (Backward Differentiation Formula) family is better
suited for unsteady problems than the first order Euler method. We use the variable step
formulation (Eckert et al., 2004) to allow for time step adjustment when needed. The
method is then given as follows:

1 + 2αn
1 + αn

Y n+1 − (1 + αn)Y n +
α2
n

1 + αn
Y n−1 = ∆tnG(Y n+1, tn+1), n = 0, 1, . . . (3.42)

where αn = ∆tn/∆tn−1. The BDF2 method is also unconditionally A-stable.
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3.4.2 Time stepping in pseudo time

Things are more complicated when we deal with the solution of the system (3.10) with
the added derivative in pseudo time. We write its spatially discretized form as

∂Y

∂τ
+ Â

∂Y

∂t
= G(Y , t),

where Â is a square matrix of the same dimensions as Y containing the repeated matrices
A on its diagonal.

In this case, we discretize the derivative in physical time t using the BDF2 method
to achieve high temporal precision 1 , and the derivative in pseudo time τ is discretized
using simpler backward Euler method. In every physical time step, we set our initial
value Y n+1,0 = Y n, and then iterate using the scheme

Y n+1,k+1 − Y n+1,k

∆τ
+ Â

3
2Y n+1,k+1 − 2Y n + 1

2Y n−1

∆tn
= G(Y n+1,k+1, tn+1), k = 0, 1, . . .

(3.43)
until the derivative in the pseudo time vanishes. After the final iteration kfinal we set
Y n+1 = Y n+1,kfinal

, and continue with the next step in physical time.

3.5 Solution process

3.5.1 Nonlinear system solution

Every iteration of the time stepping schemes (3.41), (3.42) and (3.43) leave us with the
system of nonlinear equations that needs to be solved. This problem can be reformulated
to finding a vector Y such that

H(Y ) = 0, (3.44)

for some function H that is derived from the time stepping scheme and the function G.
The sought vector Y is either the value Y n+1 in the next physical step for the schemes
(3.41), (3.42), or the value Y n+1,k+1 in the next step in pseudo time for scheme (3.43).

This problem is solved by the PETSc library (Balay et al., 2015) using the Jacobian-
free Newton-Krylov (JFNK) method (see e.g. Knoll and Keyes, 2004). JFNK method
solves the nonlinear system (3.44) through a sequence of Newton iterations, marked by
the superscript index, expressed as linear systems

J(Y m)∆m = −H(Y m) m = 0, 1 . . . (3.45)

where the matrix J(Y ) =
(
∂(H(Y ))i

∂Yj

)N
i,j=1

is the Jacobian of the nonlinear function and

vector ∆m = Y m+1 − Y m. The Jacobian is however generally not known and its nu-
merical evaluation would be very costly, as we will discuss in Sec. 3.5.2 . The JFNK
method overcomes this by not actually forming the Jacobian (hence the name Jacobian-
free). This is made possible by solving the inner linear systems using a Krylov method,

1To simplify the following description, we will assume here that the time step in physical time is constant,
however, variable time step as in Eq. (3.42) is also possible to use.
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whose algorithm requires only an ability to calculate the matrix-vector product instead
of the knowledge of the full matrix of the linear system in question. This matrix-vector
product is provided by an approximation

J(Y )U ≈ H(Y + εU)−H(Y )

ε
, (3.46)

where ε is a small perturbation. This way, only two evaluations of H (or equivalently of
the original RHS functionG) are needed for the calculation of one matrix-vector product.

In our solver the GMRES method (Saad and Schultz, 1986) is employed for the solu-
tion of the inner linear systems. With the default settings, its iteration process is restarted
after every 30 iteration steps.

3.5.2 Linear system preconditioning

To accelerate the solution process of the inner linear systems a preconditioner is used.
The general idea of preconditioning is to replace the original linear system

Ax = b (3.47)

by the system
PAx = Pb, (3.48)

where the preconditioner matrix P ≈ A−1 approximates the inverse of the original
matrix, but can be obtained more easily. In our solver we use the ILU(k) preconditioner
(see e.g. a review by Chan and van der Vorst, 2001), which seeks an approximate LU fac-
torization of the matrix, LU ≈ A, such that the nonzero elements of the calculated lower
and upper factors are only at the filled positions of the original matrixA in case of ILU(0)
preconditioner, or, in case of ILU(k), of the matrix LU given by ILU(k-1) decomposition.

To calculate the preconditioner matrix the Jacobian is needed to be known. In general,
there are several options how to evaluate the Jacobian: analytical evaluation would be the
best option from the computational performance viewpoint, however, it is possible only
for simple problems. Automatic differentiation allows to calculate the derivatives of any
function defined by a computer program with little computational overhead, but requires
specialized software tooling.

We calculate the Jacobian using the finite differencing. Every element of the Jacobian is
given by

J(Y )ij =
H(Y + εj)i −H(Y )i

ε
, (3.49)

where εj is a zero vector with ε at j-th position. This procedure is however very compu-
tationally demanding. Conceptually simple approach would be calculating the columns
of the Jacobian one by one. This approach applied to the computational mesh with N
cells and nvars state variables in each cell would result in nvarsN evaluation of the RHS
function.

To prevent that, the procedure of matrix colouring (Gebremedhin et al., 2005) as
implemented in PETSc package is employed. With matrix colouring, the effects of per-
turbations that do not interfere with each other may be evaluated at once (see Fig. 3.3).
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That way the number of RHS function evaluations needed to construct the Jacobian is
independent of the mesh size. It is proportionate to nneighsnvars, where nneighs is the
number of cells in the computational stencil of one cell. In our case, that is the number of
second order neighbour cells (i.e. neighbours of neighbours).

Figure 3.3: Computational stencils of three cells in 2D. The stencils of cells A and B do
not overlap, and the effects of perturbation of one variable in each cell can be evaluated
at once when using the matrix colouring. That is not possible for cells B and C, since two
cells lie in the stencil overlap.

Furthermore, we can utilize the fact that we need the Jacobian only to compute the
preconditioning matrix, that can be constructed only from an approximate Jacobian. With
that in mind, we evaluate the Jacobian only once in every 20 iterations of the outer ODE
solver. Such procedure is sometimes called Jacobian lagging, as the Jacobian used for the
preconditioner calculation is lagged behind its actual value by several iterations.

The Jacobian evaluation interval was not rigorously optimized, but the used choice of
20 iterations in most cases proved to be a decent compromise between the computational
demands of frequent Jacobian evaluation on one hand and increased number of Krylov
iterations caused by the outdated preconditioner on the other hand.

3.5.3 Coupling of the fluid flow and turbulence solvers

With the RANS equations and the eddy viscosity assumption employed, the fluid flow
solver and the turbulence solver are closely tied together. The turbulence variables are
advected by the velocity field calculated by the fluid flow solver, which in turn is affected
by the turbulent viscosity calculated from the turbulence variables. This close coup-
ling provides good reason to solve all equations together as one large nonlinear system.
However, to keep the resulting systems of linear equations relatively small, we solve the
fluid flow equations separately from the turbulence equations. Specifically, in each time
step we first solve the nonlinear system arising from the discretization of the fluid flow
equations, and then (if the k-εmodel is employed) the system of the turbulence equations
using the computed values of the flow variables. On a computational mesh with N cells,
this results in a sequences of two sparse linear systems, one of size 5N × 5N (fluid flow
equations) and one of size 2N × 2N (k-ε equations).

The absence of an implicit coupling might result in an oscillatory behaviour in time.
To prevent that, a relaxation of the turbulent viscosity might be employed. With relaxa-
tion, the turbulent viscosity in n+ 1 step is calculated as

(µT )n+1 = (1− q)(µT )n + q(µ̃T )n+1, (3.50)
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where (µ̃T )n+1 is the value of turbulent viscosity computed by the turbulence model and
q ∈ [0; 1] is the relaxation parameter. Choice of q = 1 gives the unrelaxed scheme, while
q = 0 would prevent any evolution in time. In effect, the relaxation slows down the
evolution of the turbulent viscosity, making the solver more robust at the expense of the
convergence rate. In the simulations later presented in this work, we generally use the
unrelaxed scheme (q = 1). Only in the cases where it proved to be unsatisfactory due to
the produced oscillations we use the relaxation.

3.5.4 Iteration process control

Default tolerances used in the program for each of the iteration processes employed are
listed in Tab. 3.1. Solution of the inner linear systems solved by the GMRES solver is
stopped when either the relative or the absolute L2 norm of the residual drops below the
given tolerance. The same applies for the nonlinear systems solved by the JFNK method.

Parameter Value

Linear system relative tolerance 10−3

Linear system absolute tolerance 10−6

Nonlinear system relative tolerance 10−2

Nonlinear system absolute tolerance 10−6

Target linear system solver iterations [50; 200]

Target nonlinear system solver iterations [5; 20]

Time step adaptation constant γ1 1.4

After-failure reduction constant γ2 0.25

Jacobian lag (ODE iterations) 20

Table 3.1: Default parameters of the iteration process

In the steady-state simulations we start with a small time step ∆t1, roughly on the
order of one millionth of the time interval needed for the flow to cross the computational
domain. The time step is continuously adapted. When both the number of the inner
linear and outer nonlinear system solver iterations in one time step are below the lower
end of the target interval, the length of the time step in the next iteration is increased by
the factor γ1, i.e. ∆tn+1 = γ1∆tn. Similarly, if the number of either linear or nonlinear
system solver iterations exceeds the upper bound of the target interval, the time step
length is decreased by the same factor, ∆tn+1 = ∆tn/γ1.

Due to the aggressive time step adapting policy that is constantly pushing for the
largest attainable time step, it may happen that the nonlinear system solve fails. This
may happen for a number of reasons, e.g. a stalled convergence of the inner linear solver
or the outer nonlinear solver, or a divergence of the nonlinear solver. If that happens, the
time step is reduced by a factor γ2, the preconditioner is recomputed, and the iteration is
repeated.

For the steady state simulations, the stopping criterion of the iteration process is
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formulated on a case by case basis using the values of the residuals. For a state variable
φ, its residual in time step n is defined as

Resφn = ‖Y φ
n − Y φ

n−1‖2, (3.51)

where the state vector Y φ contains the values of the variable φ in all cells of the computa-
tional grid, Y φ = (φ1, φ2, . . . , φN ). Recall that the state variable is one of the five variables
ρ, ρu1, ρu2, ρu3, ρE in the compressible flow formulation, and one of p∗, u1, u2, u3, θ in the
ABL flow formulation.

3.5.5 Overview

The above described elements of the solution process are summarized here. In every
physical time step the order of operations is as follows:

1. Every 20th iteration: Evaluate the Jacobian and compute the preconditioner.

2. One step of the fluid flow solver:

(flow variables, µT )n→ (flow variables)n+1.

3. One step of the turbulence solver:

(turbulence variables)n, (flow variables)n+1→ (turbulence variables, µT )n+1.

4. Adapt the time step.

5. Evaluate the stopping criteria.

The iteration process continues until the convergence criteria are satisfied (for the
steady solver) or the final time si reached (for the unsteady solver).

3.6 Solution of 2D problems

The solver is designed for three dimensional problems, but it can solve two dimensional
problems just as well. In that case, we employ a pseudo 3D computational mesh, that
is a 2D mesh extruded by one cell to the third dimension. The boundaries in the third
dimension (i.e., the sides of the extruded domain) are then modelled as slip walls as
described in Sec. 3.3.3, for which the parallel flow is unrestricted. For any passive scalar
a homogeneous Neumann boundary conditions is prescribed.

This approach is more computationally demanding than a dedicated 2D solver could
be, however, it allows us to use the same solver for 2D and 3D problems and thus avoid
development of two separate ones, which was deemed more beneficial than the increased
performance for 2D problems.
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Chapter 4

Validation

The content of this chapter is an expanded version of the solver validation in: Šíp, V. and Beneš, L.
(2016d). RANS solver for microscale pollution dispersion problems in areas with vegetation:
Development and validation. arXiv e-print. https://arxiv.org/abs/1609.03427 (Submitted).

In this chapter we present four test cases to validate the developed solver. First two cases
(rising thermal bubble and flow around the hill) serve us to compare the accuracy and
computational performance of the solvers based on the compressible flow equations and
the ABL flow equations when used for the ABL flows without the vegetation. Third case
- the forest canopy flow - shows whether the flow through the vegetation can be repro-
duced using our model. In the fourth case we asses the capability of the dry deposition
model on the problem of the particle-laden flow through the hedgerow.

In the following text, we will use the shortened names “compressible solver” or “ABL
solver” instead of lengthy (but more accurate) “solver based on the compressible/ABL
flow equations” for brevity.

4.1 Rising thermal bubble

The first case serves to show that the solvers can properly capture the unsteady thermally
driven flow in the ABL. The settings replicate the rising thermal bubble test case from
(Giraldo and Restelli, 2008), which was based on the previous formulation of a similar
test by Robert (1993).

4.1.1 Test case description

A bubble of hot air is placed in the atmosphere with a constant potential temperature.
The air in the two dimensional domain is initially at rest, and the thermal effects force the
bubble to rise through the environment. At the beginning, the unperturbed atmosphere
has the potential temperature θ = 300 K, and the bubble is created by increasing the
potential temperature by

θ∗ =
θc
2

(
1 + cos

(
πr

rc

))
when r ≤ rc, (4.1)
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where θc = 0.5 K, r =
√

(x− xc)2 + (z − zc)2, the center of the bubble is set to (xc, zc) =
(500, 350) m, and its diameter to rc = 250 m. The initial velocity is set to zero, and the
initial pressure is set using the barometric formula (2.71), so that the air is at hydrostatic
balance.

The computational domain has size [0, 1000] m× [0, 1000] m. Its boundary conditions
are all set as slip walls, i.e. the velocity normal to the wall is set to zero, and for the
velocity parallel to the wall as well as for all other variables the homogeneous Neumann
BC is applied, ∂φ∂n = 0. The flow is modelled as inviscid. The employed mesh is Cartesian,
with uniform resolution in both horizontal and vertical direction.

The evolution of the system is simulated for t ∈ [0, 700] s. As we are interested in
the temporal evolution, time stepping in the pseudo time (3.5) is necessary to use for the
system of ABL equations. The length of one time step is set as ∆t = 1 s.

4.1.2 Results

The analytical solution for the case is not known, so the results from the two developed
solvers are compared with what we will call a reference solution from (Giraldo and
Restelli, 2008). This reference solution was calculated by a Discontinuous Galerkin solver
that uses 10th order polynomials and is based on the equations for density perturbations,
momentum, and total energy perturbation. The solver is denoted by DG3 in the original
paper. The reference results were obtained on the mesh with the spatial resolution of 5 m
in both directions.

Mesh dependence

The dependence on the mesh resolution was assessed using the compressible solver
running on four different meshes with spatial resolution of 20, 10, 5, and 2.5 m in both
vertical and horizontal direction. Plot of the potential temperature perturbation at the
final time is shown on Fig. 4.1, and its vertical profile at the centerline is shown on Fig. 4.2.

The vertical profile of the potential temperature perturbation reveals that even at the
highest employed resolution of 2.5 m, the peak of the profile is slightly underpredicted
compared to the reference solution calculated on mesh with resolution of 5 m. This
should be however expected, as the reference solution was calculated using a high or-
der Discontinous Galerkin method, compared to our second-order finite volume solver.
Further refining of the computational mesh might increase the precision of our solution
further, although at excessive computational cost: our finest mesh consisted of 160 thou-
sands computational cells, halving the spatial resolution would further quadruple this
number.

Comparison of the solvers

For the comparison of the two developed solvers we calculated the evolution of the
bubble on the finest mesh tested above, i.e. with spatial resolution of 2.5 m.

Fig. 4.3 shows a side-by-side comparison of the potential temperature perturbation at
the final time t = 700 s. At that time, the bubble has risen to the top of the domain, and
its mushroom shape is partially affected by its interaction with the upper boundary. This
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A) B)

C) D)

Figure 4.1: Mesh sensitivity of the warm bubble test case. Potential temperature
perturbation at t = 700 s calculated by the compressible solver for mesh resolutions (A)
20 m (B) 10 m (C) 5 m (D) 2.5 m. Interval between contours is 0.025 K.
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Figure 4.2: Mesh sensitivity of the warm bubble test case. Vertical profile of the potential
temperature perturbation at t = 700 s and x = 500 m calculated by the compressible
solver.
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Figure 4.3: Warm bubble test case. Side-by-side comparison of the potential temperature
perturbation at t = 700 s obtained by the two developed solvers on mesh with the
resolution of 2.5 m. (A) Compressible solver (B) ABL solver (C) Reference solution from
(Giraldo and Restelli, 2008). Contour values are from -0.05 to 0.525 with an interval of
0.025.
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Figure 4.4: Warm bubble test case. Vertical profile of the potential temperature
perturbation at t = 700 s and x = 500 m.

θ∗ [K] ux [m/s] uz [m/s]

min max min max min max

Comp. solver -0.029 0.492 -1.941 1.941 -1.873 2.565

ABL solver -0.029 0.491 -1.980 1.980 -1.855 2.565

Reference -0.093 0.538 -2.081 2.081 -1.915 2.543

Table 4.1: Minima and maxima of potential temperature perturbation, horizontal velocity,
and vertical velocity at time t = 700 s.
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behaviour is captured well by both developed solvers, and the calculated solutions agree
well with the reference one. The vertical profile of the potential temperature perturbation
is shown in Fig. 4.4. The peak of the profile is underestimated by both solvers.

Furthermore, the ABL solver places the lower end of the bubble above the position
given by the reference solution. This might be attributed to the simplifications made
in our physical model, of which the most notable is the use of the reference density
ρref instead of the actual density ρ in the pressure term in the velocity equation (2.34).
This shows that there are limits to its accuracy in the domains spanning more than few
hundred meters in the vertical direction.

As a further comparison, Tab. 4.1 lists the minima and maxima of the selected vari-
ables at the final time. Both our developed solvers show very similar results. The un-
derprediction of the maximal potential temperature perturbation, visible at Fig. 4.4, is
again exhibited here. However, the overall qualitative as well as quantitative agreement
of both our solutions with the reference one is demonstrated.

4.2 Flow over an isolated 2D hill

The flow over an isolated hill is among the most used testcases for the CFD solvers aimed
at atmospheric boundary layer flows. In various configurations, it was often investigated
through the wind tunnel experiments as well as numerical simulations. Here we present
a comparison of the results obtained by our developed solvers with the experimental
data from the RUSHIL wind tunnel study (Khurshudyan et al., 1981), obtained from the
ERCOFTAC QNET-CFD test case database (ERCOFTAC, 2004). In addition to the flow
data over 2D hill, the pollution dispersion over a hill ridge of the same shape is compared
with the measured data.

4.2.1 Test case description

The performed numerical simulations reproduce the main aspects of the wind tunnel
experiment. The 2D hill of a height h and a half-width a is described by the parametric
equations

x =
1

2
ξ

(
1 +

a2

ξ2 +m2(a2 − ξ2)

)
,

z =
1

2
m
√
a2 − ξ2

(
1− a2

ξ2 +m2(a2 − ξ2)

)
for ξ ∈ [−a; a], (4.2)

wherem = h
a +

√(
h
a

)2
+ 1. Two geometrical variants with different aspect ratios n = a/h

of 3 and 5 (marked in the following text as N3 and N5 respectively) are investigated. In
both cases, the height of the hill is h = 0.117 m. Maximal slope of the N3 and N5 hills
is 26° and 16° respectively. Shape of the hills is depicted on Fig. 4.5. The computation
domain spans from -20h to 40h in the horizontal direction and from 0 to 13h in the vertical
direction.

The boundary conditions are specified similarly as in the numerical simulation of the
same problem by Castro and Apsley (1997). In the following text, D marks the depth of
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Figure 4.5: Shape of the N3 and N5 hills.

the boundary layer, defined such that the velocity given by the log profile wind profile
at the top of the boundary layer is equal to free stream velocity, u(D) = u∞. At the
inlet, the log wind profile was prescribed for the velocity inside the boundary layer, i.e.
for z < D, and u(z) = u∞ for z ≥ D. Turbulence kinetic energy was given by k(z) =
C−0.5
µ u2

∗(1 − z
D ) for z < 0.9D and extended as a constant above, and its dissipation was

set to ε = (C0.75
µ k1.5)/(κz). Inlet potential temperature was set to constant θ = 289 K,

and the homogeneous Neumann boundary condition (BC) was used for the pressure
perturbation, i.e. ∂p∗/∂n = 0. At the outlet and at the top of the domain, zero pressure
perturbation was prescribed, and all other variables were extrapolated from inside using
the homogeneous Neumann BC. At the ground, wall functions, as described in Sec. 2.4.3,
were employed, together the homogeneous Neumann BC for pressure perturbation and
potential temperature.

Parameters of the boundary layer are as follows: friction velocity u∗ = 0.178 m s−1,
von Kármán constant κ = 0.4, roughness length z0 = 0.157 mm, free stream velocity
u∞ = 4 m s−1. Depth of the boundary layer was thus D = 1.258 m.

Dispersion of the pollutant was studied using the flow field calculated by the ABL
solver, which was then extended to 3D, so that the flow field represented the flow above
the ridge of the same shape as the 2D hill. The domain was extended in the lateral
direction to [−8h; 8h]. A point source of the pollutant was placed on the midplane of
the domain at the upwind base (horizontal position of the source xs = −a), at the
summit (xs = 0), or at the downwind base (xs = a) of the hill. The height of the source
was hs = h/4 in every case. Zero mass concentration was prescribed at the inlet, and
Neumann boundary conditions were used on all other boundaries.

4.2.2 Grid dependency study

First, the effect of the size of the near wall cell was investigated on the N3 case. Two
computational grids, marked as G1 and G2, were used. Both grids had the same amount
of cells, but differed in the near-wall cell size. The grids were structured, and expanded
both vertically and horizontally away from the hill. Their parameters are summarized in
Table 4.2, and the detail of the grid G1 around the hill is shown on Fig. 4.6. The dimen-
sionless wall distance z+ = zu∗

ν of the center of the near wall cell in the unperturbed flow
is 30 for the grid G1 and 12 for the grid G2. Strictly speaking, the used wall functions are
valid for z+ > 30 and the grid G2 is therefore unsuitable. However, the friction velocity
is expected to increase at the hill summit, so the investigation of the effect of the near wall
cell was deemed necessary.
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G1 G2

Cells in horizontal direction 340

Cells in vertical direction 100

Minimum horizontal cell size 0.06h

Horizontal expansion ratio 1.017

Minimum vertical cell size 0.043h 0.017h

Vertical expansion ratio 1.020 1.033

Table 4.2: Grid parameters

Figure 4.6: Detail of the computational grid G1 around the N3 hill.
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Figure 4.7: Vertical profiles at the downstream base of the N3 hill (x = a) for the inves-
tigated grids. (A) Non-dimensionalized horizontal velocity. (B) Non-dimensionalized
TKE.

Fig. 4.7 shows the obtained vertical profiles of the velocity and the turbulent kinetic
energy, compared with the measured values. The solutions on both grids have similar
properties, and does not differ significantly. Separation of the flow is captured on both
grids, as proved by the negative horizontal velocities near the ground. Similarity of the
solutions holds also for other locations (not presented here). Based on this, in the further
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simulations we will always use the grid G3 (or, for the N5 hill, a grid with the same
near-ground cell size).

For the pollutant dispersion, the grid was extruded to 3D. The number of cells in the
lateral direction was 75. The grid was refined in the middle of the domain, so that the
lateral size of the smallest cells was 0.051h, and the cells were expanded to the sides with
the expansion factor 1.066. Total number of cells for the pollutant dispersion calculations
was 2.55 millions.

4.2.3 Results

Flow field

Figures 4.8 and 4.9 show the vertical profiles of the normalized horizontal velocity and
the turbulent kinetic energy for both N3 and N5 hills, as calculated by the compressible
solver and the ABL solver, compared with the measurements. First, we note that the
results from both solvers are almost indistinguishable. That is expected: at the wind
tunnel length scale below 1 meter, the ABL approximation are safely within the range of
validity, and there is no reason the expect any differences. The agreement between the
solvers therefore provides a partial indication of the correct implementation, at least in
the sense that the possible programming errors are shared by the solvers.

The solution also reasonably agrees with the measurements. The calculated solution
shows a flow separation for the N3 hill and no separation for the N5 hill, as was observed
in the experiment (see also the velocity streamlines in Fig. 4.10). The reattachment point
for the N3 hill is however closer to the hill in our computations (x/h = 5.6) than what
was indicated by the measurement (x/h = 6.4). The solvers also fail to predict the small
flow speedup at the top of the N3 hill (Fig. 4.8, top row, x/a = 0). A near ground
increase in the turbulent kinetic energy downstream of the hill is reproduced for both
geometrical variants (Fig. 4.8 and Fig. 4.9, bottom rows), however, the maximum of
TKE is overpredicted for the separated flow. At the same time, the TKE is generally
underpredicted further from the N5 hill.

Overall, the solution shows a good level of agreement, especially looking at the calcu-
lated flow field. The choice of the turbulence model is expected to have a very significant
influence on the results, and more complex turbulence models (such as the Reynolds
Stress Model) might provide better agreement even in the calculated TKE.

Pollutant dispersion

The calculated and measured concentrations are presented here in normalized form,

c+ =
cu∞h

2

Q
, (4.3)

where Q is the source intensity in kg s−1.
First, the influence of the choice of the turbulent Schmidt number ScT was assessed.

Fig. 4.11 shows the ground level concentration profiles for the source at the downwind
base of the N3 hill. The Schmidt number plays affects the dispersion of the pollutant
further away from the hill, but the position and the value of the maximum near the source
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Figure 4.8: Flow around the N3 hill. Vertical profiles of the normalized horizontal velocity
(top row) and the normalized turbulence kinetic energy (bottom row) at the hill summit
(x/a = 0), at the downstream base (x/a = 1), and downstream from the hill (x/a = 2 and
x/a = 3).
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Figure 4.9: Flow around the N5 hill. Vertical profiles of the normalized horizontal velocity
(top row) and the normalized turbulence kinetic energy (bottom row). at the hill summit
(x/a = 0), at the downstream base (x/a = 1), and downstream from the hill (x/a = 2 and
x/a = 3).
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A) B)

Figure 4.10: Velocity streamlines around the (A) N3 and (B) N5 hill as calculated by the
ABL solver.

is relatively unaffected. The value ScT = 0.7 reproduces the rate of decay quite well, even
if the absolute value of c+ is underpredicted, and it is used in the further computations
presented in this section.

−5 0 5 10 15 20
(x−xs )/h [1]

102

101

100

101

102

103

c
+
 [1

]

ScT =0.5

ScT =0.7

ScT =0.9

ScT =1.1

Figure 4.11: Flow around a hill. Ground level normalized concentration with source
at the downwind base of the N3 hill for various turbulent Schmidt numbers. CFD
simulations (lines) and measurements (symbols).

It shall be noted here that the assumption of the isotropic turbulent diffusivity em-
ployed in our approach is inherently inaccurate in the ABL flows, where the horizontal
and vertical diffusivities may significantly differ. However, since the lateral and vertical
profiles of concentrations were not available for the presented cases, the effect of this
inaccurate assumption could not be assessed.

Fig. 4.12 shows the ground level concentrations for all calculated source positions and
for both hill shapes. Several discrepancies between the measured and calculated values
are present, and deserve some commentary.

First, the calculated concentration of the pollutant released at the summit of the hill
is well below the measured values for both hill shapes (Fig. 4.12, middle column). Cause
of this error is unclear. On possible explanation may lie in the fact that the wind speed
at the release point is higher at the summit than at the bases due to the flow speedup.
Lower levels of the calculated turbulent diffusion at the summit would thus lead to the
pollutant being advected faster, producing the observed underprediction.

Secondly, the concentration is underpredicted further away from the N3 hill for all
source positions (Fig. 4.12, upper row). This may be caused by the overpredicted TKE
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Figure 4.12: Flow around a hill. Ground level normalized concentration with the
pollutant source at the upwind base (left column), at the summit (middle column), or
at the downwind base (right column) of the N3 and N5 hills. Height of the source is
hs = h/4 in all cases. CFD simulations (lines) and measurements (symbols).

Upwind base Summit Downwind base

Vertical

0.0 0.5 1.0 1.5 2.0 2.5
c+  [1]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
h
 [1

]

0.0 0.5 1.0 1.5 2.0 2.5
c+  [1]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
h
 [1

]

0.0 0.5 1.0 1.5 2.0 2.5
c+  [1]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

z/
h
 [1

]

Lateral

0.0 0.2 0.4 0.6 0.8 1.0
c+  [1]

−2

−1

0

1

2

y/
h
 [1

]

0.0 0.2 0.4 0.6 0.8 1.0
c+  [1]

−2

−1

0

1

2

y/
h
 [1

]

0.0 0.2 0.4 0.6 0.8 1.0
c+  [1]

−2

−1

0

1

2

y/
h
 [1

]

Figure 4.13: Flow around a hill. Profiles of the normalized concentration at
(x− xs)/h = 10. (Top row) Vertical profiles at the midplane. (Bottom row) Lateral
profiles at height z = h. Hill shape: N3 ( ), N5 ( ).
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close to the hill (see Fig. 4.8), and thus increased turbulent mixing in that area, leading to
a faster dispersion of the pollutant.

And lastly, we note that the measurements show high concentration values upstream
from the source placed at the downwind base of the N5 hill, which is not reproduced
by the computation. Castro and Apsley (1997) speculated that this is caused by the flow
separation occurring intermittently, which was not captured by the measurements (nor
our RANS model). In that case, the source would be occasionally placed in the separation
bubble, and the pollutant would be advected upstream. Such increase of the pollutant
upstream of the release point may be observed on the concentration values for the release
point at the downwind base of the N3 hill. Our calculation places the release point in the
separation bubble, and the concentration measurements agree well with the calculations.

Fig. 4.13 shows the calculated vertical and lateral profiles of the concentration 10h
downstream from the source. Measurements were not available. The vertical profile is
clearly affected by the presence (or absence) of the separation bubble: its presence leads
to the reduced concentration at the ground due to the pollutant being advected in the
upper layer.

4.2.4 Performance study

As our interest ultimately lies in the full scale atmospheric simulations, computational
performance of the solvers is evaluated on the same 2D hill problem in the N3 config-
uration, but scaled up to resemble the full scale problems. Two variants of the problem
are investigated: one with the hill height hf = 11.7 m (i.e. scaled up by a factor of 100,
marked as S100 in the following text), and the other with hf = 117 m (scale factor 1000,
marked as S1000). First geometrical configuration might constitute an artificial near-road
earth berm, second could represent a standalone hill in a flat terrain. The roughness

length is scaled to keep the same ratio z0
h =

zf0
hf

(Khurshudyan et al., 1981). Friction
velocity in both cases is set to somehow arbitrary value u∗ = 0.445 m s−1 one might
encounter in real situations. Reynolds number is therefore not kept equal to the value
Re = u∞h

ν = 3.12 · 105 achieved in the wind tunnel experiment. After all, Reynolds
numbers encountered in full scale atmospheric problems are on the order of 107 − 109,
which is difficult or impossible to reproduce in the wind tunnel experiments. However,
in all situations discussed here - in the experiment as well as in the full scale simulations
- is the Reynolds number high enough that the flow is fully turbulent, and due to the
Reynolds number independence at high Reynolds numbers one might expect to obtain
comparable results. Parameters of the scaled up simulations are summarized in Tab. 4.3.
The stratification of the atmosphere is kept neutral as in the wind tunnel experiment.

We compared the performance of the ABL solver employing the classical artificial
compressibility formulation (Eq. (3.3)) and the generalized artificial compressibility for-
mulation (Eq. (3.4)). Both approaches were tested with four values of the parameter β:
10, 100, 1000, and 10000, and are in the following text marked as AC-C-β (the classical
approach) and AC-G-β (the generalized approach). These were further compared with
the compressible solver using no preconditioning (CN) and using the Weiss-Smith pre-
conditioning (Eq. (3.12), marked CP).

All simulations were run on a single core of Intel Xeon E5520 processor. The iteration
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S100 S1000

Hill height h 11.7 m 117 m

Roughness length z0 0.0157 m 0.157 m

Friction velocity u∗ 0.445 m s−1 0.445 m s−1.

Free stream velocity u∞ 10 m s−1 10 m s−1

Reynolds number Re = u∞h
ν 7.8 · 106 7.8 · 107

Table 4.3: Full scale simulations parameters

process was stopped when the u1 or ρu1 residual for the ABL and compressible solver
respectively dropped below 10−5. For simplicity, both residuals will be marked as u1

residual in the following text. Residuals of the other variables behaved similarly as u1

residual, which was considered representative of the convergence behaviour. To prevent
the unphysical oscillation in time the relaxation of the eddy viscosity as discussed in
Sec. 3.5.3 is employed with the parameter q = 0.5. The computational mesh denoted as
G1 is used just as before, only scaled up to proper dimensions.

Results. First we look at how the different artificial compressibility formulations affect
the solution process. Fig. 4.14 shows the evolution of the residuals for the performed
simulations. We note that for lower values of β the solver employing classical formula-
tion diverges in both geometrical variants. In these cases, the non-divergence constraint
is far from being satisfied until the steady state is reached. Generally, this should not
pose a problem, as we are interested only in this steady state solution, however, in this
case of flow over a hill it has unpleasant consequences. Potential temperature advected
by the velocity field with nonzero divergence locally raises by a significant amount, and
through the gravity term in the momentum equation produces large vertical velocities.
The solver cannot recover from this and the process ends with the divergence of the solver
(Fig. 4.14 A, AC variants with β = 10, 100; Fig. 4.14 C, AC variant with β = 10, 100, 1000).
Generalized formulation diverges only for the lowest tested β = 10, and comes out as a
more robust choice in this situation. When both formulations converge, the solution time
of the classical formulation is similar or higher compared to the generalized formulation,
as visible in Tab. 4.4, which shows the CPU time needed by each variant to converge.

Evaluation of the results confirms that choice of the parameter β is crucial in obtaining
optimal performance. While higher β should allow for faster convergence to divergence
free velocity field, resulting systems of linear equations are badly conditioned, leading
to slower solution of the nonlinear system in each pseudo-time step, and slower conver-
gence rate overall. This is clearly demonstrated in Tab. 4.4. Furthermore, in the later
stages of the iteration process when longer time steps are employed, the factorization
produced by the ILU preconditioner is inaccurate. This results in a failure of the nonlinear
solver and a necessary repetition of the step with a lower pseudo-time step, retarding the
convergence to the steady state. We conclude that in this study, the elsewhere mentioned
choice of the parameter β = U2 (Muldoon and Acharya, 2007), corresponding to β = 100
here, indeed yields optimal results, but only in the generalized formulation, as the solver
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Figure 4.14: u1 residuals for the flow around the hill in the (A,B) S100 and (C,D) S1000
scaled up geometry. Panels A and C show the convergence of the classical artificial
compressibility (AC-C) formulation, panels B and D show the generalized artificial
compressibility (AC-G) formulation. The convergence of the non-preconditioned (CN)
and preconditioned (CP) compressible solver is shown in all panels. Red dots mark
the iterations where the nonlinear system solve failed, and where the iteration was
subsequently repeated with shorter time step. Full history of the slowly converging
variants is not shown.
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S100 S1000

CN 6.42 5.57

CP 1.00 0.65

AC-C-10 Diverged Diverged

AC-C-100 Diverged Diverged

AC-C-1000 0.98 Diverged

AC-C-10000 1.63 3.67

AC-G-10 Diverged Diverged

AC-G-100 0.61 0.54

AC-G-1000 0.76 0.74

AC-G-10000 1.33 1.09

Table 4.4: CPU times of the solution process of the flow around the hill for all calculated
variants. Times are normalized by the solution time of the CP variant in S100 case (136
min 57 s).

does not converge with the classical formulation.
The compressible solver without preconditioning is stable, but it converges several

times slower than the ABL solvers, as visible in Fig. 4.14 and Tab. 4.4. Preconditioning,
however, removes this deficiency. With its use, the compressible flow solver converges in
comparable time to the ABL solvers, slightly slower or faster depending on the choice of
parameter β in the ABL solver.

4.3 Wind flow in and around a forest canopy

The described k-ε model of the vegetation flow was tested on a problem of a flow in
and above a forest canopy. Dupont et al. (2011) presented field measurements and large
eddy simulations of a flow over a maritime pine forest. The forest of an average height
h = 22 m has a dense crown layer roughly 8 m thick and an open trunk space. The
41.5 m high measurement tower was located 9h from the edge of the forest in the north-
west direction, while a homogeneous forest with a fetch greater than 1 km stood in the
opposite direction from the tower. In addition to the tower, a smaller mast of height 13
m was located 4h from the edge of the forest. This configuration allowed to investigate
both the flow over a homogenous forest as well as the edge effects based on the wind
direction.

4.3.1 Numerical model

The flow was simulated using only the solver based on the ABL flow equations using
the k-ε turbulence model. Two sets of k-ε model constants are investigated. Recall from
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Sec. 2.4.2 that the model constants have to satisfy the relation

σε =
κ2

(Cε2 − Cε1)
√
Cµ

.

so that the model can reproduce balanced flow in an unperturbed atmosphere. This
requirement led to a set of constants different from those used in the standard model.
In their validation of the vegetation model we adopted (Katul et al., 2004), the authors
changed the constant Cµ to 0.03 to provide a better match of the turbulent viscosity νT
in the unperturbed atmosphere to the measured values of typical neutral ABL flows. To
satisfy the above relation, constants σε had to be changed accordingly as well. In the
following numerical experiments we test the set of constants derived earlier for the ABL
flows (marked as the default set) and this modified set (see Table 4.5).

Cε1 Cε2 Cµ σk σε

Default set 1.44 1.92 0.09 1.0 1.167

Modified set 1.44 1.92 0.03 1.0 1.92

Table 4.5: Tested set of constants of the k-ε model for the forest canopy flow.

The flow over a homogenous forest was investigated using a 1D model and the edge
flow was examined using a 2D model (Fig. 4.15B).
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Figure 4.15: Flow over a forest canopy. (A) LAD profile of the pine forest. Vertical
coordinate is normalized by the height of the forest h = 22 m. (B) Sketch of the
2D domain. Positions of the measurement masts at 4h and 9h from the edge of the
forest are marked by lines. Computational domain of the 1D model of the flow over
a homogeneous forest is represented by the dashed lines.

Homogeneous forest. The 1D vertical model was constructed as follows. The flow
was modelled between the ground and a height 10h. At the ground the wall functions
were prescribed with roughness length z0 = 0.03 m. Pressure perturbation and potential
temperature were extrapolated from inside using homogeneous Neumann BC. The upper
boundary was modelled as a slip wall. The flow was driven by prescribed horizontal
pressure gradient acceleration 1

ρref

∂p∗

∂x = 0.001 m s−2. The leaf area density of the canopy
is pictured in Fig. 4.15A. The vegetation drag coefficient was set to Cd = 0.26. Atmo-
sphere was considered to be neutrally stratified with potential temperature θ = 300 K.
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The vertical interval was discretized by 100 cells. The cells inside the canopy (i.e.
for z < h) had height 0.023h, and the cells above were continuously expanded with an
expansion factor 1.06.

Edge flow. To capture the behaviour of the flow over the edge of the forest a 2D model
was employed (Fig. 4.15B). The size of the computational domain was chosen to allow
the flow to stabilize before reaching the outlet. Dupont et al. (2011) evaluated that the
adjustment region extends to around 22h from the forest edge in this case. Based on this,
the computational domain was set to extend to 30h downstream from the edge of the
forest, and 5h upstream. The height 10h is same as in the 1D model.

Boundary conditions at the ground were the same as in the 1D model. At the outlet
zero pressure fluctuation was prescribed, and the homogeneous Neumann BC for all
other variables was used. Log wind profile was prescribed at the inlet with the friction
velocity u∗ = 0.23 m s−1, and it was complemented by the turbulence inlet profiles de-
scribed in Sec. 2.4. Potential temperature was set to θ = 300 K. Finally, the homogeneous
Neumann BC was prescribed at the top of the domain for all variables except for the
pressure, which was calculated so that the total pressure p0 = p + 1

2ρU
2 was constant at

the top boundary. The same leaf area density profile as in 1D case (Fig. 4.15A) and the
same drag coefficient Cd = 0.26 were used.

The domain was discretized by 100 cells in vertical direction, using the same grading
as in the 1D model. In horizontal direction 300 cells were used with width 0.023h at the
edge of the forest, and expanding upstream with factor 1.05 and downstream with factor
1.011.

4.3.2 Results

Homogeneous forest. Fig. 4.16, left column, shows the vertical profiles of normalized
horizontal and vertical velocities, Reynolds stresses and turbulence kinetic energy, to-
gether with the measured values for the homogeneous forest case. The values are nor-
malized by a reference flow velocity uref and friction velocity u∗, both measured at the
top of the tower, i.e. at height z = 41.5 m.

Above the canopy the velocity profile has a typical logarithmic profile. The velocity
is quickly reduced inside the canopy, and reaches a secondary maximum in the open
trunk space. This is however reproduced only by the model with the modified constants,
and not by the model with the default constants. In that case, the reduction of the
velocity is not as extensive, and the horizontal velocity is overpredicted inside the canopy
and the trunk space. The momentum fluxes are reduced to negligible values below the
crown layer, signifying minimal momentum transfer between the flow above and below
the crown layer. Turbulence kinetic energy is overpredicted by the model with default
constants inside and above the canopy, while the modified constants model shows good
agreement with the measurements.

Edge flow. The middle and the right columns of Fig. 4.16 show the vertical profiles of
the same quantities as in the case of homogeneous forest at a distance 4h and 9h from the
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Figure 4.16: Vertical profiles of horizontal velocity ux, vertical velocity uz , Reynolds
stresses and turbulence kinetic energy k inside and above the canopy. Values are
normalized by the reference velocity uref or friction velocity u∗ measured at z = 41.5 m.
Dashed lines: default constants, Solid lines: modified constants, symbols: measurements
by Dupont et al. (2011).
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edge of the forest. The measured values at 4h are available only in the lower half of the
canopy due to the smaller mast.

Compared to the homogeneous forest case, the secondary maximum of the horizontal
velocity inside the trunk space is much more prominent. That is reproduced very well,
especially at 9h from the edge. Upward motion caused by the deceleration of the flow,
observed both at 4h and 9h, is typical for the adjustment region close the the edge of
the forest (Dupont and Brunet, 2008a). The positive momentum flux inside the canopy,
noted as “striking” in (Dupont et al., 2011), is reproduced at 4h and especially well at 9h.
Turbulence kinetic energy inside the canopy is overpredicted at 4h, but reaches a good
agreement at 9h.

4.3.3 Discussion

In the 2D edge flow case, the flow is well reproduced by the model with both sets of
constants. In the 1D homogeneous flow case the default set performs considerably worse,
however, main features of the flow are still captured. Arguably, the performance in the
edge flow case is more relevant to the intended application of our model, which is mainly
aimed at the problems of urban flows. In these settings, small, separated patches of
vegetation are more typical than the continuous vegetation cover represented by the 1D
case. Therefore, considering comparable performance of the models with both set of
constants in the 2D case, better performance with the modified set of constants does
not justify the change of the universally accepted constant Cµ = 0.09, so often used by
the atmospheric modelling community for the flows without the vegetation (Castro and
Apsley, 1997; Hargreaves and Wright, 2007; Balogh et al., 2012; Vranckx et al., 2015) as
well as with the vegetation present (Svensson and Häggkvist, 1990; Green, 1992; Kenjereš
and ter Kuile, 2013; Gromke and Blocken, 2015). Therefore it is the default set of constants
we have used in all further simulations performed by our solver.

4.4 Particle collection by a vegetation barrier

The dry deposition model described in Sec. 2.5.2 is tested on the problem of a hedgerow
filtering particle-laden flow that was originally investigated in (Tiwary et al., 2005). In
their field experiments, the authors measured concentrations of polystyrene particles of
diameters between 0.8 µm and 15 µm upwind and downwind of the hawthorn hedge.
From these measurement, the collection efficiency of the barrier was determined. The
authors investigated the problem also numerically, using a detailed vegetation model.
The same case was also numerically investigated in (Guo and Maghirang, 2012).

In our study, we have constructed a 2D numerical model reproducing the experiment,
and evaluated the influence of several parameters of the model on the results, namely of
the drag coefficient Cd and of the properties of the leaves.

4.4.1 Numerical model

The vegetation barrier of width w = 1.6 m and height h = 2.2 m was placed inside the
computational domain spanning 20w upwind and 40w downwind from the end of the
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barrier and with height 10h (see Fig. 4.17, panel B). The barrier was porous, described by
its leaf area density profile (Fig. 4.17, panel A), obtained from the original paper.

0 2 4 6 8
LAD [m2 m−3]

0.0

0.5

1.0

z/
h 
[1
]A)

20w 40w

10h

h

w

B)

Figure 4.17: Flow through a vegatation barrier. (A) LAD profile of the vegetation. Vertical
coordinate is normalized by the height of the barrier h = 2.2 m. (B) Sketch of the domain
(not to scale).

The flow field was calculated using the solver based on the ABL flow equations
employing the standard k-ε model extended by the vegetation model.

The boundary conditions for the flow equations were set as follows: At the inlet and
at the top of the domain, log wind profile with u∗ = 0.198 m s−1 and z0 = 0.0189 m
was prescribed. The reference velocity at z = h was thus uref = 2.3 m s−1. Potential
temperature θ = 293 K was set to a constant value to model the neutrally stratified atmo-
sphere. Neumann BC was prescribed for the pressure. Profiles of the turbulence variables
were given by equations (2.73) and (2.74). At the outlet, zero pressure fluctuation p∗ was
prescribed, and the homogeneous Neumann BC was used for all other variables. At the
ground, the wall functions were used, together with the homogeneous Neumann BC for
pressure fluctuation and potential temperature.

The transport and the collection of the particles of the diameters 0.875, 1.5, 2.75, 4.25,
6.25, 8.75, 12.5 and 15 µm and the density ρp = 1050 kg m−3 was investigated using
the passive scalar equation (2.44). Gravitational settling of the particles (Sec. 2.2.1) was
included in the model, as well as the dry deposition on the vegetation (Sec. 2.5.2). The am-
bient background concentration was obtained by prescribing a concentration 1 mg m−3

at the inlet and at the top of the domain. At all other boundaries, the homogeneous
Neumann BC was used for the particle concentration.

The unstructured computational mesh was generated using the snappyHexMesh gen-
erator from the OpenFOAM software package (Greenshields, 2015). The mesh, consisting
of nineteen thousands cells, was refined around the vegetation barrier (Fig. 4.18). The
largest cells in the domain were 0.8 m × 0.73 m large and the smallest were 0.1 m ×
0.092 m large, so that the vegetation block itself was discretized into 16 × 24 cells.

4.4.2 Results

Influence of the drag coefficient. The flow through and around the barrier was calcu-
lated for four values of the drag coefficient Cd, spanning the interval from 0.15 to 0.5
of realistic drag coefficient values (Endalew et al., 2009; Katul et al., 2004). Fig. 4.19
shows the vertical profiles of the velocity magnitude behind the barrier normalized by
the reference inlet velocity at height h, compared with the measured values.
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Figure 4.18: Computational mesh around the vegetation barrier.
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Figure 4.19: Vertical profiles of normalized velocity magnitude behind the vegetation
barrier. Measured values taken from (Tiwary et al., 2005).

As expected, the largest slowdown is in all cases observed around z/h = 0.8, where
the LAD profile attains its maximal value. Local maximum of the velocity profile is visible
around z/h = 0.15, to where is the blocked flow deflected. Near-ground behaviour is
affected mostly by the ground shear stress and is independent on the choice of the drag
coefficient.

Choice of the drag coefficient Cd = 0.25 provides a reasonable agreement with the
measured values at z/h = 0.25, 0.5 and 0.75. It is worth noting that the authors of the
original paper (Tiwary et al., 2005) used the value Cd = 0.5 in their simulations and
obtained a good agreement as well. This may be caused by the different vegetation
model: while the source term in the momentum equation is the same in our and in their
formulation, the authors of the original paper did not modify the turbulence equations
to include the vegetation effects.

Parameterization of the leaves. Let us now turn to the filtering properties of the hedge-
row. From the experiment, the filtering capacity was described via the collection efficiency
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(CE), defined as

CE =
cin − cout

cin
, (4.4)

where cin and cout are the values of the mass concentration measured 0.1h upwind and
0.1h downwind from the barrier at height 0.75h. The collection velocity generally falls
into the range between 0 and 100%, but may reach negative values if the pollutant accu-
mulates behind the barrier so that cout > cin.

In the adopted deposition velocity model, the vegetation is described by its type
and typical size of the vegetation elements. Fig. 4.20, panel A, shows the calculated
collection efficiencies when the vegetation elements are modelled as leaves with different
diameters de. The increasing collection efficiency for particles of larger size, observed in
the experiment, is clearly reproduced by our model. Furthermore, the CE increases for
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Figure 4.20: Collection efficiency and its dependency on the particle diameter and
vegetation properties. (A) Leaves of different diameters de with smooth surface. (B)
Thorny leaves, modelled as a mixture of smooth leaves of diameter de = 2 cm and needles
of diameter de = 0.5 mm with the parameterized proportion p of the needle surface area
to the total surface area. On both panels, the solid line references the same case of the
vegetation with smooth leaves of diameter de = 2 cm. Measured data taken from (Tiwary
et al., 2005).

smaller leaf sizes. Tiwary et al. (2005) list that the range of the size of the hawthorn is
between 1.1 and 3.2 cm. However, even when the leaf sizes are set to the half of the
value at the lower end of the interval, the calculated collection efficiencies are still below
the measured values. This may be attributed to the neglected fine needle-like collectors,
such as the leaf hairs and thorns, which increase the deposition velocity (Beckett et al.,
2000; Tiwary et al., 2005; Janhäll, 2015). To reflect this, we further modelled the vegetation
as a mix of planar leaf elements of diameter de = 2 cm and fine needle-like collectors of
diameter de = 0.5 mm. The proportion of the surface area of the fine collectors to the total
surface area is denoted as p, and the deposition velocity is calculated as

ud = puneedled + (1− p)uleafd , (4.5)

where uneedled and uleafd are the deposition velocities calculated for the needle and leaf
elements respectively.
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Comparison of the collection efficiencies calculated with this model and with the
parameter p ranging from 0% to 20% is shown on Fig. 4.20, panel B. The CE rises with
higher proportion of needles, reflecting the higher deposition velocity on the fine collect-
ors. Best agreement with the measurement is obtained for p = 15%.

Flow field and concentration field around the hedge. Further understanding of the
deposition mechanisms at play may be obtained by inspecting Fig. 4.21, which shows
the velocity field and the concentration of 15 µm particles around the hedge. As in the
numerical simulations of Tiwary et al. (2005) and Guo and Maghirang (2012), the flow
deccelerates in the upper half of the hedge, and the blocked flow is partially redirected to
the lower half, where the leaf area density is lower. Most of the particles are however re-
moved near the upper edge of the vegetation block due to the large leaf area density. This
results in a minimum in particle concentration at the downstream edge of the hedge. The
concentration recovers to 90% of its inlet value at around 20w from the hedge (Fig. 4.22).

A) B)

Figure 4.21: Results for Cd = 0.25 and mixed leaves and needles deposition velocity
model with p = 15%. (A) Velocity magnitude around the hedge. Contour interval is
0.25 m s−1. (B) Number concentration of particles of dp = 15 µm. Contour interval is
0.05 m−3.
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Figure 4.22: Horizontal profile of number concentration of particles of dp = 15 µm at
z/h = 0.75, calculated with Cd = 0.25 and mixed leaves and needles deposition velocity
model with p = 15%.
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4.4.3 Conclusion

With some tuning of the vegetation parameters, good agreement with the measured
results was obtained. The optimal drag coefficient Cd = 0.25 is within the range usually
given as realistic for vegetation barriers. The mixed leaves-needles model is grounded in
a realistic assumption, however, the exact proportion of the needle surface area is difficult
to independently verify, as the author is not aware of any study on this topic.

For real-life applications where necessary measurements are not available, the esti-
mation of the parameters of the vegetation might be a challenging matter. In that case,
the inherent uncertainty must be managed by an appropriate method.
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Chapter 5

Application: CFD optimization of a
vegetation barrier

The content of this chapter is based on: Šíp, V. and Beneš, L. (2016b). CFD optimization of a vege-
tation barrier. In B. Karasözen, M. Manguoglu, M. Tezer-Sezgin, S. Göktepe and Ö. Ugur (Eds.),
Numerical mathematics and advanced applications - ENUMATH 2015. Cham: Springer International
Publishing. With permission of Springer.

In this chapter we present an application of the developed methods: a computational
optimization of the near-road vegetation barrier, where the developed solver is employed
to find an optimal properties of the barrier.

5.1 Introduction

Particulate matter (PM) pollution originating from the road traffic constitutes a signifi-
cant health risk. Near-road vegetation barriers were proposed as a mean to the reduction
of a harmful PM in the atmosphere. Due to the complexity of the problem, the assessment
of the effectivity of the barriers and of its design is difficult without the computer simula-
tions. In this section we employ the methods developed in earlier sections to numerically
optimize the parameters of a near-road vegetation barrier in order to reduce the pollutant
concentration behind the barrier. Specifically, the horizontal position of the barrier and
its density is optimized.

5.2 Case settings

Fig. 5.1 shows the sketch of the model 2D problem. Four sources of pollutant, repre-
senting the road, were placed between 23 m and 42 m from the inlet at height 0.8 m.
Vegetation block of height 15 m was placed downstream from the road.

The flow was calculated using the ABL flow model (2.60) employing the k-ε turbu-
lence model, and the particulate matter dispersion was calculated using the passive scalar
equation (2.63). Gravitational settling of the particles and the dry deposition was taken
into account.
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Figure 5.1: Sketch of the domain (not to scale).

We modelled the transport and dispersion of the particles of diameter 10 µm and den-
sity 1000 kg m−3. Each source of the pollutant had the intensity 1 µg s−1. No resuspension
of the particles fallen on the ground was allowed. The influence of the road traffic on the
turbulence levels was represented by a source terms in the k and ε equations, using the
model by Bäumer et al. (2005). Density of the traffic was set to 4 passenger cars and 1
heavy duty vehicle per minute in each of the four lanes.

The boundary conditions were set as follows:

Inlet and top Log wind profile with uref = 5 m s−1 at height yref = 10 m and z0 = 0.1 m.
The temperature at the ground was set to 300 K and above the ground is set so the
atmosphere is under weakly stable stratification (∂T/∂z = 0 K m−1). Neumann BC
was prescribed for the pressure. Profiles of the turbulence variables were given by
equations (2.73) and (2.74).

Outlet Zero pressure fluctuation p∗ was prescribed, and Neumann BC was used for all
other variables.

Ground Wall function as described in Sec. 2.4.3.

Lateral walls Lateral wall were modelled as slip walls.

The computational mesh contained approximately 13 thousands computational cells,
and is refined around the vegetation barrier. The largest cells in the domain, located in
the upper part, were 4.3 m x 2.5 m large, while the smallest, located near the ground and
around the vegetation, were 1.1 m x 0.63 m large.

5.3 Optimization

5.3.1 Method

General PDE-constrained optimization problem may be written in the following form:

Find min
p
J(Y ,p) subject to G(Y ,p) = 0 (5.1)

and constrained by

pmini ≤ pi ≤ pmaxi i = 1...n, (5.2)
gj(p) ≤ 0 j = 1...m. (5.3)
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Here J(Y ,p) is a cost function,G(Y ,p) is the system of steady-state PDEs,Y is the global
state vector, and p is the vector of parameters. Allowed values of parameters are limited
by pmini and pmaxi , while functions gj represents nonlinear constraints. In the further text,
we denote the lengths of the vectors p and Y by m and n respectively. The length of the
state vector n is generally a large number, proportionate to the mesh size employed. The
number of the parameters m, on the other hand, is typically much smaller: n� m.

To solve the optimization problem, the method of moving asymptotes (Svanberg,
2002) implemented in NLopt optimization package (Johnson, 2015) was employed. Since
the method is gradient-based, the CFD solver has to facilitate the evaluation of not only
the cost function at a given point in the parameter space, but also its derivatives with
respect to the parameters. This was done via a direct sensitivity approach (Gunzburger,
2003). For each parameter vector p consider the the corresponding solution Y (p) of the
steady-state PDE, so that

G(Y (p),p) = 0 (5.4)

holds. We are interested in the value of the objective function J(Y ,p) = Ĵ(p) and its
derivatives with respect to the set of parameters dĴ

dp . We may use the chain rule to obtain

dĴ

dp︸︷︷︸
1 x m

=
∂J

∂Y︸︷︷︸
1 x n

∂Y

∂p︸︷︷︸
n x m

+
∂J

∂p︸︷︷︸
1 x m

. (5.5)

The partial derivatives ∂J
∂Y and ∂J

∂p can be calculated by hand, when the cost function is
defined in terms of the solution vector and the parameters. The term ∂Y

∂p is computed
from a system of linear equations that is obtained by taking a derivative of Eq. (5.4) and
using chain rule again,

dG

dp
= 0 (5.6)

∂G

∂Y︸︷︷︸
n x n

· ∂Y
∂p︸︷︷︸

n x m

= − ∂G

∂p︸︷︷︸
n x m

. (5.7)

Terms ∂G
∂Y and ∂G

∂p are calculated using finite differencing. The i-th columns of the matrices
are evaluated as

∂G

∂Y i
=
G(Y + εi,p)−G(Y ,p)

ε
,

∂G

∂pi
=
G(Y ,p+ εi)−G(Y ,p)

ε
, (5.8)

where εi is a zero vector of appropriate length with ε at i-th position.
In summary, to compute the derivatives of the cost function with respect to the para-

meters, we need to:

• Calculate ∂G
∂Y and ∂G

∂p using finite differencing (Eqs. (5.8)). In total, n + m + 1
evaluations of functionG is needed.
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• Solve m systems of linear equations of size n× n (Eq. (5.7)).

• Perform matrix-vector product and summation in Eq. (5.5).

5.3.2 Case specific settings

In this study, the optimization cost function J was set to be the value of the pollut-
ant concentration at x = 250 m from the inlet at height 2 m. Vector of parameters p =
(x1, x2,LAI) consisted of starting and end point of the vegetation block and its leaf area
index. Following constraints were placed on the parameters:

• Position of the vegetation: xmin ≤ x1 ≤ x2 ≤ xmax, where xmin = 50 m and
xmax = 150 m.

• Maximal leaf area index: 0.0 ≤ LAI ≤ LAImax with LAImax = 9.0.

• Maximal total amount of trees to be planted: (x2 − x1)LAI ≤ VEGmax, where
VEGmax = 270.0. That could represent for example a forest of length 30 m and
LAI 9 or of length 100 m and LAI 2.7.

The leaf area density profile was set to be uniform for simplicity.

5.4 Results

Since our method searched only for a local minimum, three different initial points of the
optimization process were used to rule out a possibility that only a local minimum in the
vicinity of a initial position was found. The optimization procedure ended in the same
point for all of the initial points. The initial configurations and corresponding solutions
are listed in Tab. 5.1 and schematically depicted in Fig. 5.2.

Variant Initial point Solution J (Initial) J (Final) #Evaluations

A (90.0, 110.0, 4.5) (50.0, 150.0, 0.810) 0.0407 0.0338 39

B (80.0, 110.0, 6.75) (50.0, 150.0, 0.810) 0.0419 0.0338 45

C (60.0, 90.0, 8.1) (50.0, 150.0, 0.810) 0.0402 0.0338 67

Table 5.1: Three initial variants and corresponding solutions. The initial and final points
are listed in the form of the parameter vector p = (x1, x2,LAI).

Figure 5.2: Schematic depiction of the initial and final variants. The placement of the
colored block corresponds to the position in the interval [xmin;xmax] = [50; 150], the
saturation of the block reflects the LAI of the vegetation.
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The optimized variant represented a sparse vegetation block spanning the whole
allowed interval. The obtained LAI = 0.81 lies well below the value given by the con-
straint on the maximal amount of trees planted, which allowed for a LAI = 2.7 for a block
spanning the whole interval.

As evident from the Tab. 5.1, the cost function (i.e. the concentration behind the
barrier) was reduced by 15% - 20% in all three cases. This reduction is further visible on
Fig. 5.3, panel A, where the vertical profiles of the particle concentration at x = 250 m are
shown. Three initial variants and the final variant are complemented by a variant with
no vegetation present.
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Figure 5.3: Optimization of the vegetation barrier. (A) Vertical profile of particle
concentration at x = 250 m. (B) Horizontal profile of turbulence kinetic energy at height
10 m. Variant without any vegetation is included for reference.

Variant A Variant B Variant C Final variant

Deposition on the vegetation 2.88% 4.30% 5.51% 2.43%

Deposition on the ground 2.88% 2.95% 2.75% 2.32%

Table 5.2: Percentage of the injected pollutant deposited on the vegetation and on the
ground.

Table 5.2 shows that less than 10% of the injected pollutant was deposed either on
the ground or on the vegetation in all cases, and less than 5% in the optimized variant.
The rest was redistributed to the higher layers of the atmosphere, where the higher
velocity of the flow allowed for faster dilution. Therefore, the most important effect of
the sparse vegetation here is the disturbance of the flow, leading to the increased levels of
turbulence and increased turbulent diffusion, which results in faster redistribution to the
higher layers. This is demonstrated on the right panel of Fig. 5.3, where the horizontal
profiles of the turbulence kinetic energy are shown for all variants, and on Figures 5.4
and 5.5, where the velocity magnitude and turbulence kinetic energy plots are shown for
the initial variant A and the optimized variant.
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Figure 5.4: Plots of the velocity magnitude and velocity streamlines. (A) Initial variant A.
(B) Optimized variant.

A)

B)

Figure 5.5: Plots of the turbulence kinetic energy. (A) Initial variant A. (B) Optimized
variant.
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5.5 Discussion

We have presented a method for optimization of the parameters of the vegetation barri-
ers, and find an optimal barrier under the given constraints. Our discussion will focus
on two aspects: on the obtained results first, and on the employed method itself second.

The optimized variant represented a sparse vegetation, and relied mainly on the
dilution of the pollutant due to the flow disturbed by the vegetation. It is noteworthy that
less pollutant was deposited inside the vegetation and on the ground in the optimized
variant than in all the initial variants. This is a result of the given objective, which was
to reduce the pollutant levels behind the barrier. Other reasonable objectives may give
very different results; for example, we may rather prefer to maximize the amount of the
pollutant deposited in the vegetation. These objectives were however not studied here.

As for the method itself, there are several shortcomings. First, it is suitable only for a
limited number of parameters. In the current implementation when 100 parameters are
optimized the amount of time for the CFD solution in every step of the optimization loop
is roughly equal to the time needed for the gradient evaluation. For higher number of
parameters it would be therefore more suitable to use the adjoint method for the gradient
calculation. Secondly, our method optimizes only for a single target, while in reality we
may be interested in several targets at once. To take that into account, multi-objective
optimization should be employed. Lastly, optimization procedure searched only for the
local minimum. Here we have used multiple initial points to assess whether we have
found the global minimum, however, such approach is not sufficiently rigorous and
could be difficult to apply when higher number of parameters is used.
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Chapter 6

Moment method aerosol transport
solver

The content of this chapter is based on: Šíp, V. and Beneš, L. (2016c). Dry deposition model for a
microscale aerosol dispersion solver based on the moment method. arXiv e-print. https://arxiv.
org/abs/1605.03397 (Submitted).

This (to a large extent self-contained) chapter is devoted to an alternative approach to the
pollution dispersion modelling called the moment method. This method is useful when
the behaviour of particles in a wide size range is of concern, as opposed to only particles
of the same diameter. We describe the mathematical background of the moment method,
and give a special attention the formulation of the dry deposition model. Applicability
of the method is tested on two example problems of particle dispersion in the presence
of a vegetation on small scales: a flow through a tree patch in 2D and a flow through a
hedgerow in 3D.

6.1 Introduction

In the previous chapters, we have described the methods for modelling the pollutant
dispersion, and dispersion of solid particles in particular. The assumption was that
the investigated particles are of a known diameter. When behaviour of several classes
of particles was of concern (such as in the validation case described in Sec. 4.4), mul-
tiple PDEs had to be solved. In real life applications, such as the modelling of a road
traffic emissions dispersion, the situation is however more complex. The sizes of emitted
particles form a continuous distribution, and an appropriate method must be used to
deal with it.

The straightforward approach - so called sectional approach - is to divide the size
range into a number of discrete bins and then model the appropriate number of scalar
PDEs, i.e. one for each bin. Other option is to use the transport equation for the moments
of the particle size distribution. Such approach can reduce the number of PDEs to be
solved, and therefore reduce the computational demands. This class of methods, here re-
ferred to as the moment method, has been used for the simulation of the aerosol behaviour
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for a long time (Whitby et al., 1991).
Usage of the moment method for the atmospheric aerosols modelling is widespread

in large-scale models (e.g. Binkowski and Shankar, 1995; Pirjola et al., 1999; Jung et al.,
2003), however, it is relatively uncommon in small-scale CFD models of atmospheric
flows. Notable difficulty for the applications where the vegetation is present is the dry
deposition model. Adapting the deposition velocity models to the moment method
framework is not straightforward, since the mathematical formulation of the moment
method requires all terms in the equation to be in the form of the power law of the particle
size. Binkowski and Shankar (1995) simplified the problem by using the resistance model
with Brownian particle diffusivity and settling velocity averaged over the particle size
range. Bae et al. (2009) developed a deposition velocity model based on the model
proposed by Raupach et al. (2001). This model, however, only includes the processes of
Brownian diffusion, impaction and gravitational settling, and does not take into account
the processes of interception and turbulent impaction, which play an important role in
the dry deposition process (Petroff et al., 2008b).

This chapter has three primary aims:

• To present the mathematical basis of the moment method,

• to adapt the deposition velocity model for the moment method,

• and to asses the accuracy and performance of the developed methods by compar-
ison of the moment method to the sectional approach.

This chapter is an exception from the rest of thesis in that the mathematical methods
described here are implemented in the OpenFOAM framework, and not in our developed
software as in the other chapters. The reason for this decision was the fact that the high-
level OpenFOAM programming interface provided the necessary flexibility to implement
the proposed methods, and allowed for a rapid development of the solver.

6.2 Mathematical formulation

6.2.1 Number concentration equation

The governing equation for the transport and the deposition of the aerosol particles of a
diameter dp in the flow field given by the velocity u can be formulated as

∂nN (dp)

∂t
+ div (nN (dp)u)︸ ︷︷ ︸

Convection

= div (D∇nN (dp))︸ ︷︷ ︸
Diffusion

−div (nN (dp)us(dp))︸ ︷︷ ︸
Gravitational settling

−LADud(dp)nN (dp)︸ ︷︷ ︸
Dry deposition

,

(6.1)
where nN (dp) is the number concentration of the particles with size in the infinitesimal
interval from dp to (dp + ddp), given in m−1 m−3, and D = νT /ScT is the diffusion
coefficient. This equation may be obtained by dividing Eg. (2.63) by the particle density
and including the gravitational settling term (2.45) and the dry deposition sink term
(2.86).

As the equation is formulated for the number concentration of the particles of given
diameter dp, the dependence of the settling velocity us and the deposition velocity ud on
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the diameter is explicitely indicated, while the dependencies on other flow parameters or
particle properties are not.

6.2.2 Moment equations

The moment method is based on the idea that in order to model the size distribution
of the particles, we can investigate the behaviour of the moments of the distribution.
Moment of the distribution is defined as

Mk =

∫ ∞
0

dkpnN (dp)ddp, (6.2)

where k is the order of the moment. Some moments have straightforward physical
interpretation:

• M0 =
∫∞

0 nN (dp)ddp = NT is the total number concentration,

• M2 =
∫∞

0 d2
pnN (dp)ddp = 1/π ·ST is proportionate to the surface area concentration,

• M3 =
∫∞

0 d3
pnN (dp)ddp = 6/π · VT is proportionate to the volume concentration.

Assuming nN (dp) is sufficiently smooth in space and time, moment equations are
obtained by multiplying Eq. (6.1) by dkp , integrating over the whole size range and
interchanging the derivatives and the integrals:

∂Mk

∂t
+ div (Mku)︸ ︷︷ ︸

Convection

= div (D∇Mk)︸ ︷︷ ︸
Diffusion

−
∫ ∞

0
dkpdiv (nN (dp)us(dp))ddp︸ ︷︷ ︸

Gravitational settling

− LAD

∫ ∞
0

dkpud(dp)nN (dp)ddp︸ ︷︷ ︸
Deposition

.

(6.3)

Now we are left with the evaluation of the integrals in (6.3). This can be done easily
if the multiplicative terms are in a form of a polynomial function of dp. Such is the case
with the gravitational term, if we take into account that gravity plays significant role only
for larger particles, where the Cunningham correction factor CC in (2.46) can be left out.
Using this formula in the second term on the RHS of (6.3), the term can be rewritten as

−div

(
g
ρp

18µ

∫ ∞
0

dk+2
p nN (dp)ddp

)
= −div

(
g
ρp

18µ
Mk+2

)
. (6.4)

Here we introduced a dependence on the moment of a higher order. That necessitates
that we either solve a separate moment equation also for this higher order moment, or
that this moment can be calculated from the moments that we solve for.

The task of integrating the deposition term is more difficult and will be examined in
the following section.
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6.2.3 Deposition model for the moment method

Recall from Sec. 2.5.2 that under the employed dry deposition model from (Petroff et al.,
2008b) and (Petroff et al., 2009) the deposition velocity may be written as

ud = 2(uBD + uIN + uIM + uTI + uSE). (6.5)

The assumption of the parallel and independent acting is advantageous for adapting
the model to the moment method, since it allows us to split the rightmost integral in Eq.
(6.3) into integrals pertaining to the every physical process separately.

Even so, the analytical evaluation of some of these integral is not possible. It is there-
fore necessary to approximate the deposition velocity with an expression more amenable
to the integration. Such approximation is detailed in Appendix C. Its result is formally
written as

u′d = 2(u′BD + u′IN + u′IM + uTI + uSE), (6.6)

where the prime marks an approximation of the original term. The major approximations
made are:

• The Cunningham approximation factor is replaced by its size-dependent part in
uBD.

• An approximate power law term is used in place of a logarithm term in uIN for
broafleaf elements.

• The impaction efficiency in uIM is approximated by a piecewise linear function of
Stokes number.

Comparison of this model with the original for an exemplary set of parameters is
shown on Fig. 6.1. The higher values of the deposition velocity for particles around 3 µm
are the consequence of the inexact approximation to the inertial impaction term described
in Appendix C.

The maximal difference of the deposition velocity given by the two models was de-
termined by evaluating the deposition velocity for every combination of the parameters
in the ranges expected in real-world situations (ρp ∈ [500; 3000] kg m−3, U ∈ [0, 10] m s−1,
dp ∈ [10−3, 102] µm, and de ∈ [0.5; 5] mm for needles or de ∈ [1; 5] cm for broadleaves).
Each interval was discretized using 50 points. Local friction velocity uf was set to 0 m s−1,
as the turbulent impaction is implemented exactly and its contribution can only reduce
the relative difference of the deposition velocities.

The largest relative difference |uorigd − uapproxd |/min(uorigd , uapproxd ) was found to be
1.29 for the needle model and 1.31 for the broadleaf model (Tab. 6.1). The maximum
is obtained at the end of the expected ranges for all parameters except dp.

This difference was considered acceptable considering that measured values shows
much higher variability (Litschke and Kuttler, 2008).

With the approximated deposition velocity we may proceed with the integration of
the last term in Eq. (6.3),(

∂Mk

∂t

)
deposition

= −LAD

∫ ∞
0

dkpu
′
d(dp)nN (dp)ddp = Sdep,k. (6.7)
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Figure 6.1: Comparison of the deposition velocities given by the original model and
the approximation developed in this study for exemplary set of parameters: ρp =
1300 kg m−3, U = 1 m s−1, uf = 0.3 m s−1. (A) Needles, de = 2 mm, (B) Broadleaves,
de = 2 cm. Relative difference is calculated as (uorigd − uapproxd )/min(uorigd , uapproxd ).

Needles Broadleaves

Relative difference 1.29 1.31

uorigd 0.385 cm s−1 0.387 cm s−1

uapproxd 0.168 cm s−1 0.168 cm s−1

ρp 3000 kg m−3 3000 kg m−3

dp 0.72 µm 2.33 µm

U 10 m s−1 10 m s−1

de 4.72 mm 4.92 cm

Table 6.1: Maximal relative differences of the deposition velocities given by the original
and the approximate model and the parameters of the model at the maximum.

Result of the integration is also given in Appendix C and is not repeated here for the
sake of brevity. The sink term in the equation of k-th moment Sdep,k depends on several
moments of different orders. In the next section we will show that when we work with
the lognormal distributions, all moments can be calculated from three known moments
or arbitrary orders k0, k1 and k2. In that case, the dependency of the sink term may be
explicitely written as Sdep,k = Sdep,k(Mk0 ,Mk1 ,Mk2).

6.2.4 Lognormal distribution

Before we move on to the description of the implementation, it is necessary to provide
some assumptions on the particle size distribution. Size distributions of the atmospheric
aerosols are often well fitted by a multimodal lognormal distribution (Seinfeld and Pandis,
2006). This is the distribution we will use from now on. We restrict ourselves only to the
case of unimodal distribution, noting that the multimodal distribution can be modelled
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by a superposition of several unimodal distributions.
Unimodal lognormal distribution can be described by three parameters: total number

concentration NT , geometric mean size dgn and geometric standard deviation σg. Its
probability density function is

nN (ln dp) =
NT√

2π lnσg
exp

(
−(ln dp − ln dgn)2

2 ln2 σg

)
. (6.8)

Knowing the three parameters, k-th moment can be calculated using the formula

Mk = NTd
k
gn exp

(
k2

2
ln2 σg

)
. (6.9)

From the three moments of order 0, k1 and k2 the three parameters can be obtained using
the relations

NT = M0, (6.10)

dgn = M
1

r(k2−k1)

k1
M

r
k1−k2
k2

, (6.11)

ln2 σg =
2

k1(k1 − k2)
ln

(
Mk1

M
r
k2

)
, (6.12)

where Mk = Mk
M0

and r = k1
k2

(Whitby and McMurry, 1997).
For the incomplete higher order moments following holds:

M−k (x) =

∫ x

0
dkpnN (dp)ddp = MkΦ

(
lnx− ln dgn − k ln2 σg

lnσg

)
, (6.13)

M+
k (x) =

∫ ∞
x

dkpnN (dp)ddp = Mk

(
1− Φ

(
lnx− ln dgn − k ln2 σg

lnσg

))
, (6.14)

where Φ is the normal cumulative distribution function.

6.2.5 Choice of the moments

Now we turn our attention to the choice of the moments. For which orders we decide to
solve the moment equation (6.3) is to a degree an arbitrary decision. When this problem
is discussed in literature, cited reasons for a certain choice include the mathematical
simplicity and ease of the formulation of the modelled processes or the physical inter-
pretation of some moments (Whitby and McMurry, 1997; Binkowski and Shankar, 1995).
Choices of the moments used in the field of atmospheric aerosol modelling in the selected
literature are summarized in Tab. 6.2.

The recurrent usage of zeroth order moment brings substantial advantage, as it is
equal to the total number concentration, and it is the order we will use as well. On the
choice of the other moments authors differ.

To assess the influence of the choice of the moments, following numerical experiment
was performed. We investigated the particle deposition in a 1D tube, spanning between 0
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Reference Moments

(Binkowski and Shankar, 1995) 0, 3, 6

(Pirjola et al., 1999) 0, 2, 3

(Jung et al., 2003) 0, 2, 3

(Koziol and Leighton, 2007) 0, 1, 2

(Bae et al., 2009) 0, 3, 6

Table 6.2: Choices of the moments in the selected literature

and 300 m. Homogenous vegetation block of LAD = 1.5 m2/m3 was placed between 100
a 150 m. Velocity of the air in the whole tube was set to constant 1 m s−1, unaffected by the
vegetation. Source of the pollutant was placed at 50 m from the inlet with the intensity of
number of particles 1 s−1 and the distribution parameters σg = 0.7, dgn = 3µm. The tube
was discretized using 400 cells.

Beside the choices mentioned in Tab. 6.2, we tested also a variant with a negative
order moment: 0, -1, 1. Non integer choices of the orders would also be possible to use,
but we saw no advantage that such choice could bring.

Transport and the deposition of the pollutant was calculated by the sectional model
based on the Eq. (6.1) and by the moment method based on the Eq. (6.3) (see section
6.2.6 for details on the implementation). To discard possible errors due to the inexact
approximation of the deposition velocity, only the sedimentation contribution, adapted
exactly, was taken into account. The numerical experiment is not meant to model any
real-world situation, rather just demonstrate the behaviour of the moment method in a
simple setting.

Number and volume concentration distribution behind the barrier (at 150 m) are
shown on Fig. 6.2. As a reference, calculated distributions are complemented by the
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Figure 6.2: (A) Number concentration (B) Volume concentration

distribution for a case without the vegetation present. Evolution of the zeroth moment
(equal to the number concentration) and the third moment (proportional to the volume
concentration) through the vegetation block are shown on Fig. 6.3.

Effect of the vegetation, while small in number concentration, is significant in volume
concentration. Only the variant using the moments of orders 0, -1, and 1 reproduces
well the number concentration distribution, but overpredicts the peak of the volume
concentration. Variants using the orders 0, 1, 2 and 0, 2, 3 produce result closer to the
sectional model in volume concentration, but with larger differences in number concen-
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Figure 6.3: Evolution of the moments along 1-dimensional the tube. (A) Zeroth moment
(B) Third moment.

tration. Variant using the orders 0, 3, 6 shows no advantages over the other variants.
Choosing between the orders 0, 1, 2 and 0, 2, 3, we opted for the latter variant, as

the third moment is proportionate to the main quantity of interest - volume (and mass)
concentration of the pollutant.

6.2.6 Numerical implementation

Both the sectional model and the moment model were implemented using the Open-
FOAM platform (Greenshields, 2015). Second order upwind scheme was used for con-
vective terms in Equations (6.1) and (6.3) and second order scheme based on the Gauss
theorem was used for the diffusive terms. Residual levels of 10−5 were used to test for
convergence of the steady state solver.

When using the moment method, we have to solve the discretized Eq. (6.3) for the
three selected moments. These equations are coupled through the gravitational settling
term and the deposition term, which depends on the moments of a different order than
the one solved by the equation. The coupling is dealt with the following way. In every
iteration, first the parameters of the lognormal distribution N , dgn and σg are calculated
using the Equations (6.10-6.12) from the values in the preceeding iteration. Three moment
equations are then solved one after another with the coupling terms resulting from the
deposition being treated explicitly.

Fully explicit treatment of the gravitational settling term (6.4) can result in numerical
instability, unless low values of the relaxation factors are used. That would however lead
to slower convergence, therefore we employed a semi-implicit treatment. Moment Mk+2

in (6.4) is rewritten as Mk+2 = Fk,2Mk with

Fk,m = Mk+m/Mk = dmgn exp

(
m(m+ 2k)

2
ln2 σg

)
(6.15)

and the term Fk,2 is then treated explicitly and Mk implicitly.
Relaxation factors 0.95 were used both for the sectional equations and for the moment

equations. For the first five iterations of the moment method the relaxation factors for the
moment equations were however set to lower value 0.8, as the computations proved to
be less stable at the beginning.

Calculation of the distribution parameters dgn and ln2 σg via Eq. (6.11) and (6.12)
includes the division of the moments, potentially very small far away from the source of
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pollutant. To avoid this problem, small background concentration in the whole domain
is set as an initial condition and used as a boundary condition where zero would be used
otherwise.

6.3 Applications

Here we describe two example problems of microscale flows through and around the
vegetation and assess the applicability of the developed moment method to the simula-
tion of pollutant dispersion. Two vegetation elements that could be encountered in the
urban settings are investigated in this test: small patch of full grown trees and a dense
hedgerow.

The flow field in both cases was precomputed by the finite volume CFD solver based
on the equations for atmospheric boundary layer flows (2.39), as described in preceeding
chapters. The solver utilizes the standard k-ε turbulence model presented in Sec. 2.3.4.
Inlet profiles of velocity and the turbulence quantities, as well as the wall functions, are
prescribed by the analytical expressions given by Richards and Hoxey (1993). Vegetation
model for the momentum and k-ε equations described in Sec. 2.5.1 is employed. Tur-
bulent Schmidt number was set to ScT = 0.7 in both cases, based on the analysis by
Tominaga and Stathopoulos (2007).

In both cases presented below, we simulated the dispersion of a coarse mode particles
from a point or a line source. The coarse mode is chosen as the mode that contains,
together with the accumulation mode, majority of the volume of the particles in the
urban environment (Seinfeld and Pandis, 2006), but is affected more strongly by the
dry deposition than the accumulation mode. The number distribution at the source is
assumed to be lognormal with the parameters dgn = 0.86µm and σg = 2.21, typical for
the urban environment (Hinds, 1999).

Evaluation of the developed moment method was based on the comparison with the
results obtained by the sectional model. In the sectional model, Eq. (6.1) is solved for 41
particle sizes distributed uniformly between 0.01 µm and 100 µm. The interval is chosen
so that the behaviour of the number distribution as well as the volume distribution can
be captured by the sectional model.

6.3.1 Tree patch in 2D

First case investigates the filtering properties of a small patch of full grown conifer trees.
A simplified 2D model is constructed as follows. The 30 meters wide and 15 meters
high tree patch is represented as a horizontally homogeneous vegetation block. Pollutant
source is placed 15 meters upstream from the vegetation, 5 meters above the ground.

LAD profile of the vegetation is prescribed by a formula given by Lalic and Mihailovic
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Figure 6.4: (A) Sketch of the domain. All dimensions in meters. Sketch is not to scale.
(B) LAD profile of the vegetation.

(2004),

LAD(z) = Lm

(
h− zm
h− z

)n
exp

(
n

(
1− h− zm

h− z

))
, (6.16)

n =

{
6 if 0 ≤ z < zm,

0.5 if zm ≤< z ≤ h,

where h = 15 m is the height of the trees, Lm is the maximum LAD, chosen so that
leaf area index, LAI =

∫ h
0 LAD(z)dz, is equal to 5, and zm = 0.4h is the corresponding

height of maximal LAD. The sketch of the domain and the LAD profile of the vegetation
is shown on Fig. 6.4. Trees are modelled as generic conifers with de = 2 mm. The drag
coefficient is chosen as Cd = 0.3 (Katul et al., 2004).

Intensity of the point source is set to a normalized value 1 s−1 in terms of number
of particles. Since all terms in Eq. (6.1) and Eq. (6.3) are linear with respect to the
number concentration, results can be simply scaled to other value of the source intensity
if needed.

Inlet wind profile is set as logarithmic with uref = 10 m s−1 at height 20 m and
z0 = 0.1 m. For the number concentration in the sectional model and for all moments
in the moment method the Neumann boundary conditions are used on the ground, at
the top and at the outlet. No resuspension of the particles is allowed, i.e. any particle that
falls on the ground stays on the ground indefinitely. Small value of the concentration
and of the moments calculated from the lognormal distribution with the parameters
NT = 10−6m−3, dgn = 0.86 µm, σg = 2.21 is prescribed at the inlet.

Domain is discretized using a cartesian grid with 220 cells in horizontal direction and
100 cells in vertical direction, graded so that the grid is finer near the ground and around
the tree patch. The near ground cells are 0.25 m high, and the vegetation block itself
consists of 42 x 40 cells.

Flow field obtained by the CFD solver is shown on Fig. 6.5A. As visible, the vegetation
block slows the wind down, but allows the air to pass through.

Results from the sectional and the moment model are compared in terms of the third
moment of the particle size distribution, proportionate to the volume concentration of
the particles. As we assume that the density is the same for particles of all sizes, third
moment is also proportionate to the mass concentration of the particles.

Calculated field of the third moment by the moment method is shown on Fig. 6.5B.
Fig. 6.5C shows the relative difference (Mmm

3 −M sec
3 )/Mmm

3 of the results obtained by
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Figure 6.5: Results for the 2D tree patch case. Position of the tree patch is marked by a
green rectangle. (A) Flow field. Shown are the streamlines, background is coloured by
velocity magnitude (in m s−1). (B) Third moment of the size distribution calculated by
the moment method (in µm3 m−3). (C) Relative difference (Mmm

3 −M sec
3 )/Mmm

3 of the
third moment calculated by the moment method and the sectional approach.

the moment method, Mmm
3 , and by the sectional model, M sec

3 . The source of the largest
discrepancies between the two methods is the vegetation block. The relative difference
raises up to 2.5% inside the vegetation block, and decreases with the increasing distance
from the vegetation.

Further insights can be obtained from Fig. 6.6. It shows the volume concentration
distribution at the top of the vegetation block in its first third, at the downstream edge
of the tree patch, and at 120 m downstream from the tree patch, last two at height 2 m
above ground. The vegetation has negligible effect on the particles smaller than 2 µm,
but significantly reduces the mass of the particles above 10 µm. This is captured well
both by the sectional and the moment method. At the downstream edge of the tree patch
the moment method predicts lower peak of the volume concentration distribution than
the sectional approach. The difference is slightly reduced by the mixing of the filtered air
with the unfiltered air flowing above the vegetation further away from the tree patch.

It is noteworthy that the peak of the distribution, as calculated by the moment method,
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Figure 6.6: Results for the 2D tree patch case. (A) Volume concentration at [60; 15].
(B) Volume concentration at [80; 2]. (C) Volume concentration at [200; 2]. Discrete
points calculated by the sectional method and the distribution calculated by the moment
method are shown. For reference, the distribution calculated without the size dependent
deposition and gravitational settling terms is shown as well.

is reduced even at the top of the vegetation block, where the total volume of the pollutant
is predicted higher by the moment method (Fig. 6.6A). This may be explained by the
fact that the size distribution at that point cannot be exactly fitted by the lognormal
distribution anymore, and the moment method is thus bound to produce inaccurate
results.

6.3.2 Hedgerow in 3D

Next we tested the method on a 3D model of a dense hedgerow placed near a line
source of the pollutant. This case is a three dimensional extension of the 2D situation
investigated in (Tiwary et al., 2005). The yew hedge is 10 m wide, 3.2 m deep and 2.4 m
high. It is placed in the 40 m wide, 40 m long, and 20 m high computational domain. Two
meters upstream from the hedge is a line source at height 0.5 m above ground. Intensity
of the line source is set to a value 1 s−1 m−1 in terms of number of particles, noting as in
Sec. 6.3.1 that the results can be scaled if other value is desired.

Sketch of the domain is shown on Fig. 6.7A. Panel B shows the LAD profile of the
hedge, taken from the original article. Vegetation is further described by the needle
diameter is, de = 3 mm, and the vegetation drag coefficient which is set to Cd = 0.5
as in (Tiwary et al., 2005).

A)

0 2 4 6 8 10 12
LAD [m2m−3]

0.0

0.2

0.4

0.6
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1.0

z/
h

[1
]B)

Figure 6.7: (A) Overhead view of the domain (not to scale). (B) LAD profile of the
vegetation.
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The computational mesh was created using the OpenFOAM snappyHexMesh gener-
ator. The domain consist of 376 000 cells, refined near the ground and around the hedge.
The near-ground cells are 0.07 m high and the hedge itself is discretized using 54 x 20 x
22 cells.

The wind profile at the inlet is set as logarithmic with uref = 2.5 m s−1 at height 2.4 m
and z0 = 0.1 m. Boundary conditions for the sectional solver and moment method solvers
are set similarly as in Sec. 6.3.1: Neumann boundary conditions are used at the ground,
top, sides, and at the outlet. No resuspension of the particles fallen to the ground is
allowed. Again, small amount of the particles given by the lognormal distribution with
the parameters NT = 10−6, dgn = 0.86 µm, σg = 2.21 is prescribed at the inlet.

Streamlines of the flow field calculated by the separate CFD solver are shown on
Fig. 6.8. As in the 2D simulation in (Tiwary et al., 2005), recirculation zone is developed
behind the dense hedge. Unlike the 2D case, here we can observe part the of the flow to
be deflected to the sides.

Figure 6.8: Streamlines of the flow around the hedgerow. Streamlines are released at
height 0.5 m and are coloured by the velocity magnitude.

Third moment of the particle size distribution obtained by the moment method is
shown on the left panels of Fig. 6.9 and Fig. 6.10. While a portion of the pollutant
penetrates the barrier, part is deflected to the sides of the hedgerow, creating a zone with
a reduced pollutant concentration behind it.

Relative difference between the solution obtained by the moment method and sec-
tional approach is shown on the right panels of Fig. 6.9 and Fig. 6.10. As in the tree patch
case, the moment method overpredicts the deposition and consequently underestimates
the volume concentration behind the barrier. The difference is below 7%, and decreases
away from the barrier.

Effects of the coarser mesh in the upper part of the computational domain are visible
on Fig. 6.10. However, it does not negatively affect the difference between the two
methods.

Volume concentration distribution at two points - inside the vegetation and down-
stream from the vegetation - is shown on Fig. 6.11. Due to the smaller size of the veg-
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A)

B)

Figure 6.9: Results for the 3D hedgerow case. Horizontal cut at height z = 0.5 m.
(A) Third moment of the size distribution calculated by the moment method (in
µm3 m−3). (B) Relative difference (Mmm

3 −M sec
3 )/Mmm

3 of the third moment calculated
by the moment method and the sectional approach.

A)

B)

Figure 6.10: Results for the 3D hedgerow case. Vertical cut at y = 0 m. Quantities shown
are as on Fig. 6.9.
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Figure 6.11: Results for the 3D hedgerow case. (A) Volume concentration at [15; 0; 2].
(B) Volume concentration at [30; 0; 2]. For reference, the distribution calculated without
the size dependent deposition and gravitational settling terms is shown.

etation than in the 2D tree patch case, the effect of the vegetation is less pronounced.
The moment method is able to reproduce the shape of the distribution well, but again
produces a lower peak than the sectional method. Similarly as before, better fit can be
observed further from the barrier due to the mixing with unfiltered air.

6.3.3 Computational performance

To compare the computational performance of the developed model, we measured the
runtime of the sectional approach and the moment method approach for the 3D case
described in section 6.3.2. Both solvers were run on a single core of an Intel Xeon X5365
processor.

The sectional model, comprised of 41 scalar PDEs, finished in 7015 seconds. The
average runtime per each equation was thus 171 seconds. Moment model, comprised of
3 coupled PDEs, finished in 580 seconds. Time per one equation is therefore 193 seconds,
only slightly above of the time needed for one equation of the sectional model. Overall,
the use of the moment method give us more than tenfold acceleration compared to the
sectional model using 41 bins. Even though the high number of bins used in this study
might not be necessary to obtain sufficiently accurate results, the moment method still
constitutes significant computational improvement for lower numbers of bins.

Two points regarding the computational performance can be made in favor of the
sectional method though. First, the solution process of every equation is independent on
the other equations, therefore the approach offers effortless parallelization for the number
of cores up to the numbers of bins used. This is not especially advantageous in our
implementation, as the OpenFOAM solvers are already parallelizable, but it could be an
important factor for other implementations. Secondly, the relaxation factor 0.95 used for
all simulations in the sectional approach was needed only for the bins representing the
larger particles. Using different values of this parameter for different bins can provide
some reduction of the runtime.

6.4 Conclusions

In this study, we introduced a formulation of a dry deposition model suitable for im-
plementation in a moment method. As the original model by Petroff et al. (2008b), our
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approximation includes five main processes of the dry deposition: Brownian diffusion,
interception, impaction, turbulent impaction, and sedimentation.

The developed deposition velocity model was implemented in a microscale finite
volume solver based on the OpenFOAM platform. The solver employs the moment
method to calculate the particle size distribution in the domain. The deposition model
was tested on two example problems of microscale pollutant dispersion. Comparison
with the sectional method using the original dry deposition model revealed that the
moment method is able to reproduce the shape of the particle size distribution well. The
relative differences between the sectional and the moment method in terms of the third
moment of the distribution were below 7%. The peak of the distribution as calculated
by the moment method was always reduced compared to the peak calculated by the
sectional method. We assume that this was because the particle size distribution is not
guaranteed to stay lognormal under the influence of the dry deposition process, and the
assumptions of the moment method are thus not satisfied. Nevertheless, the agreement
with the sectional method is good despite this obstacle.

The moment method, described by three coupled PDEs, proved to be more compu-
tationally efficient than the sectional model using 41 bins. Above tenfold speedup was
achieved, and the solution of each of the moment equations was only marginally more
computationally demanding that the solution of one sectional equation.

This performance improvement together with the reliable results shows that the mo-
ment methods, often used in large scale atmospheric models, can be useful also for the
microscale problems of pollutant dispersion in the urban environment.

The developed method as formulated here is applicable only when the particle size
distribution can be approximated as a lognormal distribution. Here we used only uni-
modal distribution, but the usage of multimodal distribution would be also possible by
superposition of several unimodal ones. Furthermore, the method could be reformu-
lated for other distributions, provided that algebraic relations between the moments and
distribution parameters are known.
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Chapter 7

Conclusions

7.1 Achieved results

This work dealt with the numerical simulations of the atmospheric flows, and its main
aim was to develop a method for the solution of the air flow and pollution dispersion
problems in the urban areas with vegetation. Let us now summarize what was actually
achieved.

• We developed a finite volume CFD solver based on the RANS turbulence modelling
approach. The solver includes two fluid flow models: compressible flow and atmo-
spheric boundary layer flow model based on the Boussinesq approximation. Fully
implicit temporal integration scheme utilizing the Jacobian-free Newton-Krylov
method provides an efficient way to achieve large time steps of the solver. The CFD
solver features k-ε turbulence model, and the implemented passive scalar equation
solver allows the solution of pollutant dispersion problems.

• Via the use of the AUSM+-up numerical flux, suitable for low speed flows, and the
low Mach preconditioning technique, the solver based on the compressible flow
equations achieved a comparable accuracy and performance as the solver dedi-
cated to ABL flows. This constitutes a promising result, as it shows that a generic
compressible flow solver can be applied to ABL flow with only small changes, thus
limiting the need for a dedicated solver. However, the comparison of the models
was performed only for limited set of test cases due to the time constraint, and
further comparison on different problems is advisable.

• The chosen approach of modelling the vegetation as a porous zone via the addi-
tional terms in momentum and turbulence equations is conceptually simple, and
the selected k-ε vegetation model is shown to reproduce the flow inside and around
the vegetation well in the simulated problems. Furthermore, the approach does
not introduce significant computational overhead compared to the vegetation-free
model, except for the need of finer mesh around the vegetation to capture the flow
in necessary detail.

• We adopted a detailed, physically based dry deposition model not previously used
in the microscale CFD simulations. The model proved to be capable of reproducing
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the experimentally observed filtration effects, however, some fine-tuning of the veg-
etation parameters is needed due to the uncertainty of the vegetation parameters.

• The developed solver was used to investigate the optimal parameters of a near-
road vegetation barrier when considering its effects on the pollution levels behind
the barrier. The solver was used as the crucial component of the optimization loop
which sought for the optimal position and density of the barrier. The optimized
variant relied mainly on the stirring of the air by the sparse vegetation, which
resulted in the high levels of turbulence and faster redistribution of the pollutant to
the upper layers of the atmosphere. The optimization method proved to be reliable,
and can be used for other environmental problems.

• An alternative approach for dust dispersion based on the moment method was
developed, and the deposition velocity model was adapted to fit in the moment
method framework. The numerical experiments showed that the moment method
may be more computationally efficient that the sectional approach based on the
solution of passive scalar equations. Taking into account the introduced complexity
of the method and the dry deposition model, the method is more suited for the
problems where the performance is of utmost concern. The development of the
moment method was not among the original objectives of the work, but it is very
much relevant to the problems discussed here and thus belongs in this thesis.

Not every initial goal was however fulfilled to its fullest, mostly due to the time
constraints. As noted above, performance comparison of the compressible and ABL
solver would benefit from being extended by other test cases. Furthermore, as discussed
in Sec. 2.3.4, the employed k-ε model does not include the buoyancy effects, possibly
limiting its accuracy in stratified flows. Consequently, not much place was given to the
investigation of the stratification effects in urban flows, as we have dealt mostly with
neutrally stratified atmosphere.

7.2 Further applications of the developed methods

The developed methods were applied by the author and his colleagues to some problems
related to the urban vegetation which were not discussed in this thesis. In the framework
of the grant TD020357 of the Technology Agency of the Czech Republic we investigated
the influence of the near-road barrier on the pollutant emitted from the highway in a cut
(Šíp et al., 2015). The air flow and the pollutant dispersion were calculated for more than
fifty geometrical variants of the vegetation block in order to help with the choice of the
optimal barrier in real world situations. The developed solver was a crucial tool in this
endeavor.

The moment method was applied to the investigation of the effects of vegetation
inside the street canyons in (Šíp and Beneš, 2016a). We investigated the dispersion of the
pollution from the road traffic located in the 3D street canyon under varying wind con-
ditions and with or without vegetation present. Behaviour of particles of different sizes
was under scrutiny in the work. In line with the previous experimental and numerical
studies we have shown that the vegetation reduces circulation inside the street canyon,
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and thus increases the pollutant levels at the pedestrian level. The dry deposition, often
neglected in similar studies, was shown to play a role only for coarse mode particles.
However, even for these, their reduction by the dry deposition was negligible compared
to the increase caused by the reduced circulation.

7.3 Future directions

The work has opened many additional question and possible further research directions.
We point out the following few, ranging from implementation issues to possible applica-
tions of the solver.

• Distributed-memory system parallelization. In the present implementation, the
solver is parallelized for shared-memory systems using the OpenMP multithread-
ing model. Such approach introduces a limit on the size of the solvable problems
(or, more precisely, size of the employed computational meshes) due to the memory
constraints, and currently leaves the large three dimensional problems with com-
plex geometries out of reach. Distributed-memory parallelization using the MPI
(Message Passing Interface) platform would remove this barrier.

• Turbulence modelling. Accuracy of the results is to a large extent dependent on
the choice of the turbulent model. As discussed in above, we did not consider
the stratification effects on the turbulence in the employed k-ε model. Also, the
limit on the size of the turbulence eddies in the ABL was not taken into account,
leaving the domain of applicability of the developed solver to restricted to small-
scale problems.

Even when small-scale problems are of concern, one might find a better model than
our employed standard k-ε model. Koutsourakis et al. (2012) showed that the two-
equation renormalization group (RNG) k-ε model performs better for street canyon
flows. Further improvements may be obtained by using an anisotropic Reynolds-
stress model, however, this options is more computationally demanding due to
the higher number of equations and in some cases worse convergence properties
(Crasto, 2007; Koutsourakis et al., 2012).

Related problem is the choice of the turbulent Schmidt number in dispersion stud-
ies, as the proper choice is generally case dependent (Tominaga and Stathopoulos,
2007), and can significantly affect the results. This problem is reduced, although
not fully eliminated, when large eddy simulation is employed. In LES the Schmidt
number is needed only for the subgrid turbulence fluxes, and its choice therefore
has smaller influence.

• Uncertainty in the vegetation parameters. The effects of the vegetation on the
air flow and pollutant dispersion are highly dependent on a number of parameters
that are difficult to estimate or measure: leaf area density profile, drag coefficient, or
size of the leaves and needles. In computational studies, this uncertainty should be
acknowledged and quantified using an appropriate method. Among such methods
could be the Monte Carlo sampling, or polynomial chaos expansion.
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• Urban environment assessment. Further improvements of the model would be
needed in order to provide a tool for comprehensive urban environment assess-
ment. For example, thermal effects of the tree canopy, such as shading effects or
heat transfer, were not considered here. A possible approach was presented in
(Mochida and Lun, 2008), where the authors discussed a CFD model including a
moisture transport equation coupled with the radiative heat transfer model. An-
other option would be to incorporate a model of “green walls”, i.e. walls covered
by vegetation. It was indicated that green walls in street canyons can reduce street
level concentration of PM10 by up to 60% (Pugh et al., 2012), even though this
seems overly optimistic to the author in light of the results obtained in (Šíp and
Beneš, 2016a).
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Appendix A

Mathematical notation

Coordinates. Coordinate vector is denoted by x. Its components in three dimensions
are x = (x1, x2, x3). In some contexts, an alternative notation x = (x, y, z) is established
and is also used in this work. Similarly, vector components are written using the index
notation, a = (a1, a2, a3), or using the alternative notation, a = (ax, ay, az), depending on
the context.

In the following we assume that all vectors are from the space R3 and all tensors are
from the space R3×3.

Vectors and matrices. Dot product of two vectors a and b:

a · b = a1b1 + a2b2 + a3b3 (A.1)

Tensor product of two vectors:

a⊗ b =


a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

 (A.2)

Vector product of two vectors:

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) (A.3)

Differential operators. Gradient of a scalar function f(x):

∇f =

(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)T
(A.4)

Jacobian of a vector function a(x) = (a1(x), a2(x), a3(x))T :

∇a =


∂a1
∂x1

∂a1
∂x2

∂a1
∂x3

∂a2
∂x1

∂a2
∂x2

∂a2
∂x3

∂a3
∂x1

∂a3
∂x2

∂a3
∂x3

 (A.5)
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Divergence of a vector function a(x) = (a1(x), a2(x), a3(x))T :

div a =
∂a1

∂x1
+
∂a2

∂x2
+
∂a3

∂x3
(A.6)

Divergence of a tensorA(x) = (Aij(x))3
i,j=1:

div A =

 3∑
j=1

∂Aj1
∂xj

,

3∑
j=1

∂Aj2
∂xj

,

3∑
j=1

∂Aj3
∂xj

T

(A.7)

Einstein notation. Occasionally the Einstein summation notation is used. Under this
notation, if an index appears twice in a term, a summation over this index is implied. For
example,

∂uj
∂xj

=
3∑
j=1

∂uj
∂xj

. (A.8)
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Appendix B

Vector form of the equations

Systems of equations implemented in the solver can be written in the form

Γ
∂W

∂t
+

3∑
j=1

∂F j(W )

∂xj
=

3∑
j=1

∂Rj(W ,∇W )

∂xj
+Q(W ), (B.1)

where Γ is the local preconditioning matrix,W is the state vector, F j(W ) are the inviscid
fluxes,Rj(W ,∇W ) are the viscous fluxes, andQ(W ) are the sources and sinks. Its forms
for all implemented systems are given below.

When temporal evolution of the system is of interest, and the preconditioning is used,
dual time stepping in time τ (see Sec. 3.1) has to be employed:

Γ
∂W

∂τ
+A

∂W

∂t
+

3∑
j=1

∂F j(W )

∂xj
=

3∑
j=1

∂Rj(W ,∇W )

∂xj
+Q(W ). (B.2)

For details on the equations and the notation used see the referred sections.

B.1 Compressible flow equations

The compressible flow equations were described in Sections 2.1.1 and 2.3.

W = (ρ, ρu1, ρu2, ρu3, ρE)T (B.3)

F j = (ρuj , ρuju1 + δ1jp, ρuju2 + δ2jp, ρuju3 + δ3jp, ρuj(E + p/ρ))T (B.4)

Rj = (0, τE1j , τ
E
2j , τ

E
3j , τ

E
j1u1 + τEj2u2 + τEj3u3 − puj + (kL + µT cp/PrT ) (∂T/∂xj))

T (B.5)

Q = (0, ρf1, ρf2, ρf3, ρq + ρf · u)T (B.6)
Γ = I (Non-preconditioned equations) (B.7)
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Weiss-Smith preconditioner (Sec. 3.2)

Γ−1 = I − (1− ε)(γ − 1)

c2



U2

2 −u1 −u2 −u3 1

u1
U2

2 −u2
1 −u1u2 −u1u3 u1

u2
U2

2 −u1u2 −u2
2 −u2u3 u2

u3
U2

2 −u1u3 −u2u3 −u2
3 u3

hU
2

2 −u1h −u2h −u3h h


(B.8)

A = I (B.9)

B.2 ABL flow equations

The ABL flow equations were described in Sections 2.1.3 and 2.3, and the artificial com-
pressibility approach was elaborated on in Sec. 3.1.

W = (p∗, u1, u2, u3, θ)
T (B.10)

F j = (uj , uju1 + δ1jp
∗/ρref , uju2 + δ2jp

∗/ρref , uju3 + δ3jp
∗/ρref , ujθ)

T (B.11)

Rj = (0, νE(∂u1/∂xj), νE(∂u2/∂xj), νE(∂u3/∂xj), (kL/ρrefcp + νT /PrT ) (∂θ/∂xj))
T

(B.12)

Q = (0, fB1 , f
B
2 , f

B
3 , q/cp)

T (B.13)

A =



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(B.14)

Classical artificial compressibility

Γ =



1/β 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(B.15)
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Generalized artificial compressibility

Γ =



1/β 0 0 0 0

u1/β 1 0 0 0

u2/β 0 1 0 0

u3/β 0 0 1 0

θ/β 0 0 0 1


(B.16)

B.3 Passive scalar equation

The passive scalar equation was described in Sections 2.2 and 2.3.3.

W = (c)T (B.17)

F j = ((uj − usδj3)c)T (B.18)

Rj = (νT /ScT ∂c/∂xj)
T (B.19)

Q = (Sc)
T (B.20)

Γ = I (B.21)

B.4 Standard k-ε turbulence model

The standard k-ε turbulence model was described in Sec. 2.3.4.

W = (ρk, ρε)T (B.22)

F j = (ρujk, ρujε)
T (B.23)

Rj = ((µL + µT /σk)(∂k/∂xj), (µL + µT /σε)(∂ε/∂xj))
T (B.24)

Q = (Pk − ρε, Cε1(ε/k)Pk − Cε2ρε2/k)T (B.25)
Γ = I (B.26)
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Appendix C

Dry deposition model for the
moment method

When adapting the dry deposition model for the moment method, we are looking the
expression of the deposition velocity u′d approximating the original model, u′d ≈ ud,
while allowing the analytical evaluation of the integral in the sink term of the moment
equations

Sdep,k = −LAD

∫ ∞
0

dkpu
′
d(dp)nN (dp)ddp. (C.1)

The model proposed in (Petroff et al., 2008b) and (Petroff et al., 2009) expresses the
deposition velocity as a sum of the deposition velocities associated with the underlying
processes: Brownian diffusion, interception, inertial impaction, turbulent impaction, and
sedimentation,

ud = 2(uBD + uIN + uIM + uTI + uSE) =
∑
proc

2uproc, (C.2)

where we sum over the above mentioned physical processes.
In the following sections we will look at the expressions for the deposition velocities

uproc to consider if the integral associated with each process∫ ∞
0

dkpuproc(dp)nN (dp)ddp (C.3)

can be evaluated analytically, and if not, we will propose an approximate form of the
deposition velocity u′proc ≈ uproc. With this approximation, we will then evaluate the
integral to obtain the formulation of the sink term to be used in the moment equations,

Sdep,k =
∑
proc

Sproc,k =
∑
proc

−2 LAD

∫ ∞
0

dkpu
′
proc(dp)nN (dp)ddp. (C.4)

Brownian diffusion

Brownian diffusion is the dominant process driving the deposition of the particles smaller
then 0.1 µm. Original model formulates the contribution to the deposition velocity due
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to the Brownian diffusion as

uBD = UCBSc
−2/3RenB−1 (C.5)

where U is the magnitude of the wind velocity, Sc = νa/DB is the Schmidt number
(with νa being the kinematic viscosity of air and DB the Brownian diffusion coefficient,
DB = (CCkbTa)/(3πµadp)), Re = Ude/νa is the Reynolds number, and de is the needle
diameter.

Cunningham correction factor CAC = 1 + 2λ/dp(1.257 + 0.4 exp(−1.1dp/2λ)) is used in
the original model (Petroff et al., 2008b), where λ is the mean free path of the particle in
the air. In this chapter we use simpler approximation CBC = 1+3.34λ/dp (Bae et al., 2009).
Comparison of these expressions is on Fig. C.1, where it can be seen that their difference
peaks to 12% for particle diameter around 0.2 µm.
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Figure C.1: (Left) Two expressions for the Cunningham correction factor. (Right) Relative
difference (CBC − CAC )/CAC .

Furthermore, for the Brownian diffusion we take into account only the size-dependent
part of the correction factor, dominant in the particle size range where the diffusion is
significant, CC ≈ 3.34 λ

dp
. Putting the expressions above into Eq. (C.5), we obtain

uBD ≈ u′BD = UnBγ1γ
2/3
2 d−4/3

p , (C.6)

where γ1 = CB (de/νa)
nB−1 (3πν2

aρa/(kbTa)
)−2/3 and γ2 = 3.34λ.

Using this formula, the contribution to the moment equation can be written as

SBD,k = −2 LAD UnBγ1γ
2/3
2 Mk−4/3. (C.7)

Interception

Interception denotes the process where the particle follows the streamline, but too close
to the obstacle so that it is captured on the surface. The original model parameterizes the
contribution of the interception process to the deposition velocity differently for needles
and broadleaves. For needles, it reads

uIN = 2Ukx
dp
de
, (C.8)
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and for broadleaves

uIN =
1

2
Ukx

dp
de

(
2 + ln

(
4de
dp

))
=

1

2
Ukx

dp
de

(2 + ln(4de)− ln(dp)) , (C.9)

where kx is the ratio of the leaf surface projected on the plane perpendicular to the flow
to the total leaf surface.

The expression for needles can be integrated easily, since there is a linear dependence
on the particle diameter. That is not the case for the broadleaves due to the logarithm in
the expression. We approximated the last term in the bracket by the power law function,

− ln(dp) = ain d
bin
p , (C.10)

where the coefficients ain = 4.57 and bin = −0.078 were obtained by the numerical
minimization of the quadratic error of the original and approximated formulation on
the diameter interval dp ∈ [10−8, 10−3]m. Comparison of the original and approximated
term is shown on Fig. C.2.
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Figure C.2: Original and approximated expressions for − ln(dp) in the interception term.

Formally, the approximated deposition velocity may be written as

u′IN =

{
2Ukx

dp
de

for needles,
1
2Ukx

dp
de

(
2 + ln(4de) + ain d

bin
p

)
for broadleaves.

(C.11)

These expressions now can be integrated, and we obtain

SIN,k =

{
−2 LADγ3UMk+1 for needles,

−2 LAD
(γ3

4 U(γ7Mk+1 + ainMk+1+bin)
)

for broadleaves,
(C.12)

where γ3 = 2kx/de and γ7 = ln(4de).
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Inertial impaction

Inertial impaction occurs when particles do not follow the streamlines due to their inertia,
resulting in the collision with the obstacle. The deposition velocity due to the inertial
impaction is written as

uIM = UkxEIM , (C.13)

whereEIM =
(

St
St+β

)2
is the impaction efficiency, St = τpU/de is the Stokes number, τp =

(ρpCcd
2
p)(18µ) is the particle relaxation time, and β is the model constant (0.6 for needles

and 0.47 for broadleaves). To use this deposition velocity in the moment equations, we
replace the impaction efficiency (considered as a function of the Stokes number) by its
piecewise linear approximation,

E′IM =


0 if St < s0,

aiSt+ bi if si ≤ St < si+1, i = 0, . . . ,m− 1,

1 if St ≥ sm,
(C.14)

where {si}mi=0 are selected interpolation points, ai and bi are coefficients calculated so that

E′IM (si) = EIM (si) for i = 0, . . . ,m. (C.15)

Here we have set {si} = {10−2, 10−1, 1, 10, 102}. Low number of interpolation points
was chosen deliberately to limit the computational needs. The original function and the
approximation are shown on Fig. C.3.
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Figure C.3: Original and approximated expressions for the impaction efficiency for
needles (β = 0.6, left) and broadleaves (β = 0.47, right).

This approximation introduces an underprediction of the impaction efficiency es-
pecially for Stokes numbers between 1 and 10. This was however deemed to be an
acceptable compromise between the accuracy and the computational efficiency. A higher
number of interpolation points would reduce this error.

Approximated deposition velocity can then be formally written as

u′IM = UkxE
′
IM . (C.16)
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The corresponding term in the moment equation is obtained by calculating the integrals
in

SIM,k = −2 LAD

∫ ∞
0

dkpUkxE
′
IM (dp)nN (dp)ddp

= −2 LAD Ukx

(
m−1∑
i=0

∫ si+1

si

dkp(aiSt+ bi)nN (dp)ddp +

∫ ∞
sm

dkpnN (dp)ddp

)
. (C.17)

After some algebraic manipulations, the term may be written using the incomplete mo-
ments M−k (x) =

∫ x
0 d

k
pnN (dp)ddp and M+

k (x) =
∫∞
x dkpnN (dp)ddp as

SIM,k = −2 LAD Ukx

[
γ8

m−1∑
i=0

ai(M
−
k+2(si+1)−M−k+2(si)) (C.18)

+

m−1∑
i=0

bi(M
−
k (si+1)−M−k (si)) +M+

k (sm)

]
, (C.19)

where γ4 = ρpU/(18µde).

Turbulent impaction

Effect of the particle impaction due to the canopy turbulence is described by the deposi-
tion velocity

uTI =

{
ufKTI1τ

+
p

2 if τ+
p < 20,

ufKTI2 if τ+
p ≥ 20.

(C.20)

Here τ+
p = τpu

2
f/νa is the dimensionless particle relaxation time, τp =

ρpCcd2
p

18µa
is the particle

relaxation time, uf is the local friction velocity, and KTI1 and KTI2 are the constants of
the model. The contribution to the moment equation can be again expressed using the
incomplete moments,

STI,k = −2 LAD
(
u5
fγ5M

−
k+4(dT2

p ) + ufKTI2M
+
k (dT2

p )
)

(C.21)

with the threshold dT2
p =

√
360µaνa
ρpu2

f
and γ5 =

KTI1ρ
2
pρ

2
a

(18µ2
a)2 .

Sedimentation

Sedimentation plays the major role for the particles with the diameter above 10 µm. The
sedimentation contribution to the deposition velocity is expressed as

uSE =
kzgρpCCd

2
p

18µa
, (C.22)

where kz is the ratio of the leaf surface projected to the horizontal plane to the total leaf
surface.

110



Substituting this expression to the integral in the moment equation, after some alge-
braic manipulations we obtain

SSE,k = −2 LADγ6(Mk+2 + γ2Mk+1) (C.23)

with γ6 =
kzgρp
18µa

and γ2 = 3.34λ as before.
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Sun, J., Nappo, C. J., Mahrt, L., Belušić, D., Grisogono, B., Stauffer, D. R., . . . Neff, W. D.
(2015). Review of wave-turbulence interactions in the stable atmospheric boundary
layer. Rev. Geophys. 53(3), 956–993. doi:10.1002/2015rg000487

Svanberg, K. (2002). A class of globally convergent optimization methods based on con-
servative convex separable approximations. SIAM J. Optim. 12(2), 555–573. doi:10.1
137/S1052623499362822

Svensson, U. & Häggkvist, K. (1990). A two-equation turbulence model for canopy flows.
J. Wind Eng. Ind. Aerodyn. 35, 201–211. doi:10.1016/0167-6105(90)90216-Y

Tiwary, A., Morvanb, H. & Colls, J. (2005). Modelling the size-dependent collection effi-
ciency of hedgerows for ambient aerosols. J. Aerosol Sci. 37, 990–1015. doi:10.1016
/j.jaerosci.2005.07.004

118

http://dx.doi.org/10.1137/0907058
https://arxiv.org/abs/1605.03397
https://arxiv.org/abs/1605.03397
https://arxiv.org/abs/1609.03427
https://arxiv.org/abs/1609.03427
http://dx.doi.org/10.1016/0004-6981(82)90271-2
http://dx.doi.org/10.1007/s10546-012-9726-5
http://dx.doi.org/10.1016/j.atmosenv.2011.12.051
http://dx.doi.org/10.1023/a:1001108411184
http://dx.doi.org/10.1023/a:1001108411184
http://dx.doi.org/10.1002/2015rg000487
http://dx.doi.org/10.1137/S1052623499362822
http://dx.doi.org/10.1137/S1052623499362822
http://dx.doi.org/10.1016/0167-6105(90)90216-Y
http://dx.doi.org/10.1016/j.jaerosci.2005.07.004
http://dx.doi.org/10.1016/j.jaerosci.2005.07.004


Tomas, J. M., Pourquie, M. J. B. M. & Jonker, H. J. J. (2016). Stable stratification effects on
flow and pollutant dispersion in boundary layers entering a generic urban environ-
ment. Boundary-Layer Meteorol, 159(2), 221–239. doi:10.1007/s10546-015-0124-7

Tominaga, Y. & Stathopoulos, T. (2007). Turbulent Schmidt numbers for CFD analysis
with various types of flowfield. Atmos. Environ. 41, 8091–8099. doi:10 . 1016
/j.atmosenv.2007.06.054

Tominaga, Y. & Stathopoulos, T. (2013). CFD simulation of near-field pollutant dispersion
in the urban environment: a review of current modeling techniques. Atmos. Environ.
79, 716–730. doi:10.1016/j.atmosenv.2013.07.028

Turkel, E. (1985). Algorithms for the Euler and Navier-Stokes equations for supercom-
puters. In Progress and supercomputing in computational fluid dynamics (pp. 155–172).
Springer.

Turkel, E. (1987). Preconditioned methods for solving the incompressible and low speed
compressible equations. J. Comput. Phys. 72(2), 277–298. doi:10.1016/0021-9991(87
)90084-2

Turkel, E. (1999). Preconditioning techniques in computational fluid dynamics. Annu.
Rev. Fluid Mech. 31(1), 385–416. doi:10.1146/annurev.fluid.31.1.385

Uehara, K., Murakami, S., Oikawa, S. & Wakamatsu, S. (2000). Wind tunnel experiments
on how thermal stratification affects flow in and above urban street canyons. Atmo-
spheric Environment, 34(10), 1553–1562. doi:10.1016/s1352-2310(99)00410-0

Van Leer, B., Lee, W.-T. & Roe, P. L. (1991). Characteristic time-stepping or local precondi-
tioning of the Euler equations. In 10th computational fluid dynamics conference (Vol. 1,
pp. 260–282).

Venkatakrishnan, V. (1995). Convergence to steady state solutions of the Euler equations
on unstructured grids with limiters. J. Comput. Phys. 118, 120–130. doi:10.1006/jcph.
1995.1084

Vranckx, S., Vos, P., Maiheu, B. & Janssen, S. (2015). Impact of trees on pollutant disper-
sion in street canyons: a numerical study of the annual average effects in Antwerp,
Belgium. Sci. Total Environ. 532, 474–483. doi:10.1016/j.scitotenv.2015.06.032

Weiss, J. M. & Smith, W. A. (1995). Preconditioning applied to variable and constant
density flows. AIAA Journal, 33(11), 2050–2057. doi:10.2514/3.12946

Whitby, E. & McMurry, P. (1997). Modal aerosol dynamics modeling. Aerosol Sci. Technol.
27(6), 673–688. doi:10.1080/02786829708965504

Whitby, E., McMurry, P., Shankar, U. & Binkowski, F. (1991). Modal aerosol dynamics mod-
eling. U.S. Environmental Protection Agency. Research Triangle Park, NC 27711.

Wilcox, C. (1993). Turbulent modelling for cfd. DCW Industries Inc., California.
Wilson, N. R. & Shaw, R. H. (1977). A higher order closure model for canopy flow. J. Appl.

Meteorol. 16(11), 1197–1205. doi:10.1175/1520-0450(1977)016<1197:AHOCMF>2.0
.CO;2

Yang, C. & Cai, X.-C. (2014). A scalable fully implicit compressible Euler solver for meso-
scale nonhydrostatic simulation of atmospheric flows. SIAM J. Sci. Comput. 36(5),
S23–S47. doi:10.1137/130919167

Zeytounian, R. K. (2003). Joseph Boussinesq and his approximation: a contemporary
view. Comptes Rendus Mécanique, 331(8), 575–586. doi:10.1016/s1631- 0721(03)001
20-7

119

http://dx.doi.org/10.1007/s10546-015-0124-7
http://dx.doi.org/10.1016/j.atmosenv.2007.06.054
http://dx.doi.org/10.1016/j.atmosenv.2007.06.054
http://dx.doi.org/10.1016/j.atmosenv.2013.07.028
http://dx.doi.org/10.1016/0021-9991(87)90084-2
http://dx.doi.org/10.1016/0021-9991(87)90084-2
http://dx.doi.org/10.1146/annurev.fluid.31.1.385
http://dx.doi.org/10.1016/s1352-2310(99)00410-0
http://dx.doi.org/10.1006/jcph.1995.1084
http://dx.doi.org/10.1006/jcph.1995.1084
http://dx.doi.org/10.1016/j.scitotenv.2015.06.032
http://dx.doi.org/10.2514/3.12946
http://dx.doi.org/10.1080/02786829708965504
http://dx.doi.org/10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2
http://dx.doi.org/10.1137/130919167
http://dx.doi.org/10.1016/s1631-0721(03)00120-7
http://dx.doi.org/10.1016/s1631-0721(03)00120-7


Zhang, L., Gong, S., Padro, J. & Barrie, L. (2001). A size-segregated particle dry deposition
scheme for an atmospheric aerosol module. Atmos. Environ. 35(3), 549–560. doi:10.1
016/S1352-2310(00)00326-5

120

http://dx.doi.org/10.1016/S1352-2310(00)00326-5
http://dx.doi.org/10.1016/S1352-2310(00)00326-5

	Contents
	Nomenclature
	Introduction
	Motivation
	State of the art
	Equations of the fluid flow
	Turbulence modelling
	Computational method and mesh
	Dry deposition
	Summary

	Aims of the work
	Structure of the work

	Mathematical models of the fluid flow in the ABL
	Fluid flow equations
	Equations of the compressible flow
	Thermodynamical relations
	Atmospheric boundary layer flow model
	Flow in the neutrally stratified atmosphere
	Summary

	Passive scalar equation
	Gravitational settling of the particles

	Turbulence modelling
	Reynolds and Favre averaging
	Eddy viscosity hypothesis
	Passive scalar equation
	Turbulence models

	Boundary conditions for the ABL flows
	Thermodynamic variables
	Velocity profile
	Boundary conditions for the k-epsilon model

	Models of the vegetation
	Fluid flow and turbulence
	Dry deposition


	Numerical methods
	Artificial compressibility
	Low Mach preconditioning
	Spatial discretization
	Inviscid fluxes
	Viscous fluxes
	Boundary conditions

	Temporal discretization
	Time stepping in physical time
	Time stepping in pseudo time

	Solution process
	Nonlinear system solution
	Linear system preconditioning
	Coupling of the fluid flow and turbulence solvers
	Iteration process control
	Overview

	Solution of 2D problems

	Validation
	Rising thermal bubble
	Test case description
	Results

	Flow over an isolated 2D hill
	Test case description
	Grid dependency study
	Results
	Performance study

	Wind flow in and around a forest canopy
	Numerical model
	Results
	Discussion

	Particle collection by a vegetation barrier
	Numerical model
	Results
	Conclusion


	Application: CFD optimization of a vegetation barrier
	Introduction
	Case settings
	Optimization
	Method
	Case specific settings

	Results
	Discussion

	Moment method aerosol transport solver
	Introduction
	Mathematical formulation
	Number concentration equation
	Moment equations
	Deposition model for the moment method
	Lognormal distribution
	Choice of the moments
	Numerical implementation

	Applications
	Tree patch in 2D
	Hedgerow in 3D
	Computational performance

	Conclusions

	Conclusions
	Achieved results
	Further applications of the developed methods
	Future directions

	Mathematical notation
	Vector form of the equations
	Compressible flow equations
	ABL flow equations
	Passive scalar equation
	Standard k-epsilon turbulence model

	Dry deposition model for the moment method
	Bibliography

