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Abstract

The thesis deals with the numerical solution of the 2D and 3D flows in atmospheric bound-
ary layer. Flows in atmospheric boundary layer are modeled as a flow of the incompressible
fluid. The work presents several mathematical models that could be used to simulate the
flows in atmospheric boundary layer and shows results of these simualtions on 2D and 3D
geometries, usually flows around cosine function shaped hills.

To simulate the fluid flow in atmospheric boundary layer means to use a large scale
computational domains, where the lengt scales are ones or tens of kilometres and the
velocities of the fluid motion are from ones to tens of metres per second and it leads to
simulations with very high Reynolds numbers about 107 − 109.

There has been taken into account a simple system of incompressible incompressible
Reynolds averaged Navier-Stokes equations together with the Cebecci-Smith algebraic
turbulence model as a mathematical model and the first results have been obtained. The
second mathematical model that has been used to simulate the flows in atmospheric bound-
ary layer is the Boussinesq model, i.e. the system of incompressible Reynolds averaged
Navier-Stokes equations with addition of the equation of density change. The second
model has been tuned on several 2D and 3D geometry configurations and computational
grids with different boundary conditions in order to achieve a creation of so called Lee
waves which should be present in a stably stratified flows.

The overview and validation of k− ε type turbulence models and first stably stratified
flows over the “Witch of Agnesi hill“ using standard k− ε turbulence model are presented
in this work and compared with another numerical results.

The thesis also brings an overview of mathematical a numerical methods that have been
used to compute all results, such as artificial compressibility method, finite volume method
and explicit numerical schemes (multistage Runge-Kutta scheme and Lax-Wendroff (Mac-
Cormack) scheme).

Key words: Computational Fluid Dynamics, Finite Volume Method, Artificial Com-
pressibility Method, Atmospheric Boundary Layer Flows, Variable density Flows, Strati-
fied Flows, High Reynolds Number Flows
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Abstrakt

Práce pojednává o numerickém modelováńı 2D a 3D prouděńı v mezńı vrstvě atmosféry.
Prouděńı v mezńı vrstvě atmosféry je modelováno jako prouděńı nestlačitelné tekutiny.
V práci je představeno několik matematických model̊u, které mohou být použity k simu-
laćım prouděńı v mezńı vrstvě atmosféry, a prezentovány výsledky numerických simulaćı
provedených na 2D a 3D geometríıch. Povětšinou je uvažováno prouděńı okolo kopečk̊u
tvaru funkce cosinus.

Simulovat prouděńı v mezńı vrstvě atmosféry znamená simulovat prouděńı v oblastech,
jejichž charakteristické rozměry jsou v řádech jednotek až deśıtek kilometr̊u a rychlosti
prouděńı jsou řádově jednotky až deśıtky metr̊u za sekundu. Tyto parametry vedou na
simulace s obrovskými Reynoldsovými č́ısly kolem 107 − 109.

Jako nejjednodušš́ı matematický model byly použity nestlačitelné středované Reynoldsovy
rovnice, uzavřené algebrackým modelem turbulence, a byly źıskány prvńı numerické výsledky.
Jako druhý model pro simulace prouděńı v mezńı vrstvě atmosféry byl použit Boussinesq̊uv
model, to znamená nestlačitelné středované Reynoldsovy rovnice s přidanou transportńı
rovnićı pro hustotu. Druhý model byl laděn na několika r̊uzných 2D a 3D konfiguraćıch ge-
ometrie výpočetńı oblasti s r̊uznými okrajovými podmı́nkami, za účelem źıskáńı výsledk̊u
prouděńı s vlnitým charakterem (”lee waves”), vlny které by měly vznikat u stratifiko-
vaného prouděńı v mezńı vrstvě atmosféry.

Část práce je věnovaná také modelováńı turbulence a popisuje vybrané turbulentńı
modely typu k − ε. Jsou zde také prezentovány prvńı numerické výsledky prouděńı okolo
kopečku tvaru “Witch of Agnesi“ s použit́ım standardńıho k−ε modelu turbulence a jejich
srovnáńı s jinými numerickými vysledky.

Práce také přináš́ı přehled matematických a numerických metod, které byly použity k
vypočteńı všech prezentovaných výsledk̊u, jako jsou metoda umělé stlačitelnosti, metoda
konečných objemů a explicitńı numerická schémata (v́ıcestupňové Runge-Kuttovo schéma
a Laxovo-Friedrichsovo (MacCormackovo) schéma).

Kĺıčová slova: Poč́ıtačová mechanika tekutin, metoda konečných objemů, metoda umělé
stlačitelnosti, prouděńı v mezńı vrstvě atmosféry, prouděńı s proměnnou hustotou, strati-
fikované prouděńı, prouděńı s vysokými Reynoldsovými č́ısly
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τij ith, jth component of the shear stress tensor
Ω domain of solution (computational)
Ωi ith finite volume
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Chapter 1

Introduction

The thesis deals with the computational fluid dynamics (CFD) to be precise with modeling
of atmospheric boundary layer flows. CFD is a part of the quite young and fast growing
family of numerical simulations of physical processes. The popularity of numerical simula-
tions in general grows fast nowadays, mainly thanks to fast growing computational power
of today’s computers. It is much more cheaper and faster to run the numerical simulation
than to perform an experiment and also sometimes it could be almost impossible to do an
experiment but the numerical simulation can provide accurate results. One of the branch
where the CFD simulation could provide us more information than experiment is the flow
in atmospheric boundary layer.

Atmospheric Boundary Layer, sometimes called planetary boundary layer, is the lowest
part of the troposphere that is directly influenced by the presence of the Earth’s surface,
and responds to surface forcing with a timescale of about an hour or less. This forcing
includes frictional drag, evaporation and transpiration, heat transfer, pollutant emission,
and terrain induced flow modification. The boundary layer thickness is quite variable in
time and space, ranging from tens of meters in strongly statically stable situations, to
several kilometers in convective conditions [10]. It is often turbulent and is capped by a
statically stable layer of air or temperature inversion. The shape of the ground strongly
influences the air flow. The boundary layer is quite thin over smooth terrains, and much
thicker over hilly, tree-covered, or urban areas with many large buildings.

Atmospheric boundary layer flows are related to meteorology and weather forecasts,
transport of pollutant particles and their sedimentation (environmental problems), placing
of wind-power plants, influence of large buildings and many other applications. Due to all
the things that have been mentioned above is very necessary to know as much as possible
about the behavior of the flows in atmospheric boundary layer in order to do right decisions
which could influence the environment.

Simulation of atmospheric boundary layer flows is not a trivial problem. To find a
complex mathematical model and a robust numerical method that will be able accurately
capture all the phenomena of atmospheric boundary layer flows and will be computable
on today’s computers is very challenging task nowadays.

The flows in atmosphere are influenced by a lot of factors such as non constant vertical
pressure, density and temperature distribution (stratification) and also the topology and
roughness of the ground. The next thing is that the flow in atmospheric boundary layer is
always a large scale problem. The size of the domain is about ones to tens of kilometers
and the flow velocities are about ones to tens of meters per second. The resulting Reynolds
numbers are between 107 − 109, which means that the flow is fully turbulent (turbulence
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is anisotropic in atmospheric boundary layer) and the choice of the turbulence modeling
method plays significant role. But, the usage of methods such as direct numerical sim-
ulation (DNS) or large eddy simulation (LES) is almost impossible in cases with such a
high Reynolds numbers. Then the possible solution of modeling turbulent flows is to use
the system of Reynolds averaged Navier-Stokes (RANS) equations together with suitable
turbulence model.

The state of the art

The simulation of the atmospheric boundary layer flows and stratified flows have been
investigated at the Czech Technical University - Faculty of Mechanical Engineering - De-
partment of Technical Mathematics in cooperation with the Institute of Thermo-mechanics
of Czech Academy of sciences and with French LSEET Université de Toulon et du Var for
more than 15 years.

In the beginning the basic problem and the simple mathematical model describing the
atmospheric boundary layer flows has been chosen (Beneš, Bodnár, Sládek and Kozel) [21],
[22]. Later on, the model has been improved by addition of the equation for transport of the
passive pollutants. This model has been used for forecasts of the spread and sedimentation
of pollutants coming from the brown coal depot [37], [38]. The similar problem has been
investigated by Castro [23], [24], who compared the experimental data with the numerical
simulation.

The stratified flows have been solved also by Beneš, Fürst and Fraunié [27]. The
behavior of the stratified fluid in towing tank has been investigated in this case. Nowadays
the thermally stratified atmospheric boundary layer flows are solved by Sládek, Kozel and
Jaňour [34], [35], [36] who has been working on validation of the potential temperature
model and comparison of the results with Eidsvik and Utnes [26]. The density based
model, that has been used the most for numerical simulations of the stratified atmospheric
boundary layer flows presented in this thesis, is similar to the one that has been presented
by Uchida and Ohya [50]. This model was investigated also by Fürst, Beneš and Fraunié
[17], [19], [27] applied to the atmospheric boundary layer flows and stratified flows in
towing tank.

Aims of the work

Choice of the mathematical model
The choice of the governing equations and the appropriate boundary conditions plays the
key role in further modeling. On the one hand the model has to correspond the with the
phenomenon that is going to be modeled. On the other hand the mathematical model
should be the simplest possible to be easily solvable.

Development of the numerical method and solver
The selected numerical method has to be the as accurate as possible, but also easy to
implement.

Validation and application of the model and numerical method
It should be shown how the results of selected method correspond with the real phenomena
by comparison of obtained results with the experimentally obtained data or with numer-
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ical results of the similar mathematical model obtained by another numerical method.
Application of the method to the real cases or to the cases that should model the real
applications should be presented.

Structure of the thesis

Part I - Mathematical Models

The governing equations describing fluid motion are introduced in the first chapter of this
thesis. These equations are partial differential equations arising from the conservation
laws. To be exact, they are derived from the conservation of mass, momentum and en-
ergy. The main ideas of the derivation of governing equations are presented. Resulting
equations are so called Navier-Stokes equations. Their name comes from the names of two
men Claude-Louis Navier and George Gabriel Stokes, who independently derived these
equations in 19th century. Hereafter the several forms of Navier-Stokes equations are men-
tioned, especially the variants of variable density flows, stratified flows. Readers will see
that the variable density flows could be modeled by several approaches, using the trans-
port equations for three different quantities, which are absolute temperature, potential
temperature and density.

The second chapter is devoted to turbulent flows modeling. Several methods for mod-
eling turbulent flows such as Direct Numerical Simulation (DNS), Large Eddy Simula-
tion (LES) and averaging of Navier-Stokes equations are briefly introduced there. Much
more interest is devoted to the last mentioned averaging of Navier-Stokes equations. The
Reynolds Averaged Navier-Stokes equations are presented and algebraic turbulence mod-
els and several k − ε turbulent kinetic energy transport turbulence models are described.
Also the k − ε turbulence model developed for the stratified flows is mentioned.

Part II - Numerical Solution

The chosen governing equations for modeling atmospheric boundary layer flows are intro-
duced there in theirs standard and vector forms. The scaling of flow variables is shown
there. The artificial compressibility method for pressure-velocity coupling for incompress-
ible Navier-Stokes equations has been chosen and is described. The finite volume method
(FVM) has been chosen as a discretization method of the governing equations and two
explicit numerical schemes (multistage Runge-Kutta scheme and Lax-Wendroff scheme in
MacCormack form) have been presented and used for further numerical computations. A
section devoted to the stability issues of selected schemes is also in this part and a the
stabilizing of the computations using artificial dissipation (artificial viscosity) is mentioned
there. The basic 2D and 3D computational domains with one cosine function shaped hill
and 2D computational domain with one so called ”Which of Agnesi” hill and the survey
of boundary conditions that have been used to close the mathematical model are stated
at the end of this numerical part.

Part III - Numerical Results

Selected numerical results are presented and commented in last part of this thesis. Several
2D and 3D results of simplified real-case stratified atmospheric boundary layer flows are
presented (the stratified flows over cosine shaped hills). The validation of the newly
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implemented standard k − ε turbulence model and first results of the neutrally stratified
turbulent flows modeled using this turbulence model are shown and compared with the
other results in this part.
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Mathematical Models
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Chapter 2

Governing equations

Contents

2.1 Conservation Laws of Fluid Motion . . . . . . . . . . . . . . . . 28

2.1.1 Conservation of Mass . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . 28

2.1.3 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.4 Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Navier-Stokes equations for compressible flow . . . . . . . . . . 31

2.3 Navier-Stokes equations for incompressible (neutrally strati-
fied flows) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Equations for modeling incompressible stratified flows . . . . . 33

2.4.1 Equations for variable density flows . . . . . . . . . . . . . . . . 33

2.4.1.1 Boussinesq model . . . . . . . . . . . . . . . . . . . . . 33

2.4.1.2 Full approximation . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Equations for stratified atmospheric boundary layer flows . . . . 33

2.4.2.1 Potential temperature based model . . . . . . . . . . . 33

2.4.2.2 Density based model . . . . . . . . . . . . . . . . . . . . 34

2.4.2.3 Pressure perturbation model (Density based) . . . . . . 35

2.4.3 Stability of Stratified Flows . . . . . . . . . . . . . . . . . . . . . 36

First section of this chapter is devoted to the overview of basic mathematical models
and principles in fluid dynamics modeling. The main part of mathematical model is the
system of partial differential equations that describes the problem. The system of govern-
ing equations is always based on conservation laws of fluid dynamics. The conservation
of mass, momentum and energy has to be fulfilled and some transport equations for any
other quantities could be added to the basic system in order to affect all the quantities
that one would like to model.

Following section gives to the reader just a brief overview about the conservation laws
and theirs resulting partial differential equations. One can find the detailed derivation e.g.
in [2], [3] or [11].
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2.1 Conservation Laws of Fluid Motion

2.1.1 Conservation of Mass

The mass balance has to be fulfilled in the fluid motion. It means that the mass which
comes into a selected volume of the fluid has to be the same as the mass that leaves this
volume in each time interval. This could be expressed by a following equation:

∂ρ

∂t
+

3
∑

j=1

∂ρuj
∂xj

= 0, (2.1)

or in vector form:
∂ρ

∂t
+ div(ρU) = 0. (2.2)

Equations (2.1) and (2.1) describe the conservation of mass in the compressible fluid. If
one assumes that the fluid is incompressible, i.e. the density ρ is constant. Then the
previously defined continuity equations could be simplified as follows:

3
∑

j=1

∂uj
∂xj

= 0, (2.3)

or written in vector form:

div(U) = 0. (2.4)

Equation (2.3) and (2.4) are the continuity equations for the incompressible flows.

2.1.2 Conservation of Momentum

Newton’s second law states that the rate of change of momentum of a fluid particle equals
the sum of the forces on the particle. The rates of increase/decrease of x,y and z momentum
per unit volume of a fluid particle are given by material derivatives of velocity components:

ρ
Dui
Dt

=
∂ρui
∂t

+

3
∑

j=1

∂ρujui
∂xj

, (2.5)

There are two types of forces on fluid particles:
surface forces

- pressure forces

- viscous forces
body forces

- gravity force

- centrifugal force

- Coriolis force

- electromagnetic force

The surface forces are caused by pressure forces (described through the change of pressure
p) and the viscous forces (described through the change of stress tensor τij). The body
forces are usually added as a source terms SM in the momentum equations (SMi

is the ith

component of the momentum source term vector).
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The x component of the momentum equation is found by setting the rate of change
of x momentum of the fluid particle equal to the total force in the x direction on the
element due to surface stresses plus the rate of increase of x momentum due to sources.
The momentum equation (conservative form) could be given as follows:

∂ρui
∂t

+
3
∑

j=1

∂ρujui
∂xj

= − ∂p

∂xi
+

3
∑

j=1

∂τij
∂xj

+ SMi
, (2.6)

where τ is the stress tensor and for Newtonian fluids is symmetrical and is defined as
follows:

τij = µ

(

∂ui
∂xj

+
∂uj
∂xi

)

− 2

3
µ

(

3
∑

k=1

∂uk
∂xk

)

δij . (2.7)

The above mentioned momentum equation (2.6) together with the stress tensor τ defined in
(2.7) is the definition of momentum conservation for compressible flows. Using continuity
equation (2.1) one obtains the momentum equation in a non-conservative form:

ρ
∂ui
∂t

+ ρ
3
∑

j=1

uj
∂ui
∂xj

= − ∂p

∂xi
+

3
∑

j=1

∂τij
∂xj

+ SMi
, (2.8)

Lets suppose now that the density ρ is constant and use the continuity equation for
incompressible flows (2.3), then one obtains the momentum equation for incompressible
flows in conservative form:

∂ui
∂t

+

3
∑

j=1

∂ujui
∂xj

= −1

ρ

∂p

∂xi
+

3
∑

j=1

∂τij
∂xj

+ SMi
. (2.9)

The continuity equation for incompressible flows has to be completed by the incompressible
stress tensor τ term, which one obtains applying the incompressible continuity equation
(2.3) on (2.7) and dividing (2.7) by density ρ:

τij = ν

(

∂ui
∂xj

+
∂uj
∂xi

)

. (2.10)

If one substitutes the viscous force term in (2.9) by (2.10) and one uses incompressible
continuity equation (2.3) then one obtains:

3
∑

j=1

∂τij
∂xj

=
∂

∂xj

3
∑

j=1

ν
∂ui
∂xj

, (2.11)

and therefore the incompressible momentum equation (conservative form) could be defined
as follows:

∂ui
∂t

+

3
∑

j=1

∂ujui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

3
∑

j=1

ν
∂ui
∂xj

+ SMi
, (2.12)

and the non-conservative form of the incompressible momentum equation:

∂ui
∂t

+

3
∑

j=1

uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

3
∑

j=1

ν
∂ui
∂xj

+ SMi
. (2.13)
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2.1.3 Conservation of Energy

The energy equation is derived from the first law of thermodynamics which states that
the rate of change of energy of a fluid particle is equal to the rate of heat addition to the
fluid particle plus the rate of work done on the particle. The rate of increase/decrease of
energy of a fluid particle per unit volume is given by:

DE

Dt
=

∂E

∂t
+

3
∑

j=1

∂ujE

∂xj
, (2.14)

where E is total energy per unit of volume (total energy density) that consists of the
internal energy density plus kinetic energy density:

E = ρ

(

i+
1

2
|U|2

)

, (2.15)

where i is the internal energy density (i.e. internal energy per unit volume) of the fluid
particle.
Total rate of work done on the fluid particle by surface stresses:

−
3
∑

j=1

∂puj
∂xj

+
3
∑

j,k=1

∂ujτjk
xj

, (2.16)

where τij is defined by (2.7).
The rate of heat addition to the fluid particle due to heat conduction:

−
3
∑

j=1

∂q

∂xj
, (2.17)

where q is the heat flux defined by a Fourier’s law:

q = −κ∇T, (2.18)

where κ is heat conduction coefficient and T is absolute temperature. Putting all the terms
(2.14), (2.16), (2.17) together and adding a energy density source term SE one obtains the
complete energy equation (conservative form):

∂E

∂t
+

3
∑

j=1

∂ujE

∂xj
= −

3
∑

j=1

∂puj
∂xj

+

3
∑

j,k=1

∂ujτjk
xj

−
3
∑

j=1

∂qj
∂xj

+ ρq+ SE, (2.19)

using the continuity equation (2.1) and the specific total energy e = E/ρ (i.e. per unit
mass) (e = ρE)one obtains the energy equation in non-conservative form:

ρ
∂e

∂t
+ ρ

3
∑

j=1

uj
∂e

∂xj
= −

3
∑

j=1

∂puj
∂xj

+
3
∑

j,k=1

∂ujτjk
xj

−
3
∑

j=1

∂qj
∂xj

+ ρq+ SE, (2.20)

The energy equation could be rewritten into the form where the unknown is the internal
energy i. Lets multiply the equation (2.6) by a one half of velocity 1

2U and sum all the
terms and one obtains the equation for conservation of kinetic energy:

ρ
D
(

1
2U

2
)

Dt
= −U · ∇p+

3
∑

j,k=1

uk
∂τjk
∂xj

+U · SM . (2.21)
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Subtracting (2.21) from (2.20) and defining a new source term Si = SE − U · SM one
obtains the internal energy equation:

ρ
∂i

∂t
+

3
∑

j=1

uj
∂i

∂xj
= −p

3
∑

j=1

(

∂uj
∂xj

− ∂qj
∂xj

)

+

3
∑

j,k=1

τjk
∂uk
∂xj

+ ρq+ Si (2.22)

2.1.4 Equation of state

In the system composed from the continuity equation (2.1), momentum equation (2.6) or
(2.8) and energy equation (2.19) or (2.20) there is one more variable than the number of
equations so one more equation has to be introduced. The closing equation is so called
equation of state which arises from the thermodynamics laws. If one assumes an ideal gas
then the equation of state is given by:

p = ρRT, (2.23)

where R is so called universal gas constant. Using this state equation and thermodynamic
laws the internal energy could be expressed as follows:

i = cvT, (2.24)

where cv is the specific heat capacity at a constant volume. One can see that internal
energy i is proportional to the absolute temperature T . Using this relation could be very
advantageous, because one can take the equation (2.22) substitute the internal energy i by
cvT and solve the system directly with absolute temperature equation instead of energy
or the internal energy equations.
The state equation (2.23) could be written in following form when the computation with
the total energy density E (2.15) is assumed:

p = (γ − 1)

[

E − 1

2
ρ|U|2

]

, (2.25)

where γ = cp/cv (specific heat ratio).

2.2 Navier-Stokes equations for compressible flow

The system of equations describing the flow of compressible Newtonian fluid (ideal gas)
are so called Navier-Stokes equations (named by Navier and Stokes, who independently
derived these equations from the conservation laws). The system of non conservative
Navier-Stokes equations consists of continuity equation (2.1), momentum equation (2.8),
energy equation (2.20) or internal energy equation (2.22) and or the temperature equation
like it is explained at the end of section 2.1.3 and closed by a equation of state for an ideal
gas. The resulting system could be stated as follows (note: the Einstein’s summation rule
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is used from this point in following chapters):

∂ρ

∂t
+

∂ρuj
∂xj

= 0, (2.26)

∂ρui
∂t

+
∂ρujui
∂xj

= − ∂p

∂xi
+

∂τij
∂xj

+ SMi
, (2.27)

∂E

∂t
+

∂ujE

∂xj
= −∂puk

∂xk
+

∂ujτjk
xj

− ∂qk
∂xk

+ ρq+ SE, (2.28)

p = (γ − 1)

[

E − 1

2
ρ|U|2

]

, (2.29)

where the components of stress tensor τij are defined as in (2.7).

2.3 Navier-Stokes equations for incompressible (neutrally
stratified flows)

Assuming the simplifications of the incompressible fluid the Navier-Stokes equations for
modeling incompressible (neutrally stratified) Newtonian fluid flows could be written in
following form:

∂uj
∂xj

= 0, (2.30)

∂ui
∂t

+ uj
∂ui
∂xj

+
1

ρ0

∂p

∂xi
=

∂

∂xj

(

ν
∂ui
∂xj

)

. (2.31)

(2.32)

Governing equations for modeling incompressible neutrally stratified flows in vector form
could be written as follows:

M ·Wt + Fx +Gy +Hz = Rx + Sy +Tz, (2.33)

where M is diagonal matrix with following entries:

M = diag ‖ 0, 1, 1, 1‖ , (2.34)

W is a vector of conservative variables:

W = ‖ p, u, v, w‖T , (2.35)

F, G, H are vectors of convective fluxes:

F =

∥

∥

∥

∥

∥

∥

∥

∥

u
u2 + p
u · v
u · w

∥

∥

∥

∥

∥

∥

∥

∥

, G =

∥

∥

∥

∥

∥

∥

∥

∥

v
v · u
v2 + p
v · w

∥

∥

∥

∥

∥

∥

∥

∥

, H =

∥

∥

∥

∥

∥

∥

∥

∥

w
w · u
w · v
w2 + p

∥

∥

∥

∥

∥

∥

∥

∥

, (2.36)

R, S, T are vectors of diffusive fluxes:

R = ν

∥

∥

∥

∥

∥

∥

∥

∥

0
ux
vx
wx

∥

∥

∥

∥

∥

∥

∥

∥

, S = ν

∥

∥

∥

∥

∥

∥

∥

∥

0
uy
vy
wy

∥

∥

∥

∥

∥

∥

∥

∥

, T = ν

∥

∥

∥

∥

∥

∥

∥

∥

0
uz
vz
wz

∥

∥

∥

∥

∥

∥

∥

∥

. (2.37)
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2.4 Equations for modeling incompressible stratified flows

2.4.1 Equations for variable density flows

Let me introduce the system of equations for variable density flows. Following two approx-
imations calculate with transport equation for temperature. The temperature equation is
coupled with the system of Navier-Stokes equations by the density ↔ temperature relation
that is introduced too. Following equations for variable density flows (Boussinesq model
and “Full approximation“) have been presented in [14].

2.4.1.1 Boussinesq model

∂uj
∂xj

= 0 (2.38)

∂ui
∂t

+ uj
∂ui
∂xj

+
1

ρ0

∂p

∂xi
=

∂

∂xj

(

ν
∂ui
∂xj

)

+
1

ρ0
(ρ− ρ0) gi (2.39)

∂T

∂t
+ uj

∂T

∂xj
=

∂

∂xj

(

κ

ρ0cp

∂T

∂xj

)

(2.40)

ρ− ρ0 = −ρ0β (T − T0) (2.41)

The system has five differential equations in 3D for p (pressure), u, v, w (velocity vector
components) and T (temperature) and the system is closed by the algebraic relation (2.41).
The β is thermal expansion coefficient, cp is specific heat capacity coefficient, κ is heat
conductivity, ρ0 is the reference density and T0 is the reference temperature and gi are the
components of gravitational acceleration vector.

2.4.1.2 Full approximation

ρ
∂uj
∂xj

− ρ0βuj
∂T

∂xj
= 0 (2.42)

∂ui
∂t

+ uj
∂ui
∂xj

+
1

ρ

∂p

∂xi
=

∂

∂xj

(

ν

[

∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂uk
∂xk

δij

])

+ gi (2.43)

∂T

∂t
+ uj

∂T

∂xj
=

∂

∂xj

(

κ

ρ0cp

∂T

∂xj

)

+
uj
ρcp

∂p

∂xj
(2.44)

ρ− ρ0 = −ρ0β (T − T0) (2.45)

There are some new terms in the system of equations. Those new terms arise from proper
derivatives. Density is a function of temperature and is not constant any more. The
meaning of the terms in this system is the same as in previous section 2.4.1.1.

2.4.2 Equations for stratified atmospheric boundary layer flows

2.4.2.1 Potential temperature based model

The potential temperature of fluid at pressure p is the temperature that fluid would
acquire after adiabatic compression (expansion) to a standard reference pressure p0A ,
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typically p0A = 105Pa (atmospheric pressure near the ground). The potential temperature
is denoted Θ and is given by following equation:

Θ = T

(

p0A
p

)
R
cp

, (2.46)

where T is the current absolute temperature (in K)., R is the gas constant of the fluid,
and cp is the specific heat capacity at a constant pressure.

The potential temperature based model for atmospheric boundary layer flows arise
from the Boussinesq model and has been presented in [26], [53] and in [15]:

∂uj
∂xj

= 0 (2.47)

∂ui
∂t

+ uj
∂ui
∂xj

=
∂

∂xj

(

ν
∂ui
∂xj

)

− 1

ρ0

∂p

∂xi
+

Θ

Θ0
gi (2.48)

∂Θ

∂t
+ uj

∂Θ

∂xj
=

∂

∂xj

(

κ

ρ0cp

∂Θ

∂xj

)

(2.49)

where κ is the coefficient of thermal conduction and cp is the specific heat capacity at
a constant pressure and gi are the components of gravitational acceleration vector. The
term Θ0 (reference potential temperature distribution) could be defined according to [53]
as follows:

Θ0 = γz +Θw, (2.50)

where γ = ∂Θ0/∂z and Θw is the temperature on the Earth’s surface. The dissipation

term ∂
∂xj

(

κ
ρ0cp

∂Θ
∂xj

)

in the transport equation for potential temperature (2.49) is very often

neglected.

This model could be rewritten is sense of pressure and potential temperature pertur-
bations. The variables are split into the sum of initial values and their perturbation as
follows:

p = p′′ + p0, (2.51)

Θ = Θ′′ +Θ0, (2.52)

where p′′ and Θ′′ are the pressure and potential temperature perturbations and p0 and Θ0

are the reference distributions of pressure and potential temperature.
One can see the resulting modification of equations after this substitution e.g. in [15].

2.4.2.2 Density based model

Density based model is prescribed using the incompressible Navier-Stokes equations with
addition of transport equation for density. There has been taken into account transport
equation for density without diffusive terms on the RHS. In other words the diffusion
coefficient of the transport equation for density is equal 0. This model has been published
in [50] and arises from the Boussinesq model.
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∂uj
∂xj

= 0 (2.53)

∂ui
∂t

+ uj
∂ui
∂xj

=
∂

∂xj

(

ν
∂ui
∂xj

)

− 1

ρ0

∂p

∂xi
+

ρ

ρ0
gi (2.54)

∂ρ

∂t
+ uj

∂ρ

∂xj
= 0 (2.55)

Let me introduce a vector form of the previous system at this place, which will be very
useful in the following chapters:

M ·Wt + Fx +Gy +Hz = Rx + Sy +Tz +K, (2.56)

where M is diagonal matrix with following entries:

M = diag ‖ 0, 1, 1, 1, 1 ‖ , (2.57)

W is a vector of conservative variables:

W = ‖ p, u, v, w, ρ ‖T , (2.58)

F, G, H are vectors of convective fluxes:

F =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

u
u2 + p
u · v
u · w
u · ρ

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, G =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

v
v · u
v2 + p
v · w
v · ρ

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, H =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

w
w · u
w · v
w2 + p
w · ρ

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (2.59)

R, S, T are vectors of diffusive fluxes:

R = ν

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
ux
vx
wx

0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, S = ν

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
uy
vy
wy

0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, T = ν

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
uz
vz
wz

0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(2.60)

and K is the source term defined as follows in this case:

K =
ρ

ρ0
‖ 0, 0, 0, −gz, 0 ‖T . (2.61)

2.4.2.3 Pressure perturbation model (Density based)

One can split the pressure into sum of its value when there is no motion in the fluid p0
(initial value) and its perturbation p′′ as follows:

p(z) = p′′ + p0, (2.62)

and the same could be done with density (ρ0 the value of density when there is no motion
in the fluid (initial value), ρ′′ the density perturbation):

ρ(z) = ρ′′ + ρ0. (2.63)
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and because the values of pressure p0 and values of density ρ0 has to be in equilibrium
when there is no fluid motion, i.e.:

∂p0
∂x

= 0, (2.64)

∂p0
∂y

= 0, (2.65)

∂p0
∂z

= −ρ0gz, (2.66)

so if one substitute the pressure p in equation (2.54) by (2.62), one obtains the system in
which the unknowns are the pressure perturbations:

∂uj
∂xj

= 0, (2.67)

∂ui
∂t

+ uj
∂ui
∂xj

=
∂

∂xj

(

ν
∂ui
∂xj

)

− 1

ρ0

∂p′′

∂xi
+

ρ′′

ρ0
gi, (2.68)

∂ρ

∂t
+ uj

∂ρ

∂xj
= 0. (2.69)

This system has been used in a numerical model for all the computations of stratified flows
that have been presented in this thesis.

2.4.3 Stability of Stratified Flows

We distinguish three types of stratification [6], [15]:

Neutrally stratified fluid
- potential temperature is constant

∂Θ

∂z
= 0. (2.70)

Stably stratified fluid
- potential temperature increases with increasing height

∂Θ

∂z
> 0. (2.71)

Unstably stratified fluid
- potential temperature decreases with height

∂Θ

∂z
< 0. (2.72)
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Chapter 3

Turbulence Modeling

Contents

3.1 Reynolds Averaged Navier Stokes equations (RANS) . . . . . 38

3.2 Algebraic Turbulence Model . . . . . . . . . . . . . . . . . . . . . 39

3.3 Cebecci-Smith Algebraic Turbulence Model . . . . . . . . . . . 39

3.4 Turbulent Kinetic Energy Transport Turbulence Models . . . . 40

3.4.1 Standard k-ε Turbulence Model . . . . . . . . . . . . . . . . . . . 40

3.4.2 Realizable k-ε Turbulence Model . . . . . . . . . . . . . . . . . . 41

3.4.3 Differences between Standard k-ε and Realizable k-ε Turbulence
Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.4 Modification of k-ε turbulence model for stratified flow problems 42

3.4.5 Near Wall Treatment . . . . . . . . . . . . . . . . . . . . . . . . . 43

There are several approaches in modeling turbulent flows. One of them, the most
accurate one, is the Direct Numerical Simulation (DNS). DNS does not model the turbulent
flow but it computes the Navier-Stokes equations on such a fine grid, that the turbulence
appears in the results. Results have to be averaged over a selected time interval in order to
obtain mean values of the flow (averaging of results). DNS needs very fine computational
grid especially near walls. According to [9] the number of grid cells is proportional to
Re9/4, where Re is the Reynolds number of the flow. One can see that the requirements
of the grid fineness grow very fast with the increasing Reynolds number. And this is the
reason why it is impossible to perform DNS in simulation of atmospheric boundary layer
flows, where the Reynolds number is about 107 − 109 at this time.

The second way how to simulate turbulent flows is the statistical approach, where the
instantaneous values of variables are split into mean values and fluctuations and only the
mean values of the variables stand in the governing equations (averaging of equations).
When the Reynolds averaging is applied on Navier-Stokes equations one obtains the system
of so called Reynolds Averaged Navier-Stokes equations (RANS). The RANS system is
not closed and a turbulence model has to be added.

The third approach in turbulence flows modeling is so called Large Eddy Simulation
(LES). Where the large scale eddies are simulated directly as in DNS and the small scale
eddies are modeled in a similar way as it is in RANS modeling. Nowadays as the com-
putational power of computers grow the LES approach starts to substitute the RANS
approach.
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3.1 Reynolds Averaged Navier Stokes equations (RANS)

Statistical approach rests in splitting variables of the flow into mean values and fluctu-
ations. Turbulence is the stochastic process and the flow variables are therefore chance
quantities of time. The mean value of the chance quantity is defined as follows (when
average of the chance quantity does not vary with time):

Φ(xi) = lim
∆t→∞

1

∆t

∫ t0+∆t

t0

Φ(xi, t) dt, (3.1)

where t0 is the initial time of averaging. The period of averaging ∆t has to be much larger
than the dominant period of changes of the averaged variable.

Using so called Reynolds averaging the instantaneous value of the variable is given by
the sum of its mean value and the fluctuation:

A(xi, t) = A(xi) + a′′()xi, t), (3.2)

where the mean value A is given by equation (3.1) and the mean value of the fluctuation
is equal to zero

a′′(t) = lim
∆t→∞

1

∆t

∫ t0+∆t

t0

a′′(t) dt = 0. (3.3)

Applying averaging on the system of Navier-Stokes equations (2.30) and (2.31) one obtains
Reynolds Averaged Navier-Stokes equations for the incompressible flow:

∂uj
∂xj

= 0 (3.4)

∂ui
∂t

+ uj
∂ui
∂xj

+
1

ρ

∂p

∂xi
=

∂

∂xj

(

ν
∂ui
∂xj

)

+
∂τij
∂xj

, (3.5)

where τij = −uiuj is the ij-component of the turbulent stress tensor. For an incompressible
flow holds:

τij = −u′′i u
′′

j = 2νtSij −
1

3
u′′ku

′′

kδij (3.6)

where the mean rate of strain tensor Sij is defined as follows:

Sij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

. (3.7)

When the turbulent kinetic energy k for the incompressible flow is introduced as:

k =
1

2
u′′ku

′′

k, (3.8)

one can express the relation for the turbulent stress tensor τij (3.6) in a following way:

τij = −u′′i u
′′

j = 2νtSij −
2

3
kδij . (3.9)

The turbulent viscosity νt is going to be modeled by a turbulence model.

The detailed derivation of the Reynolds Averaged Navier-Stokes equations can be found
in [9].
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3.2 Algebraic Turbulence Model

Algebraic turbulence model is prescribed by an algebraic relation. The turbulent viscosity
is computed directly from the flow variables. Algebraic models have been designed for 2D
incompressible boundary layer based on so called mixing length, which is proportional to
the length that the vortex covers until it disappears by the mixing of the fluid. Turbulent
viscosity is given by the following equation:

νt = L2
m

∣

∣

∣

∣

∂u

∂y

∣

∣

∣

∣

, (3.10)

where the mixing length Lm is set by algebraic relation:

Lm =
1

δ
f
(y

δ

)

, (3.11)

where δ is the boundary layer thickness. More information about algebraic turbulence
models could be found in [9] and [54].

3.3 Cebecci-Smith Algebraic Turbulence Model

Presented Cebbeci-Smith algebraic turbulence model has been taken from [51]. Cebecci-
Smith algebraic turbulence model could be used to compute the turbulent viscosity νt.
Domain Ω is divided into two subdomains. In the inner subdomain (near walls) the inner
turbulent viscosity νti is computed. In the outer subdomain the outer turbulent viscosity
νto is computed. Most common procedure is to compute both turbulent viscosities and
then to use the minimal one:

νt = min (νti , νto) . (3.12)

For turbulent viscosity computing is necessary to use local systems of coordinates (X, Y ).
Where X is parallel with the nearest wall and Y is perpendicular to the nearest wall
(distance from the wall). In the inner subdomain the turbulent viscosity is defined as
follows:

νti = L2
m

∣

∣

∣

∣

∂U

∂Y

∣

∣

∣

∣

, (3.13)

where (U, V ) are components of velocity vector in direction of (X, Y ) and Lm is given by
equation:

Lm = κY FD, (3.14)

where:

FD = 1− exp

(

− 1

A+
urY Re

)

, (3.15)

ur is so called friction velocity:

ur =

(

ν

∣

∣

∣

∣

∂U

∂Y

∣

∣

∣

∣

)
1
2

ω

. (3.16)

In outer subdomain the turbulent viscosity is defined by Clauser‘s equation:

νto = ραδ∗UeFk, (3.17)
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where:

Fk =

[

1 + 5.5

(

Y

δ

)6
]

−1

, Ue = U(δ) (3.18)

and δ is the boundary layer thickness and:

δ∗ =

∫ δ

0

(

1− U

Ue

)

dY. (3.19)

Following values of the constants have been used:

κ = 0.4, α = 0.0168, A+ = 26. (3.20)

3.4 Turbulent Kinetic Energy Transport Turbulence Mod-
els

Almost all the turbulence models apart from algebraic ones are based on turbulent kinetic
energy k transport equation. There are mentioned two equations turbulence models based
on turbulent kinetic energy k transport and turbulent kinetic energy dissipation rate ε
transport in the following sections. The variant of k − ε turbulence model for stratified
flows in atmospheric boundary layer is also presented.

3.4.1 Standard k-ε Turbulence Model

The standard k − ε turbulence model has been taken from [9]. Following equations are
transport equations for turbulent kinetic energy k and for turbulent kinetic energy dissi-
pation rate ε:

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(

ν +
νt
σk

)

∂k

∂xj

]

+ Pk − ε, (3.21)

∂ε

∂t
+ uj

∂ε

∂xj
=

∂

∂xj

[(

ν +
νt
σε

)

∂ε

∂xj

]

+
ε

k
Cε1Pk −

ε2

k
Cε2, (3.22)

where Pk is production of turbulent kinetic energy for incompressible flow defined as
follows:

Pk = 2νtSij
∂ui

∂xj
. (3.23)

Turbulent viscosity is computed from following relation:

νt = Cµ

√
kL, (3.24)

where L is the turbulent length scale defined by Rott’s relation:

ε =
k3/2

L
⇒ L =

k3/2

ε
. (3.25)

hence

νt = Cµ
k2

ε
(3.26)

and model constants are:

Cµ = 0.09, σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92 (3.27)
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3.4.2 Realizable k-ε Turbulence Model

The model has been introduced in the article [33]. Transport equations for turbulent
kinetic energy k and for turbulent kinetic energy dissipation rate ε for the realizable k− ε
turbulence model are:

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(

ν +
νt
σk

)

∂k

∂xj

]

+ Pk − ε, (3.28)

∂ε

∂t
+ uj

∂ε

∂xj
=

∂

∂xj

[(

ν +
νt
σε

)

∂ε

∂xj

]

+ Cε1Sε− Cε2
ε2

k +
√
νε

, (3.29)

where S =
√

2SijSij.
Turbulent viscosity is computed from the same relation as in standard k − ε model:

νt = Cµ

√
kL = Cµ

k2

ε
, (3.30)

but the term Cµ is not constant in this model and is defined by a following relation:

Cµ =
1

A0 +AsU (∗)k/ε
, (3.31)

where:

U (∗) =
√

SijSij +ΩijΩij, (3.32)

Ωij =
1

2

(

∂ui
∂xj

− ∂uj
∂xi

)

, (3.33)

As =
√
6 cosφ, (3.34)

φ =
1

3
arccos(

√
6W ), (3.35)

W =
SijSjkSki

S̃3
, (3.36)

S̃ =
√

SijSij. (3.37)

Also the term Cε1 is not constant any more in the realizable k − ε turbulence model:

Cε1 = max{0.43, η

5 + η
}, (3.38)

where:

η =
Sk

ε
, S =

√

2SijSij. (3.39)

Constants of the model are set as follows:

σk = 1.0, σε = 1.2, Cε2 = 1.9, A0 = 4.0 (3.40)

3.4.3 Differences between Standard k-ε and Realizable k-ε Turbulence
Models

The difference between the standard k-ε and the Realizable k-ε turbulence model is the
fact that the standard k-ε turbulence model does not fulfill the realizability condition, i.e.
that the shear stress (3.9) has to be non-negative:

τij = −u′′i u
′′

j = 2νtSij −
2

3
kδij ≥ 0 (3.41)
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Using the relation (3.30), the realizability condition (3.41) is fulfilled only if:

k

ε
Sij ≥

1

3Cµ
=

100

27
(3.42)

in case of standard k-ε turbulence model, where Cµ = 0.09. Therefore Cµ is not constant
in the Realizable k-ε model and holds the term 2νtSij always greater or equal than the
term 2

3k.

3.4.4 Modification of k-ε turbulence model for stratified flow problems

There have been found several modifications of the standard k− ε turbulence model. The
first one have been published in [16] and [28]:

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(

ν +
νt
σk

)

∂k

∂xj

]

+ Pk +Gk − ε, (3.43)

∂ε

∂t
+ uj

∂ε

∂xj
=

∂

∂xj

[(

ν +
νt
σε

)

∂ε

∂xj

]

+
ε

k
Cε1 (Pk + Cε3Gk)−

ε2

k
Cε2, (3.44)

where Gk is a production of turbulent kinetic energy arisen from buoyancy effects and is
given by:

Gk = βg
ρνt
Prt

∂T

∂z
, (3.45)

where Prt is the turbulent Prandtl number (3.46) and β is the coefficient of the thermal
expansion (3.47).

Prt =
µcp
κ

, (3.46)

where κ is the coefficient of thermal conduction.

β = −1

ρ

(

∂ρ

∂T

)

p

(3.47)

Assuming the ideal gas one can substitute β in the production of turbulent kinetic energy
arisen from buoyancy effects (3.45) from (3.47) and one obtains:

Gk = −g
νt
Prt

∂ρ

∂z
. (3.48)

In [16] has been presented a bit different formulation of Gk which is:

Gk = βg
νt
σT

∂T

∂z
, (3.49)

where σT is constant and σT = 1.0
According to [16] and [28] the term Cε3 is defined as:

Cε3 = tanh
∣

∣

∣

v

u

∣

∣

∣
, (3.50)

where u is the magnitude of velocity in the direction perpendicular to the gravity vector
and v is the magnitude of velocity in the direction parallel to the gravity vector. One
can see that the Cε3 = 1 when the velocity vector is aligned with the direction of gravity
and i.e. the buoyancy effect is maximized. On the other hand, when the flow is aligned

42



perpendicular to the gravity direction, then the term Cε3 = 0 and the buoyancy effect
disappears.

A slightly different model has been presented in [53] and [34]. Governing equations of
the model are:

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(

ν +
νt
σk

)

∂k

∂xj

]

+ Pk +Gk − ε, (3.51)

∂ε

∂t
+ uj

∂ε

∂xj
=

∂

∂xj

[(

ν +
νt
σε

)

∂ε

∂xj

]

+
ε

k
Cε1 (1 + Cε3Rf ) (Pk +Gk)−

ε2

k
Cε2(3.52)

where Rf = −Gk/Pk and production of turbulent kinetic energy arisen from buoyancy
effects Gk and the coefficient of the thermal expansion β are adjusted for potential tem-
perature calculation instead of calculation with temperature in a following way:

Gk = −βg
νt
σΘ

∂Θ

∂z
, (3.53)

β = −1

ρ

∂ρ

∂Θ
, (3.54)

where σΘ is constant σΘ = 1.0. The term Cε3 is constant Cε3 = 0.7. All other model
constants are the same for all presented k − ε type turbulence models:

Cµ = 0.09, σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92. (3.55)

3.4.5 Near Wall Treatment

All the presented k − ε type turbulence models are not valid in near wall regions due
to anisotropy of the turbulence in these regions. This problem is typically solved by
introduction of so called wall functions. Where the boundary condition for the variable is
not prescribed on the wall but in the logarithmic domain of the law of the wall, which is
for boundary layer with constant pressure when 30 < y+ < 200.

The turbulent kinetic energy transport turbulence models for buoyant flows, which
model the turbulence also in near wall regions and do not use wall functions are presented
in [32].
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Chapter 4

Numerical Solution
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The choice of the governing equations and the numerical model are presented in this
chapter. All the numerical methods that has been chosen are introduced and their advan-
tages and limitations are discussed.
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4.1 Governing Equations

4.1.1 Turbulent stably stratified flows in atmospheric boundary layer

The first mathematical model that will be introduced in this section has been used for
simulation of turbulent stratified atmospheric boundary layer flows. The system of incom-
pressible Reynolds averaged Navier-Stokes (RANS) equations completed by the transport
equation for density and coupled with this density equation by the source term in the
momentum equation has been used:

∂uj
∂xj

= 0, (4.1)

∂ui
∂t

+ uj
∂ui
∂xj

=
∂

∂xj

(

νe
∂ui
∂xj

)

− 1

ρ0

∂p′′

∂xi
+

ρ′′

ρ0
gi, (4.2)

∂ρ

∂t
+ uj

∂ρ

∂xj
= 0, (4.3)

where νe = ν + νt is the sum of laminar and turbulent kinematic viscosity, p′′ and ρ′′ are
pressure and density perturbations and p0 and ρ0 are the reference pressure and density
distributions, firstly defined in section 2.4.2.3:

p′′(z) = p(z)− p0(z), (4.4)

ρ′′(z) = ρ(z) − ρ0(z). (4.5)

This system (in conservative form) of Reynolds averaged Navier-Stokes equations has
been used in a numerical model for all the computations of stratified flows that have
been presented in this thesis, where the turbulent viscosity νt has been computed using
algebraic turbulence model Cebecci-Smith.

It will be advantageous to introduce the vector form of previously mentioned RANS
equations in conservative form at this place:

M ·Wt + Fx +Gy +Hz = Rx + Sy +Tz +K, (4.6)

where M is diagonal matrix with following entries:

M = diag ‖ 0, 1, 1, 1, 1 ‖ , (4.7)

W is a vector of conservative variables:

W = ‖ p, u, v, w, ρ ‖T , (4.8)

F, G, H are vectors of convective fluxes:

F =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

u
u2 + p′′

u · v
u · w
u · ρ

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, G =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

v
v · u

v2 + p′′

v · w
v · ρ

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, H =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

w
w · u
w · v

w2 + p′′

w · ρ

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (4.9)
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R, S, T are vectors of diffusive fluxes:

R = νe

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
ux
vx
wx

0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, S = νe

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
uy
vy
wy

0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, T = νe

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
uz
vz
wz

0

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

(4.10)

and K is the source term defined as follows in this case:

K =
ρ′′

ρ0
‖ 0, 0, 0, −g, 0 ‖T . (4.11)

The subscripts t and x y z denotes the derivative with respect to time ∂/∂t and the
derivative with respect to space coordinates ∂/∂x, ∂/∂y, ∂/∂z.

4.1.2 Turbulent neutrally stratified flows in atmospheric boundary layer

The second model that has been used for simulation of neutrally stratified turbulent flows
in atmospheric boundary layer is the system of incompressible Reynolds averaged Navier-
Stokes completed by standard k−ε turbulence model used for the computation of turbulent
viscosity (the system has been used in conservative form):

∂uj
∂xj

= 0, (4.12)

∂ui
∂t

+ uj
∂ui
∂xj

=
∂

∂xj

(

(ν + νt)
∂ui
∂xj

)

− 1

ρ0

∂p

∂xi
, (4.13)

∂k

∂t
+ uj

∂k

∂xj
=

∂

∂xj

[(

ν +
νt
σk

)

∂k

∂xj

]

+ Pk − ε, (4.14)

∂ε

∂t
+ uj

∂ε

∂xj
=

∂

∂xj

[(

ν +
νt
σε

)

∂ε

∂xj

]

+
ε

k
Cε1Pk −

ε2

k
Cε2, (4.15)

Let me introduce a conservative vector form of the previously stated system at this place:

M ·Wt + Fx +Gy +Hz = Rx + Sy +Tz +K, (4.16)

where M is diagonal matrix with following entries:

M = diag ‖ 0, 1, 1, 1, 1, 1 ‖ , (4.17)

W is a vector of conservative variables:

W = ‖ p, u, v, w, k, ε ‖T , (4.18)

F, G, H are vectors of convective fluxes:

F =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

u
u2 + p
u · v
u · w
u · k
u · ε

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, G =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

v
v · u
v2 + p
v · w
v · k
v · ε

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, H =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

w
w · u
w · v
w2 + p
w · k
w · ε

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (4.19)
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R, S, T are vectors of diffusive fluxes:

R =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
νe · ux
νe · vx
νe · wx

νek · kx
νeε · εx

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, S =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
νe · uy
νe · vy
νe · wx

νek · kx
νeε · εy

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, T =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
νe · uz
νe · vz
νe · wx

νek · kx
νeε · εz

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

, (4.20)

and K is the source term defined as follows in this case:

K =

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

0
0
0
0

Pk − ε
ε
kCε1Pk − ε2

k Cε2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (4.21)

where

νe = ν + νt, (4.22)

νek = ν +
νt
σk

, (4.23)

νeε = ν +
νt
σε

. (4.24)

4.2 Artificial Compressibility Method

The artificial compressibility method is one of the pressure velocity coupling methods for
incompressible flows. This method has firstly used by Chorin in 1967 [25].

The artificial compressibility method lies in adding the term with the time derivative of
pressure into the continuity equation. Following equation is used instead of incompressible
continuity equation e.g. in the form (4.1):

1

β̃2

∂p

∂t
+

∂uj
∂xj

= 0, (4.25)

where β̃ ∈ R
+ is the artificial speed of sound. The method like it is presented is valid only

for steady state solutions, because only in steady state holds:

∂p

∂t
= 0 (4.26)

Using artificial compressibility method the system (4.6) comes into following:

M̃ ·Wt + Fx +Gy +Hz = Rx + Sy +Tz +K, (4.27)

where

M̃ = diag

∥

∥

∥

∥

1

β̃2
, 1, 1, 1, 1, 1

∥

∥

∥

∥

. (4.28)

Let’s consider now only the inviscid part of governing equations (4.27) without any
source term multiplied by M̃

−1 from left side:

Wt + M̃
−1 · (Fx +Gy +Hz) = 0, (4.29)
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i.e. that the continuity equation (4.25) become:

∂p

∂t
+ β̃2 ∂uj

∂xj
= 0, (4.30)

and let’s consider just a continuity equation in the form (4.30) and the inviscid part of
the incompressible momentum equation (4.2) for simplicity.

Because one can say that inviscid fluxes F, G, H are functions of conservative variables
then one can express equation (4.29) in a following way:

∂W

∂t
+ A

∂W

∂x
+ B

∂W

∂y
+ C

∂W

∂z
= 0, (4.31)

where A, B, C are Jacobi matrices of inviscid fluxes

A =
∂F

∂W
=









0 β̃2 0 0
1 2u 0 0
0 v u 0
0 w 0 u









, (4.32)

B =
∂G

∂W
=









0 0 β̃2 0
0 v u 0
1 0 2v 0
0 0 w v









, (4.33)

C =
∂H

∂W
=









0 0 0 β̃2

0 w 0 u
0 0 w v
1 0 0 2w









. (4.34)

F = ω1A+ω2B+ω3C =









0 ω1β̃
2 ω2β̃

2 ω3β̃
2

ω1 2ω1u+ω2v + ω3w ω2u ω3u
ω2 ω1v ω1u+2ω2v + ω3w ω3v
ω3 ω1w ω2w ω1u+ω2v + 2ω3w









.

Eigenvalues of the matrix F are:

λ1,2 = ω1u+ ω2v + ω3w

λ3,4 = ω1u+ ω2v + ω3w ±
√

(ω1u+ ω2v + ω3w)2 + β̃2

All the eigenvalues do not depend on choice of ω1, ω2, ω3 and all are real. It means that
the inviscid part of modified Navier-Stokes equations (4.31) is fully hyperbolic and can be
solved by standard methods for hyperbolic conservation laws.

4.3 Finite Volume Method

Finite volume method is a spatial discretization method for solving partial differential
equations. This method had been used for discretization of CFD problems for a first
time by McDonald (1971) [31] and by MacCormack and Pullay (1972) [29]. The name of
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the method comes from the fact, that the the computational domain is divided into the
finite number of volumes, that have an empty intersection but the union of all these finite
volumes is the whole domain.

Lets denote the domain Ω, its finite volumes Ωi and A the set of all indices of finite
volumes, then the following has to be satisfied in order to use finite volume method:

Ω =
⋃

i∈A

Ωi (4.35)

Ωi

⋂

Ωj = ∅ for i, j ∈ A, i 6= j (4.36)

The method is based on the integral formulation of the conservation laws. The main idea
is that the integral form of conservation laws has to be satisfied in each finite volume of
the domain. It allows to discretize the domain to finite number of volumes in the most
suitable way according to the shape of the computational domain without changing the
exact formulation of the method. The method could be used on structured orthogonal,
structured non-orthogonal and completely unstructured computational grids.

Figure 4.1: Structured grid example Figure 4.2: Unstructured grid example

The integral form of conservation law for a scalar variable U with volume sources/sinks
Q on the domain Ω can be expressed by a following integral equation:

∂

∂t

∫

Ω
U dΩ+

∮

∂Ω
F dS =

∫

Ω
QdΩ, (4.37)

where F is the flux of the variable U through the boundary of the domain ∂Ω.
Lets suppose that the domain Ω is divided into two subdomains Ω1 and Ω2 (see figure
(4.3)), and simultaneously holds the (4.35) and (4.36) for those two subdomains. Then one
can write the integral equation for the conservation of U for each subdomain independently:

∂

∂t

∫

Ω1

U dΩ+

∮

ABC
F dS =

∫

Ω1

QdΩ, (4.38)

∂

∂t

∫

Ω2

U dΩ+

∮

BDC
F dS =

∫

Ω2

QdΩ. (4.39)

Surface integrals over the new boundary BC appear twice the same in absolute value,
but with different signs, so the sum of them is zero. This property is called conservation
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Figure 4.3: Conservation property of the finite volume method

and should be satisfied by the numerical discretization of the fluxes. If numerical scheme
satisfies the conservativeness then it is called conservative scheme. When the scheme is
non-conservative, then the numerical sources are rising there from the inequalities of fluxes
from the neighboring cells and the computation is less stable and less accurate than the
computation with the conservative ones.

4.4 Spatial discretization

The spatial discretization for the governing equations presented in sections 4.1.1 and 4.1.2
will be derived using the finite volume method and the artificial compressibility method.
The spatial discretization will be derived in so called cell center form. It means that the
resulting values are located in cell centers (center of gravity of the cell) of the computational
mesh.

Lets take the system (4.6) or (4.29) and lets integrate it over the one of the finite
volumes Ωi:

∫∫∫

Ωi

M̃ ·WtdΩ+

∫∫∫

Ωi

(Fx +Gy +Hz) dΩ =

∫∫∫

Ωi

(Rx + Sy +Tz) dΩ+

∫∫∫

Ωi

KdΩ.

(4.40)
Applying the mean value theorem on the first and last integral from equation (4.40) one
obtains the mean values of the conservative variables and source terms in the finite volumes
Ωi:

Wi = Wi(t) =
1

Vi

∫∫∫

Ωi

M̃ ·W(x, y, z, t)dΩ, (4.41)

Ki = Ki(t) =
1

Vi

∫∫∫

Ωi

K(x, y, z, t)dΩ. (4.42)
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Lets make a substitution in equation (4.40) using these two last-defined relations:

dWi

dt
= − 1

Vi

∫∫∫

Ωi

(Fx +Gy +Hz) dΩ+
1

Vi

∫∫∫

Ωi

(Rx + Sy +Tz) dΩ+Ki, (4.43)

and lets put all the rest integrals under one integral:

dWi

dt
= − 1

Vi

∫∫∫

Ωi

[(F −R)x + (G− S)y + (H−T)z] dΩ+Ki, (4.44)

Now, lets use a Green-Gauss theorem to transform the last volume integral into the surface
integral:

dWi

dt
= − 1

Vi

∮

∂Ωi

[(F −R)x + (G− S)y + (H−T)z]~ndS +Ki, (4.45)

where ~n is the outer normal vector and the S is the surface of the finite volume boundary
∂Ωi. Applying the space discretization to the surface integral from the last-mentioned
equation, one obtains following:

∮

∂Ωi

[(F −R)x + (G− S)y + (H−T)z]~ndS =
∑

j∈Ai

(F̃ij−R̃ij , G̃ij−S̃ij, H̃ij−T̃ij)~nij∆Sij,

(4.46)
where F̃, G̃, H̃ are numerical convective fluxes and R̃, S̃, T̃ are numerical diffusive fluxes,
~nij is the outer normal of the jth face of the ith cell and ∆Sij is the surface if the jth face
of the ith cell and Ai is the set of neighbor cell indices of the ith cell.
Let’s substitute the surface integral in (4.45) by the sum from (4.46) and write the resulting
equation:

dWi

dt
= − 1

Vi

∑

j∈Ai

(F̃ij − R̃ij , G̃ij − S̃ij , H̃ij − T̃ij)~nij∆Sij + K̃i. (4.47)

One can see that the last mentioned equation is the ordinary differential equation for the
ith cell of the finite volume grid. The time discretization method should be applied in
order to obtain the fully discretized system of equations solvable by computer.

4.4.1 Convective fluxes

Evaluation of the numerical convective fluxes on the boundary (face) of the cell is usually
done by the averaging of the convective fluxes computed in the cell centers:

F̃ij =
1

2
(Fi + Fj), (4.48)

G̃ij =
1

2
(Gi +Gj), (4.49)

H̃ij =
1

2
(Hi +Hj). (4.50)

Another approach is applicable on the structured computational grids. This approach is
used in further mentioned MacCormack scheme (two stage scheme - predictor corrector
type scheme). It lies in the computation of the convective fluxes in a forward direction in
a predictor step and in a backward direction in a corrector step. Combination of predictor
and corrector step guarantees that the fluxes are computed and averaged from both sides
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of the cell face (see figure (4.4)).
Numerical fluxes for MacCormack scheme (superscript p denotes predictor, c denotes cor-
rector):

F̃p
1 = Fi+1,j, F̃p

2 = Fi,j+1, F̃p
3 = Fi,j, F̃p

4 = Fi,j, (4.51)

G̃p
1 = Gi+1,j, G̃p

2 = Gi,j+1, G̃p
3 = Gi,j , G̃p

4 = Gi,j , (4.52)

H̃p
1 = Hi+1,j, H̃p

2 = Hi,j+1, H̃p
3 = Hi,j, H̃p

4 = Hi,j (4.53)

F̃c
1 = Fi,j, F̃c

2 = Fi,j, F̃c
3 = Fi−1,j, F̃c

4 = Fi,j−1, (4.54)

G̃c
1 = Gi,j, G̃c

2 = Gi,j, G̃c
3 = Gi−1,j, G̃c

4 = Gi,j−1, (4.55)

H̃c
1 = Hi,j, H̃c

2 = Hi,j, H̃c
3 = Hi−1,j, H̃c

4 = Hi,j−1 (4.56)

Figure 4.4: Stencil for inviscid fluxes computation, (a) predictor step, (b) corrector step,
(c) predictor + corrector

Both the methods for computation of the numerical flux mentioned above are called
central schemes. The computation of fluxes in the first case (see relations (4.48) (4.49)
(4.50)) is done centrally at the first sight. The MacCormack scheme is also the central
scheme due to the fact that it averages the forward and backward flux computation.
Central schemes usually oscillates in the regions where the high gradients appear and
some so called artificial dissipation has to be added in order to stabilize the solution.
Instead of central schemes there could be used the upwind type schemes that do not need
to add the artificial dissipation because it contains the artificial dissipation within itself.

4.4.2 Diffusive fluxes

It is necessary to know the spatial derivatives of the velocity components on the cell
faces for the computation of diffusive (viscous) fluxes. One can compute their values by
integration over the cells of so called dual grid. Lets consider now a structured haxahedral
mesh in 3D. The dual mesh in 3D structured grid case consists of octahedral diamond
shaped control volumes (see figure (4.5)).
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Figure 4.5: Stencil for viscous fluxes computation 3D (dual cells)

Dual volume cells have a centers in a face centers of original cells and their vertices are
located in vertices of original cells and in original cell centers. One can use a mean value
theorem for computations of the spatial derivative of velocity components. For example
for the computation of the x velocity derivative u with respect to the x coordinate in the

center of the dual volume cell Ω
(l)
ijk:

ux|(l)ijk =
1

V
(l)
ijk

∫∫∫

Ω
(l)
ijk

ux(x, y, z)dΩ l = 1, ..., 6, (4.57)

applying the Green-Gauss theorem on previously mentioned integral equation one obtains:

∫∫∫

Ω
(l)
ijk

ux(x, y, z)dΩ =

∮

∂Ω
(l)
ijk

u · nxdS ≈
8
∑

k=1

ũ
(l)
k ∆S

(l)
xk l = 1, ..., 6 (4.58)

where ũ
(l)
k is the approximation of the x velocity u on the kth face of the dual cell related

to the lth face of the original cell. ∆S
(l)
xk is the projection in x direction of the surface of the

kth face of the dual cell related to the lth face of the original cell. The discretized expression
of the evaluation of the derivative of the x velocity u with respect to x coordinate could
be written as follows:

ux|(l)ijk =
1

V
(l)
ijk

8
∑

k=1

ũ
(l)
k ∆S

(l)
xk l = 1, ..., 6, (4.59)

similarly for other spatial derivatives:

uy|(l)ijk =
1

V
(l)
ijk

8
∑

k=1

ũ
(l)
k ∆S

(l)
yk, (4.60)

uz|(l)ijk =
1

V
(l)
ijk

8
∑

k=1

ũ
(l)
k ∆S

(l)
zk . (4.61)

56



4.5 Time discretization

There have been discretized the spatial derivatives in the previous sections. Let’s remem-
ber the equation (4.47):

dWi

dt
= − 1

Vi

∑

j∈Ai

(F̃ij − R̃ij , G̃ij − S̃ij, H̃ij − T̃ij)~nij∆Sij + K̃i, (4.62)

that is the ordinary differential equation for the ith cell of the finite volume grid. Let me
introduce now the two time discretization methods that have been used in computations
of results that are presented in the following part of this thesis. They are the well known
Runge-Kutta method and the Lax-Wendroff scheme in MacCormack form. All the nu-
merical convective and diffusive fluxes are functions of the conservative variables. So let’s
denote the sum from (4.62) as follows:

L(Wij) =
1

Vi

∑

j∈Ai

(F̃ij − R̃ij , G̃ij − S̃ij, H̃ij − T̃ij)~nij∆Sij + K̃i. (4.63)

The forward Euler discretization of the time derivative has been considered in all cases:

dWi

dt
≈ Wn+1

i −Wn
i

∆t
(4.64)

4.5.1 Multistage Runge-Kutta method

The multistage Runge-Kutta scheme could be written in a following form:

W0
ij = Wn

ij,

Wr+1
ij = W0

ij − α(r)∆tL(W
(r)
ij ),

Wn+1
ij = Wm

ij ,

(4.65)

where r is the stage index r ∈ 0, ...,m − 1, where m is the number of stages. α(r) is
constant different for each stage. Usually the 3-stage or 4-stage Runge-Kutta scheme is
used with following α(r):

α(1) =
1

2
, α(2) =

1

2
, α(3) = 1, (4.66)

for 3-stage Runge-Kutta scheme and:

α(1) =
1

4
, α(2) =

1

3
, α(3) =

1

2
, α(4) = 1, (4.67)

for 4-stage Runge-Kutta scheme.

4.5.2 Lax-Wendroff (MacCormack) scheme

Lax-Wendroff predictor-corrector scheme (MacCormack form) firstly presented in [30] has
been used in a following form:

W
n+ 1

2
i = Wn

i −∆tL(Wn
ij), (4.68)

Wn+1
i =

1

2
(W

n+ 1
2

i +Wn
i )−

∆t

2
L(W

n+ 1
2

ij ). (4.69)
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4.6 Artificial dissipation (viscosity)

When the discretization of convective fluxes is based on the central differencing the so
called artificial dissipation (diffusion, viscosity) has to be introduced in order to damp
the spurious oscillations in solution. These oscillations usually appear in the regions with
high gradients and if they are not damped, they can spread all over the domain and can
completely destroy the solution. The Jameson’s type artificial dissipation has been used
as it was presented in [12]. For simplicity let’s suppose the hexahedral structured grid,
then the artificial dissipation will be defined as follows:

DWi,j,k = DxW
r
i,j,k +DyW

r
i,j,k +DzW

r
i,j,k, (4.70)

where

Dx(W
r
i,j,k) = ε

(2)
xi

(

Wr
i+1,j,k − 2Wr

i,j,k +Wr
i−1,j,k

)

+

= ε
(4)
xi

(

Wr
i+2,j,k − 4Wr

i+1,j,k + 6Wr
i,j,k − 4Wr

i−1,j,k +Wr
i−2,j,k

)

,
(4.71)

Dy(W
r
i,j,k) = ε

(2)
yi

(

Wr
i,j+1,k − 2Wr

i,j,k +Wr
i,j−1,k

)

+

= ε
(4)
yi

(

Wr
i,j+2,k − 4Wr

i,j+1,k + 6Wr
i,j,k − 4Wr

i,j−1,k +Wr
i,j−2,k

)

,
(4.72)

Dz(W
r
i,j,k) = ε

(2)
zi

(

Wr
i,j,k+1 − 2Wr

i,j,k +Wr
i,j,k−1

)

+

= ε
(4)
zi

(

Wr
i,j,k+2 − 4Wr

i,j,k+1 + 6Wr
i,j,k − 4Wr

i,j,k−1 +Wr
i,j,k−2

)

,
(4.73)

where the coefficients e.g. in x direction ε
(2)
xi and ε

(4)
xi are defined as follows:

ε(2)xi
= k1 · γi,j,k,

ε(4)xi
= k2 max(0, (k3 − ε̃1xi

)), ε̃1xi
= max(γi−1,j,k, γi,j,k, γi+1,j,k),

and

γi,j,k =
|pi+1,j,k − 2pi,j,k + pi−1,j,k|
|pi+1,j,k + 2pi,j,k + pi−1,j,k|

,

k1, k2 k3 are experimentally tuned constants.
Using the artificial dissipation the residual operator L(Wr

i,j,k) is substituted in the previ-

ously mentioned numerical schemes by the L̃(Wr
i,j,k) operator, which is defined as follows:

L̃(Wr
i,j,k) = L(Wr

i,j,k) +D(Wr
i,j,k). (4.74)

4.7 Stability condition

The presented explicit schemes are only conditionally stable. It has to satisfy the stability
condition for explicit schemes, which is valid only for regular orthogonal computational
grids:

∆t ≤ min
Ωi, i∈A

CFL

ρA
∆x + ρB

∆y + ρC
∆z + 1

Re

(

1
∆x2 + 1

∆y2 + 1
∆z2

) (4.75)

where CFL = 2 (Courant-Fridrichs-Levy number) in case of 3-stage Runge-Kutta scheme
with coefficients α = (1/2, 1/2, 1), CFL = 2 ·

√
2 in case of 4-stage Runge-Kutta scheme
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with coefficients α = (1/4, 1/3, 1/2, 1) and CFL = 1 in case of Lax-Wendroff (MacCor-
mack form) scheme and ρA, ρB , ρC are spectral radii of the Jacobi matrices of the inviscid
fluxes F, G, H, that are:

ρA ≤ |u|+
√

u2 + β̃2 (4.76)

ρB ≤ |v|+
√

v2 + β̃2 (4.77)

ρC ≤ |w| +
√

w2 + β̃2 (4.78)

Reader can find more information and the derivation of this stability condition in [7].

4.8 Computational domain

4.8.1 Cosine shaped hill

Symmetrical cosine shaped hill has been used for 2D and 3D simulations of atmospheric
boundary layer flows. The hill has been defined by a following function (in 3D):

z0(x, y) =

{

h
2 (cos r + 1) if r ≤ π
0 if r > π

, where r = 2π
√

x2 + y2 (4.79)

in 2D there has been taken just a middle part of the 3D domain running through the
center of the hill in XZ plane.

Figure 4.6: 3D Computational domain - one cosine shaped hill
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Figure 4.7: 2D/3D Computational domain - one cosine shaped hill

Figure 4.8: 3D Computational domain - one cosine shaped hill - YZ slice

Figure 4.9: 3D Computational domain - two cosine shaped hills case 1
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Figure 4.10: 3D Computational domain - two cosine shaped hills case 2

4.8.2 Witch of Agnesi hill

So called Witch of Agnesi hill has been used for 2D computations. The geometry is given
by a following equation:

z0(x) =
8
(

h
2

)3

x2 +
(

h
2

)2 , (4.80)

where h is the height of the hill. The only geometry with h = 1000 [m] has been taken
into account.

Figure 4.11: Witch of Agnesi - Computational domain

4.9 Boundary Conditions

4.9.1 Inlet

There have been used the Dirichlet boundary conditions for all the quantities u, v, w, ρ, k, ε
except pressure p or the pressure perturbations p′′ at the inlet of the domain. The density
ρ has been set as linear decreasing function with the increasing height, going from ρ0w
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(density on the ground where z = 0) to ρ
H
(density in the upper boundary where z = H):

ρ(z) =
ρ
H
− ρ0w
H

z + ρ0w , (4.81)

where H is the height of the domain. Pressure (or pressure perturbations) has been
extrapolated at the inlet.

4.9.2 Outlet

At the outlet the pressure p or the pressure perturbations have been set by Dirichlet
boundary condition. p = p′′ = 0. All the other quantities have been extrapolated at the
outlet.

4.9.3 Wall

On the wall the no-slip boundary condition for velocity vector U = 0 has been applied.
The pressure p or the pressure perturbations p′′ have been extrapolated on the wall. There
was tested a couple of boundary conditions for density ρw. The first one has been the
Dirichlet boundary condition i.e. ρw = ρw(x, y) on the ground wall by a following relation:

ρw(x, y) =
ρ
H
− ρ0w
H

z0(x, y) + ρ0w , (4.82)

where H is the height of the domain, z0(x, y) is the absolute z coordinate of the ground
(let’s say altitude) and ρ0w is the density in z = 0. And the second choice was the
extrapolation of density from the inner flow field to the wall.

4.9.4 Upper Boundary

The free stream flow has to be simulated. There have been set the Dirichlet boundary
condition for the x velocity component u = const.. And for the other velocity components
have been the homogeneous Neumann boundary condition i.e.:

∂v

∂n
= 0 (4.83)

∂w

∂n
= 0 (4.84)

4.9.5 Lateral sides of the Domain

The lateral sides of the domain play a role just in 3D case. The symmetry boundary
conditions have been applied to the lateral sides of the domain in all computed cases.
But, there is also a possibility to use a periodic boundary conditions on lateral sides of
the domain.
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4.10 Computational grid

Figure 4.12: Computational grid (cosine hill)

The structured quadrilateral computation grid has been used in 2D computations and the
structured hexahedral grid has been used in 3D simulations.

The grid pattern is presented in the figure (4.12). The grid has been refined near and
around the obctacle (cosine hill, Witch of Agnesi hill) and also refined near the ground
wall up to the ∆zmin < 1/

√
Re.
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Part III

Numerical Results
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Chapter 5

Numerical Results 2D
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All the presented results have been computed using a finite volume solver written in
C++ programming language by the author of this thesis. The computational grids have
been prepared in author’s own grid generator. All the grids are structured quadrilateral
grids refined in x,y direction around the hill and refined in z direction near the ground.

Convergence of all the computations has been monitored on the course of the residuals.
The residuals have been computed by a following formula:

RES(W) = log10





1

N

√

√

√

√

N
∑

j=1

(L̃Wj)2



 , (5.1)

where N is the count of all the cells in the computational grid.

5.1 Standard k-ε and Realizable k-ε turbulence models val-
idation

The flat plate test case has been chosen for validation of the implementation of the standard
and Realizable k-ε turbulence models.
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Figure 5.1: Flat Plate - Computational domain geometry and computational grid

Validation has been done on a rectangular domain 2.2 x 1.4 m. The lower boundary has
been divided into two parts. The symmetry boundary condition for all variables has been
used on a first part [-0.2; 0.0] m of the lower boundary and no-slip boundary condition for
velocity, k = 0 and ε = 2ν k

y2
have been used on the rest of the lower boundary (the flat

plate). The upper boundary has been modeled with the symmetry boundary conditions
for all variables. The inlet part boundary conditions have been set as follows:

U∞ = 5.4
m

s
, k∞ =

3

2
(UI)2, ε∞ = C

3
4
µ
k

3
2

l
, (5.2)

where I = 3% is the turbulence intensity and l = 0.07dh is the turbulence length-scale
and dh = inlet area

inlet circumference is the hydraulic diameter. The hydraulic diameter has been
computed as follows:

dh = 2 lim
a→∞

1.4 a

2.8 + 2a
= 1.4m (5.3)

Constant atmospheric pressure has been prescribed on outlet.

Values of the inlet boundary conditions have been chosen as in the experiment which
is available. And the comparison of the skin friction coefficient on the flat plate with the
experimental data and the Blasius and White solution has been done for both presented
models. Both models show the good match with the theory and experiment, as one can se
in the figure (5.3), which shows the development of the skin friction coefficient depending
on Reynolds number in the x direction of the flat plate. As one can see the standard k− ε
model predicts the turbulent flow earlier and the realizable k − ε predicts the turbulent
flow later than the experiment.
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Figure 5.2: Flat Plate - Realizable k-ε turbulence model - Velocity vectors at the outlet
[m · s−1]
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Figure 5.3: Flat Plate - Comparison of k-ε and Realizable k-ε turbulence models - Skin
friction coefficient (Cf )
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5.2 Witch of Agnesi hill computation and comparison

Two 2D cases with the Witch of Agnesi hill geometry (see figure (4.11)) have been per-
formed and compared with the results of Ivo Sládek [34] and Eidsvik and Utnes [26].

The first case was the computation of the neutrally stratified incompressible turbulent
flow over the hill using the Cebecci-Smith algebraic turbulence model. The second case
was the computation of the neutrally stratified incompressible turbulent flow using the
standard k − ε turbulence model. The second case has been set up very similar to the
computation of Ivo Sládek to compare the same cases. Both cases have been computed
using Lax-Wendroff (MacCormack) scheme.

Grid parameters have been set similarly as in the computation performed by Sládek.
The computational grid size has been set to 100x40 cells and the smallest cell dimension
in the z axis direction has been set as ∆zmin = 20 [m]. Assuming that the height of the
domain is H = 10000 [m], the main stream inlet velocity is u∞ = 10.05 [m · s−1], and the
kinematic viscosity of the air is approximately ν = 1.5 · 10−5 then the resulting Reynolds
number is Re = 6.7 · 109. The coarse grid resolution allows to use the k − ε model, that
is designed for corse grid resolution near the walls, but the usage of the Cebecci-Smith
model on such a coarse grid could not give the good results. This model needs the near
wall grid resolution ∆z ≈ 1/

√
Re, which is not satisfied in this case.

Boundary conditions for both cases have been set as follows:
- Inlet:

u∞ =

{

u∗

κ ln
(

z
z0

)

if z < 100 [m]

10.05 if z ≥ 100 [m]
,

w∞ = 0,

k∞ =
(u∗)2
√

Cµ

(

1− z

H

)

,

ε∞ =
C

3/4
µ · k∞(z)3/2

κ · z ,

where u∗ = 0.4059 [m · s−1], κ = 0.41 is the von Karman’s constant, Cµ = 0.09 is the
constant of the k − ε turbulence model and H = 10000 [m] is the height of the domain.
- Upper boundary:

u = u(H),

∂w

∂z
= 0,

k = k∞(H),

ε = ε∞(H).

- Ground wall:

uw = ww = 0

kw = 0

εw = 2ν
k

d2w

where dw is the distance of the first wall neighboring cell center from the wall.
- Outlet:

p∞ = 0
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Figure 5.4: Witch of Agnesi Hill - algebraic - Contours of pressure [Pa]

Figure 5.5: Witch of Agnesi Hill k − ε - Contours of pressure [Pa]
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Figure 5.6: Witch of Agnesi Hill - Ivo Sládek’s results - Contours of pressure [Pa]
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Figure 5.7: Witch of Agnesi Hill - algebraic - Contours of x velocity component [m · s−1]

Figure 5.8: Witch of Agnesi Hill k − ε - Contours of x velocity component [m · s−1]
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Figure 5.9: Witch of Agnesi Hill - Ivo Sládek’s results - Contours of x velocity component
[m · s−1]
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Figure 5.10: Witch of Agnesi Hill - algebraic - Contours of z velocity component [m ·s−1]

Figure 5.11: Witch of Agnesi Hill k − ε - Contours of z velocity component [m · s−1]
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Figure 5.12: Witch of Agnesi Hill - Ivo Sládek’s results - Contours of z velocity component
[m · s−1]
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Figure 5.13: Witch of Agnesi Hill k− ε - Contours of turbulent kinetic energy [m2 · s−2]
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Figure 5.14: Witch of Agnesi Hill - Ivo Sládek’s results - Contours of turbulent kinetic
energy [m2 · s−2]
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Figure 5.15: Witch of Agnesi Hill k − ε - Convergence of the computation
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Presented results of the computation with the standard k− ε turbulence model corre-
spond each other very well with the results obtained by Ivo Sládek et al. [34], as one can
see in the presented figures. The computation performed with the Cebecci-Smith alge-
braic turbulence model does not correspond each other so well. On the one hand algebraic
turbulence models in general are not suitable to the cases where occures the separation
of the flow. They usually over predict the size of separation zone behind the obstacle.
Exactly the same situation came in our case. As one can see in the presented figures,
the separation zone behind the hill is much larger in case with Cebecci-Smith algebraic
turbulence model than in the case with the standard k − ε turbulence model, which was
expected. On the other hand, the solution obtained using the algebraic turbulence model
could be influenced by the usage of the computational grid that is coarse in the near wall
regions and does not satisfy the recommended near wall resolution.

5.3 Stratified incompressible turbulent results of the flow
over 2D cosine shaped hill

The 2D flow past one cosine shaped hill is considered in this case. The height of the hill
is 10% of its basis length. The basis length of the hill is 1000 [m] so the height h of the
hill is h = 100 [m].

Lax-Wendroff (MacCormack) scheme have been used to compute following results.
The Boussinesq density based model together with the Cebecci-Smith algebraic turbulence
model has been used in all three following cases. The gravitational acceleration vector has
been set to g = (0, 0, −10) approximately as the gravitational acceleration of the Earth
for all cases.

All the following computations have been performed using the same computational
domain (see figure (4.7)). The cases differ in the computational grid parameters, the inlet
boundary condition for the density and the values of inlet velocity (or one can say in
the values of Reynolds number). The stable stratification condition has been set in all
simulations but with different density ranges (different values of ρ

H
and ρ0w). The inlet

boundary condition has been set according to (4.81), where the height of the domain has
been H = 1000 [m] in all following cases.

5.3.1 Case 1

The fine computational mesh (300 cells in x direction, 100 cells in z direction), with the
near wall resolution ∆zmin < 1/

√
Re, has been considered in the first case.

The inlet boundary condition for density has been set according to the equation (4.81)
and its range has been chosen as follows:

- density near the ground ρ0w = 1.2
[

kg
m3

]

- density at the top of the domain ρ
H
= 1.1

[

kg
m3

]

.

No boundary condition for density ρw on the ground has been set and the density has
been extrapolated on the ground wall.

The Reynolds number has been set to Re = 108 which corresponds approximately to
the inlet velocity u∞ = 1.5 [m · s−1], if one considers that the kinematic viscosity of the
air is about ν = 1.5 · 10−5 [m2 · s−1]. The uniform velocity distribution in the inlet has
been considered there.
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The figure (5.16) shows results of the first case the distribution of the velocity magni-
tude.

Figure 5.16: 2D cosine 10% - Velocity magnitude [m · s−1]
(ρ ∈ [1.1; 1.2], Re = 108 ≈ U∞ = 1.5 m · s−1)

5.3.2 Case 2

The same fine computational mesh as in the Case 1 (300 cells in x direction, 100 cells in z
direction), with the near wall resolution ∆zmin < 1/

√
Re, has been considered also in the

second case.
The inlet boundary condition for the density has been set according to the equation (4.81)
and the same range as in the first case has been chosen:

- density near the ground ρ0w = 1.2
[

kg
m3

]

- density at the top of the domain ρ
H
= 1.1

[

kg
m3

]

.

No boundary condition for density ρw on the ground has been set and the density has
been extrapolated on the ground wall.

The Reynolds number has been set to Re = 5 · 108 which corresponds approximately
to the inlet velocity u∞ = 7.5 [m · s−1], if one considers that the kinematic viscosity of the
air is about ν = 1.5 · 10−5 [m2 · s−1]. The uniform velocity distribution in the inlet has
been considered there.

The figure (5.17) shows results of the first case the distribution of the velocity magni-
tude.

Figure 5.17: 2D cosine 10% - Velocity magnitude [m · s−1]
(ρ ∈ [1.1; 1.2], Re = 5 · 108 ≈ U∞ = 7.5 m · s−1)
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5.3.3 Case 3

The much coarser computational mesh as in the Case 1 and 2 (100 cells in x direction, 40
cells in z direction), with the near wall resolution ∆zmin ≈ 10/

√
Re, has been considered

in this last case.
The inlet boundary condition for density has been set according to the equation (4.81)
but the much larger range than in the first and second case has been chosen:

- density near the ground ρ0w = 1.2
[

kg
m3

]

- density at the top of the domain ρ
H
= 0.6

[

kg
m3

]

.

No boundary condition for density ρw on the ground has been set and the density has
been extrapolated on the ground wall.

The Reynolds number has been set to lower value Re = 6.67 · 107 which corresponds
approximately to the inlet velocity u∞ = 1.0 [m · s−1], if one considers that the kinematic
viscosity of the air is about ν = 1.5 · 10−5 [m2 · s−1]. The uniform velocity distribution in
the inlet has been considered there same as in previous two cases.

Figures (5.18), (5.20) show results of the third case the distribution of the velocity
magnitude without and with stream lines and the figure (5.19) shows the the z velocity
component distribution in the computational domain.

Figure 5.18: 2D cosine 10% - Velocity magnitude [m · s−1]
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 5.19: 2D cosine 10% - Velocity Z [m · s−1]
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Figure 5.20: 2D cosin 10% - Stream lines
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

5.3.4 Concluding remarks

The so called ”lee waves” should appear in stratified flows. Lee waves are atmospheric
standing waves, that are created behind the obstacles (on the lee sides of hills, mountains),
that stays on the ground, due to the non constant density (stratification of the fluid) in
atmospheric boundary layer flows. They are periodic changes of atmospheric pressure,
temperature (density). The more information about the creation of lee waves can be
found in [52] and [55].

One can see the creation of lee waves just in the last case, especially in the figure with
stream lines (5.20) and also in the figure (5.19), where the z velocity component is shown.
One can see the periodic changes of the vertical direction of the flow, that are damped
because of the presence of viscous forces in the fluid.

In the last case where the inlet velocity is the lowest from all three cases, the density
range is the highest and the grid is much coarser. The high inlet velocity of the flow
lowers the influence of the source term related to the gravity. The higher inlet velocity
the lower gravity influence. The range of the density, i.e. the measure of stratification
(the density gradient) influences the effect of the gravity source term. The lower density
gradient (density gradient is negative in case of stable stratification) the greater effect of
the gravity source term.

The influence of the inlet velocity and inlet density gradient could be expressed through
the dimensionless numbers: Froude number Fr (the ratio of a body’s inertia to gravita-
tional force) or Richardson number Ri (the ratio of potential to kinetic energy), (Fr =
1/
√
Ri). Usually the reciprocal of the Froude number (square root of the Richardson

number) K is used in literature [26], [50]:

K =
1

Fr
=

√
Ri =

Nh

u∞
, N =

√

− g

ρ0w

∂ρ

∂z
, (5.4)
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where h is the height of the hill, N is the so called Brunt-Väisälä frequency, u∞ inlet
velocity, ρ density, ρ0w reference density and g is the gravitational acceleration. K is zero
for neutrally stratified flows.

If one computes K according to equation (5.4), one obtains K = 1.92 for the Case 1,
K = 0.38 for the Case 2 and finally K = 7.07 for the Case 3. Presented results show the
same phenomenon as it is published in all reference papers [26], [34] and [50]. Lee waves
appear and its frequency increases with increasing dimensionless number K. Lee waves do
not appear in Case 1 and in Case 2 even thought the dimensionless number K is greater
than zero. They appear only in the Case 3, where K is much higher. The properties of
the computational grid could play role in these cases. The coarser grid the less dissipative
simulation, i.e. the artificial dissipation added to the solution by the grid is lower on the
coarse mesh.

The combination of all these effects could be the cause of the fact that there were no
lee waves present in the first and second case, because the high velocity, the high vertical
gradient of the density (low dimensionless number K) and the fine mesh can smooth lee
waves.

5.4 Stratified incompressible turbulent results of the flow

over two 2D cosine shaped hills

The same mathematical model and fluid properties have been chosen as in the Case 3 in
the previous section (see section 5.3 and 5.3.3). The the same grid resolution has been
taken there ∆zmin ≈ 10/

√
Re. The difference is in the geometry configuration. The flow

past two cosine shaped hills is considered in this case. The height of the first hill (meant
in direction of the flow) is 10% of its basis length and the height of the second hill is 15%
of its basis. The basis length of the both hills is 1000 [m] and the height h of the first one
is h = 100 [m] and the second one h = 150 [m].

Lax-Wendroff (MacCormack) scheme have been used to compute following results. The
Boussinesq density based model together with the algebraic turbulence model Cebecci-
Smith has been used in this case. The gravitational acceleration vector has been set
to g = (0, 0, −10) approximately as the gravitational acceleration of the Earth for all
following cases.

The inlet boundary condition has been set according to the equation (4.81) and its
range has been chosen as follows:

- density near the ground ρ0w = 1.2
[

kg
m3

]

- density at the top of the domain ρ
H
= 0.6

[

kg
m3

]

.

The Reynolds number has been set to Re = 6.67 · 107 which corresponds approximately
to the inlet velocity u∞ = 1.0 [m · s−1] if one considers that the kinematic viscosity of the
air is about ν = 1.5 · 10−5 [m2 · s−1]. The uniform velocity distribution in the inlet has
been considered there.

Two cases of the 2D stratified turbulent flow over two cosine hills have been computed.
There has been tested an influence of the boundary conditions for the density on the ground
wall. Two different boundary conditions have been set. Both cases have been solved on
the same geometry configuration with the same fluid properties and the same initial and
boundary conditions for all other quantities. The exact settings of boundary conditions
for density is described independently for each case in following sections.
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5.4.1 Case 1

The inlet boundary condition for density has been set according to the equation (4.81).

The boundary condition for density ρw on the ground has been set as Dirichlet bound-
ary condition (i.e. ρw is set to be constant value for each boundary face during the
computation). The density values have been set using the relation (4.82).

One can see the resulting distribution of the density in the figure (5.21), pressure
perturbation distribution in the figure (5.22), x and z velocity components in figures (5.23)
and (5.24).

Figure 5.21: 2D cosine 10%, cosine 15% hills - Contours of density [kg ·m−3]
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 5.22: 2D cosine 10%, cosine 15% hills - Contours of Pressure Perturbations [Pa]
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 5.23: 2D cosine 10%, cosine 15% hills - Contours of velocity X
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Figure 5.24: 2D cosine 10%, cosine 15% hills - Contours of velocity Z [m · s−1]
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

5.4.2 Case 2

The density linearly decreases with the increasing height according to the equation (4.81).

No boundary condition for density ρw on the ground has been set and the density has
been extrapolated on the ground wall.

One can see the resulting distribution of the density in the figure (5.25), pressure
perturbation distribution in the figure (5.26), x and z velocity components in figures (5.27)
and (5.28).

Figure 5.25: 2D cosine 10% cosine 15% - Contours of Density [kg ·m−3]
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 5.26: 2D cosine 10% cosine 15% - Contours of Pressure Perturbations [Pa]
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Figure 5.27: 2D cosine 10% cosine 15% - Contours of Velocity X
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 5.28: 2D cosine 10% cosine 15% - Contours of Velocity Z [m · s−1]
(ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Z

U UU

Z Z

Figure 5.29: 2D cosine 10% cosine 15% - Velocity profile comparison - in x = 0 [m] (top
of the first hill), x = 1000 [m] (top of the second hill), x = 2000 [m] (behind the second
hill)
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5.4.3 Concluding remarks

Both solutions converge to the steady state, as one can see from the figures (5.30), (5.31).
Lee waves are present in both cases, as one can see in presented figures. One can see the
oscillating direction of the z velocity component in the figures (5.24), (5.28). The creation
of lee waves is independent on the choice of boundary conditions for the density. And
also the solution does not depend so much on the choice of the wall boundary condition
for density, as one can see from presented results. Case 1 and Case 2 solutions are very
similar each other, what is visible in the figure (5.29), where velocity profiles are compared
in three different places in the computational domain.

The dimensionless number K = 7.07 computed using relation (5.4) and taking into
account that h is the height of the first hill h = 100 [m] is the same for both cases.
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Figure 5.30: Case 1 - Residuals
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Figure 5.31: Case 2 - Residuals
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Chapter 6

Numerical Results 3D
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6.1 Neutrally stratified incompressible turbulent results of
the flow over one 3D cosine shaped hill

The 3D flow past one cosine shaped hill is considered in this case. The computational
domain has been defined as the figures (4.6), (4.7), (4.8) show. The height of the hill is
10% of its basis length. The basis length of the hill is 1000 [m] so the height h of the hill
is h = 100 [m].

Lax-Wendroff (MacCormack) scheme have been used to compute following results. The
incompressible Reynolds Averaged Navier-Stokes equations together with the Cebecci-
Smith algebraic turbulence model has been used in this case, i.e. neutral stratification has
been considered.

The Reynolds number has been set to Re = 6.67·107 which corresponds approximately
to the inlet velocity u∞ = 1.0 [m · s−1] if one considers that the kinematic viscosity of the
air is about ν = 1.5 · 10−5 [m2 · s−1]. The uniform velocity distribution in the inlet has
been considered there.

The fine computational mesh (200 cells in x direction, 100 cells in y direction, 80 cells
in z direction), with the near wall resolution ∆zmin < 1/

√
Re, has been considered in this

case.
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Reader can see the results of this simulation in figures (6.1) the x velocity distribution
in XZ slice in the middle of the domain, (6.2) the z velocity distribution in XZ slice in the
middle of the domain and (6.3) the x velocity distribution in XY slice in the middle of the
hill height.

Figure 6.1: 3D cosine 10% hill - Contours of velocity X [m · s−1] - XZ slice in the middle
of the domain - (Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.2: 3D cosine 10% hill - Contours of velocity Z [m · s−1] - XZ slice in the middle
of the domain - (Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.3: 3D cosine 10% hill - Contours of velocity X [m · s−1] - XY slice in the middle
of the hill height - (Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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6.2 Stratified incompressible turbulent results of the flow

over 3D cosine shaped hill

The 3D flow past one cosine shaped hill is considered in this case. The height of the hill
is 10% of its basis length. The basis length of the hill is 1000 [m] so the height h of the
hill is h = 100 [m].

Lax-Wendroff (MacCormack) scheme have been used to compute following results.
The Boussinesq density based model together with the Cebecci-Smith algebraic turbulence
model has been used in all three following cases. The gravitational acceleration vector has
been set to g = (0, 0, −10) approximately as the gravitational acceleration of the Earth
for all cases.

All the following computations have been performed using the same computational
domain (see figures (4.6), (4.7), (4.8)). The cases differ in the computational grid param-
eters, the inlet boundary condition for the density and the values of inlet velocity (or one
can say in the values of Reynolds number). The stable stratification condition has been
set in all simulations but with different ranges (different values of ρ

H
and ρ0w) as the

inlet boundary condition according to (4.81), where the height of the domain has been
H = 1000 [m] in following cases.

6.2.1 Case 1

The fine computational mesh (200 cells in x direction, 100 cells in y direction, 80 cells in z
direction), with the near wall resolution ∆zmin < 1/

√
Re, has been considered in the first

case.
The inlet boundary condition in the inlet has been set according to the equation (4.81)
and its range has been chosen as follows:

- density near the ground ρ0w = 1.2
[

kg
m3

]

- density at the top of the domain ρ
H
= 1.1

[

kg
m3

]

.

No boundary condition for density ρw on the ground has been set and the density has
been extrapolated on the ground wall.

The Reynolds number has been set to Re = 108 which corresponds approximately to
the inlet velocity u∞ = 1.5 [m · s−1], if one considers that the kinematic viscosity of the
air is about ν = 1.5 · 10−5 [m2 · s−1]. The uniform velocity distribution in the inlet has
been considered there.

Figures (6.4), (6.5) shows results of the first case the distribution of the velocity mag-
nitude, the first one in the XZ plane in the middle of the hill and the second one in the
XY plane in the middle of the hill height.
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Figure 6.4: 3D cosine 10% hill - Contours of velocity magnitude [m · s−1] - XZ slice in
the middle of the domain - (ρ ∈ [1.1; 1.2], Re = 108 ≈ U∞ = 1.5 m · s−1)

Figure 6.5: 3D cosine 10% hill - Contours of velocity magnitude [m · s−1] - XY slice in
the middle of the hill height - (ρ ∈ [1.1; 1.2], Re = 108 ≈ U∞ = 1.5 m · s−1)

6.2.2 Case 2

The twice coarser computational grid as in the Case 1 (100 cells in x direction, 50 cells in
y direction, 40 cells in z direction), with the near wall resolution ∆zmin ≈ 10/

√
Re, has

been considered in this case.
The inlet boundary condition in the inlet has been set according to the equation (4.81)
but the much larger range than in the first and second case has been chosen:

- density near the ground ρ0w = 1.2
[

kg
m3

]

- density at the top of the domain ρ
H
= 0.6

[

kg
m3

]

.

The boundary condition for density ρw on the ground has been set as Dirichlet boundary
condition (i.e. ρw is set to be constant value for each boundary face during the computa-
tion). The density values have been set using the relation (4.82).

The Reynolds number has been set to lower value Re = 6.67 · 107 which corresponds
approximately to the inlet velocity u∞ = 1.0 [m · s−1], if one considers that the kinematic
viscosity of the air is about ν = 1.5 · 10−5 [m2 · s−1]. The uniform velocity distribution in
the inlet has been considered there same as in previous two cases.

Figures (6.6), (6.8) show results of this second case the distribution of the velocity
magnitude in the XZ plane in the middle of the hill and the second one in the XY plane in
the middle of the hill height. Figure (5.19) shows the the z velocity component distribution
in the XZ plane in the middle of the hill.
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Figure 6.6: 3D cosine 10% hill - Contours of velocity magnitude [m · s−1] - XZ slice in
the middle of the domain - (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.7: 3D cosine 10% hill - Contours of velocity Z [m · s−1] - XZ slice in the middle
of the domain - (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.8: 3D cosine 10% hill - Contours of velocity magnitude [m · s−1] - XY slice in
the middle of the hill height - (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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6.2.3 Concluding remarks

The so called ”lee waves” should appear in stratified flows [52], [55].

As in the case of 2D simulations one can see the creation of lee waves just in the second
case, especially in the figure where the distribution of z component of the velocity vector
is shown (6.7). One can see the periodic changes of the vertical direction of the flow, that
are damped because of the presence of viscous forces in the fluid.

In the second case where the inlet velocity is lower than in the first case, the density
range is much higher and the grid is twice coarser in each direction. The high inlet
velocity of the flow lowers the influence of the source term related to the gravity. The
higher inlet velocity the lower gravity influence. The range of the density, i.e. the measure
of stratification (the density gradient) influences the effect of the gravity source term. The
lower density gradient (density gradient is negative in case of stable stratification) the
greater effect of the gravity source term.

The influence of the inlet velocity and inlet density gradient could be expressed through
the dimensionless numbers: Froude number Fr (the ratio of a body’s inertia to gravita-
tional force) or Richardson number Ri (the ratio of potential to kinetic energy), (Fr =
1/
√
Ri). Usually the reciprocal of the Froude number (square root of the Richardson

number) K is used in literature [26], [50] (see equation (5.4))
If one computes K according to equation (5.4), one obtains K = 1.92 for the Case

1 and K = 7.07 for the Case 2. Presented results show the same phenomenon as it is
published in all reference papers [26], [34] and [50]. Lee waves appear and its frequency
increases with increasing dimensionless number K. Lee waves do not appear in Case 1
even thought the dimensionless number K is greater than zero. They appear only in the
Case 2, where K is much higher. The properties of the computational grid could play role
in these cases. The coarser grid the less dissipative simulation, i.e. the artificial dissipation
added to the solution by the grid is lower on the coarse mesh.

The combination of all these effects could be the cause of the fact that there were no
lee waves present in the first case, because the high velocity, the high vertical gradient of
the density (low dimensionless number K) and the fine mesh can smooth lee waves.

The next phenomenon visible in the presented figures showing XY plane (6.5), (6.8)
is that the flow pattern is not symmetrical in stratified flows. One can see in the figure
(6.3) that the flow is symmetrical in the case with neutral stratification. It means that
the asymmetry is the most probably caused by the stratification of the flow in our cases.

6.3 Stratified incompressible turbulent results of the flow
over two 3D cosine shaped hills

Two cases of the 3D incompressible stratified flows over 2 cosine shaped hills have been
computed. The both cases have been performed with the same boundary conditions and
the same flow parameters. Case 1 and Case 2 differ in the topology of the computational
domain.

The coarser computational grid (120 cells in x direction, 50 cells in y direction, 40 cells
in z direction), with the near wall resolution ∆zmin ≈ 10/

√
Re, has been considered in

these cases.

Lax-Wendroff (MacCormack) scheme have been used to compute following results. The
Boussinesq density based model together with the algebraic turbulence model Cebecci-
Smith has been used in this case. The gravitational acceleration vector has been set to
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g = (0, 0, −10) approximately as the gravitational acceleration of the Earth for all cases.

The density spread has been chosen as follows:

- density near the ground ρ0w = 1.2
[

kg
m3

]

- density at the top of the domain ρ
H
= 0.6

[

kg
m3

]

.

The boundary condition for density ρw on the ground has been set as Dirichlet boundary
condition (i.e. ρw is set to be constant value for each boundary face during the computa-
tion). The density values have been set using the relation (4.82).

The Reynolds number has been set to Re = 6.67·107 which corresponds approximately
to the inlet velocity u∞ = 1.0 [m · s−1] if one considers that the kinematic viscosity of the
air is about ν = 1.5 · 10−5 [m2 · s−1].

6.3.1 Case 1

The flow over two sinus shaped hills have been considered. The first hill has the height
10% of its basis length (basis 1000 [m], h = 100 [m]) and the second one has the height
15% of its basis length (basis 1000 [m], h = 150 [m]). The center of the both hills lays on
the (x, 0, 0) axis, they are aligned in x direction (direction of the flow) (see figure (4.9)).

Following figures show the distribution of pressure and velocity in the middle of the
domain (XZ plane, y = 0 [m]) and in the XY plane in located in the middle height of the
first hill (z = 50 [m])

Figure 6.9: 3D cosine 10%, cosine 15% hills - Contours of pressure perturbations [Pa] -
XZ slice in the middle of the domain (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.10: 3D cosine 10%, cosine 15% hills - Contours of velocity X [m ·s−1] - XZ slice
in the middle of the domain (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Figure 6.11: 3D cosine 10%, cosine 15% hills - Contours of velocity Z [m · s−1] - XZ slice
in the middle of the domain (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.12: 3D cosine 10%, cosine 15% hills - Contours of pressure pert. [Pa] XY slice
in the middle of the 1st hill height (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.13: 3D cosine 10%, cosine 15% hills - Contours of velocity X [m · s−1] - XY
slice in the middle of the 1st hill height (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Figure 6.14: 3D cosine 10%, cosine 15% hills - Contours of velocity Z [m ·s−1] - XY slice
in the middle of the 1st hill height (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

6.3.2 Case 2

The flow over two sinus shaped hills have been considered. Both hills have the height 10%
of its basis length (basis 1000 [m], h = 100 [m]) and the center of the first hill lays one
quarter of its basis length moved in the direction of -y axis from the x axis and the center
of the second hill lays one quarter of its basis length moved in the direction of +y axis
from the x axis, so only their quarters are aligned in the x direction (direction of the flow)
(see figure (4.10)).

Following figures show the distribution of pressure and velocity in XZ planes (in the
middle of the domain y = 0 [m] and in the middle of the cosine hills y = ±500 [m]) and in
the XY plane in located in the middle of the hills (z = 50 [m]).

Figure 6.15: 3D cosine 10%, cosine 10% hills - Contours of pressure pert. [Pa] - XZ slice
in the middle of the domain (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.16: 3D cosine 10%, cosine 10% hills - Contours of pressure pert. [Pa] - XZ slice
in the middle of the 1st hill (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Figure 6.17: 3D cosine 10%, cosine 10% hills - Contours of pressure pert. [Pa] - XZ slice
in the middle of the 2nd hill (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.18: 3D cosine 10%, cosine 10% hills - Contours of velocity X [m ·s−1] - XZ slice
in the middle of the domain (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.19: 3D cosine 10%, cosine 10% hills - Contours of velocity X [m ·s−1] - XZ slice
in the middle of the 1st hill (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.20: 3D cosine 10%, cosine 10% hills - Contours of velocity X [m ·s−1] - XZ slice
in the middle of the 2nd hill (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Figure 6.21: 3D cosine 10%, cosine 10% hills - Contours of velocity Z [m · s−1] - XZ slice
in the middle of the domain (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.22: 3D cosine 10%, cosine 10% hills - Contours of velocity Z [m · s−1] - XZ slice
in the middle of the 1st hill (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)

Figure 6.23: 3D cosine 10%, cosine 10% hills - Contours of velocity Z [m · s−1] - XZ slice
in the middle of the 2nd hill (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Figure 6.24: 3D cosine 10%, cosine 10% hills - Contours of pressure perturbations [Pa] -
XY slice in the middle of the hills height (ρ ∈ [0.6; 1.2], Re = 6.67·107 ≈ U∞ = 1.0 m ·s−1)

Figure 6.25: 3D cosine 10%, cosine 10% hills - Contours of velocity X [m · s−1] - XY
slice in the middle of the hills height (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Figure 6.26: 3D cosine 10%, cosine 10% hills - Contours of velocity Z [m ·s−1] - XY slice
in the middle of the hills height (ρ ∈ [0.6; 1.2], Re = 6.67 · 107 ≈ U∞ = 1.0 m · s−1)
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Figure 6.27: Case 1 - Residuals

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

 0  200000  400000  600000  800000  1e+06

R
es

id
ua

l

Iterations

Pressure
X-velocity
Y-velocity
Z-velocity

Density

Figure 6.28: Case 2 - Residuals

6.3.3 Concluding remarks

All the computations seem to be converged to steady state, as one can see from residual
plots (see figures (6.27) and (6.28)).

Lee waves are present in both cases, as one can see in presented figures, especially in
the figures where the distribution of z component of the velocity vector is shown (6.11),
(6.21), (6.22), (6.23). One can see there the periodic changes of the vertical direction of
the flow, that are damped because of the presence of viscous forces in the fluid.

The results of the Case 1 in XZ planes are comparable with 2D results from the section
5.4. The results from XZ cut in the middle of the 3D domain can be approximated by the
simulation using the 2D domain.
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One can see the asymmetry of the solution in the figures (6.24), (6.25), (6.26). This
asymmetry is most probably caused by the stratification of the fluid and subsequent cre-
ation of lee waves, because there is no asymmetry present in case of neutral stratification
in 3D computations, as one can see in the figure (6.3). The result in the figure (6.3) has
been obtained by the 3D computation using the domain with one cosine hill (see figure
(4.6)) with the same settings as the previously presented results except the stratification
of the fluid. The density was constant in this case and the gravity acceleration has been
set to zero (g = (0, 0, 0)).

The dimensionless number K = 7.07 computed using relation (5.4) and taking into
account that h is the height of the first hill h = 100 [m] is the same for both cases.
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Chapter 7

Conclusion

The model for the simulation of the stratified turbulent flows in atmospheric boundary
layer (ABL) has been introduced. There have been obtained several 2D and 3D numeri-
cal results using various geometry configurations, that should simulates the real flows in
atmospheric boundary layer.

Presented model predicts the creation of so called lee waves (in 2D and 3D flows), that
should appear in the stratified flows in ABL. Lee waves are atmospheric standing waves,
that are created behind the obstacles (on the lee sides of hills, mountains), that stays on
the ground, due to the non constant temperature (density) (stratification of the fluid) in
atmospheric boundary layer flows. They are periodic changes of atmospheric pressure,
temperature (density).

Presented results show that the creation of the lee waves depends on the dimensionless
number K = 1/Fr =

√
Ri (the reciprocal of the Froude number/square root of the

Richardson number, see equation (5.4)) and the grid resolution. Lee waves appeared only
on the coarser meshes when the dimensionless number K has been approximately K ≈ 7.
No lee waves have been observed in the results where the dimensionless number K has
been lower than 2.

It is possible to say that the model is good for prediction of stratified flows in at-
mospheric boundary layer. But the Cebecci-Smith algebraic turbulence model and the
explicit Lax-Wendroff (MacCormack form) numerical scheme seem to be the limitations
of a applicability of this model to more complex stratified boundary layer flows.

The problem with the algebraic turbulence model is that the algebraic turbulence
model is not a best turbulence model for the 3D turbulent flows over a complex geometries
predictions. And the problem with explicit scheme is that the explicit scheme is only
conditionally stable and the strict restriction for the time step size has to be applied in
order to achieve convergence to the solution. The maximum time step size is related
to the size of the smallest cell in the computational grid, which has to be very small
in computation with such a high Reynolds numbers as appears in ABL flows, where
Re = 107 − 108. The semi-implicit or implicit scheme will be much more suitable for the
computations of the flows in atmospheric boundary layer.

The reason why the explicit Lax-Wendroff numerical scheme (MacCormack form) and
the Cebecci-Smith algebraic turbulence model have been chosen is the fact that they are
quite easy to implement and therefore the model could be quickly implemented, validated
and tested.

From the reason mentioned above the standard and realizable k− ε turbulence models
(turbulent kinetic energy transport type turbulence models) have been implemented and
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validated (see section 5.1). The k−εmodels have been implemented for neutrally stratified
flows, therefore the comparison with the results of flows in ABL has been made only with
the results of neutrally stratified flows obtained by Ivo Sládek et al. [34] and Eidsvik
and Utnes [26]. The comparison shows very good agreement of the results of neutrally
stratified flows in ABL, as reader can see in section 5.2.

Two tasks flows from these conclusions for a future work. At first to implement the
k−ε turbulence model to the solver for stratified flows and compare obtained results with
another numerical results. Or to implement other more sophisticated turbulence model
applicable to the atmospheric boundary layer flows. And the second will be to implement
modern implicit or semi-implicit scheme in order to achieve a more robust and faster solver
for simulations of the turbulent stratified atmospheric boundary layer flows.
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Mathematical and Computational Methods for Compressible Flow,
Clarendon Press, Oxford 2003.

[3] Ferziger J. H., Perić M.:
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Vydavatelstv́ı ČVUT, Prague, 1996

[8] S. Prata:
C++ Primer Plus (Fourth Edition),
Sams, Indianapolis, IN, USA, 2001
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[47] Tauer M., Šimonek J., Kozel K., Jaňour Z.:
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