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Abstract

This work deals with problems of Computational Fluid Dynamics (CFD). This branch
is dynamically developing thanks to the strong computer technology, that considerably
increased its productivity during past decades. Together with experiment, the CFD anal-
ysis is necessary part of many industrial projects all over the world. The work itself deals
with numerical simulation of the viscous, incompressible fluid flow. Each fluid may be
viewed as a Newtonian fluid or non-Newtonian fluid (Or, more precisely, non-Newtonian
liquid. None non-Newtonian behavior has been observed for gases). The work is generally
aimed on non-Newtonian fluid flow. Non-Newtonian fluid is a fluid for which the shear
stress can’t be described by Newton law for fluids. Non-Newtonian fluid is a general
term for large group of fluids, for which the stress tensor is described by another relation
than Newton law for fluids. Non-Newtonian fluid may be a fluid with variable viscosity,
viscoelastic fluid or chemically reacting fluid. All these three non-Newtonian effects are
assumed in this work. The introduced models are tested on ten selected test cases. Three
test cases deal with validation of the method. Four test cases deal with shear-thinning
generalized Newtonian models. Two test cases deal with viscoelasticity. The last test
case deals with blood coagulation. All the described methods are general enough. Special
emphasis was put on application of methods in hemodynamics.

Souhrn

Tato práce se zabývá poč́ıtačovou mechanikou tekutin (CFD). Tato věda se dynam-
icky vyv́ıj́ı d́ıky silné poč́ıtačové technice, která prošla obrovským vývojem v posledńıch
deśıtkách let. Společně s experimentem tvoř́ı CFD analýza nezbytnou součást mnoha
projekt̊u v pr̊umyslu po celém světě. Práce samotná se zabývá numerickou simulaćı
prouděńı vazkých nestlačitelných kapalin. Každá tekutina je newtonská, nebo nenew-
tonská (nenewtonské jsou pouze kapaliny, nenewtonské vlastnosti plyn̊u dosud nebyly
pozorovány). Práce je zaměřená předevš́ım na prouděńı nenewtonských tekutin. Nenew-
tonská tekutina je taková tekutina, pro kterou tensor napět́ı neńı popsán Newtonovým
zákonem pro tekutiny. Nenewtonská tekutina je pouze obecný výraz pro velkou skupinu
tekutin, pro které tensor napět́ı je vyjádřen pomoćı jiného vztahu, než Newtonovým
zákonem pro tekutiny. Nenewtonská tekutina může být např́ıklad tekutina s proměnnou
vazkost́ı, viskoelastická tekutina, nebo chemicky reaguj́ıćı tekutina. Všechny tyto tři
zmı́něné nenewtonské vlastnosti tekutin jsou dikutovány v této práci. V práci představené
modely jsou testovány na deseti vybraných testovaćıch úlohách. Tři testovaćı úlohy jsou
zaměřeny na validaci metod. Čtyři testovaćı úlohy jsou zaměřeny na zobecněné newtonské
tekutiny. Dvě testovaćı úlohy jsou zaměřeny na viskoelasticitu. Posledńı testovaćı úloha
se zabývá modelováńım krevńı srážlivosti. Všechny popisované metody maj́ı obecnou
platnost. Speciálńı d̊uraz byl kladen na použit́ı těchto metod pro prouděńı krve.

KEYWORDS: Computational Fluid Dynamics, Variable Viscosity, Shear-thinning Vis-
cosity, Viscoelasticity, Oldroyd-B, Blood Coagulation, Finite Volume Method, MacCor-
mack scheme, OpenFOAM
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Chapter 1

The Work Motivation

Contents
1.1 Computational Fluid Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 The Work Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Computational Fluid Dynamics

Computational fluid dynamics (CFD) is one of the branches of fluid mechanics that uses numerical
methods and algorithms to solve and analyze problems that involve fluid flows. Computers are used to
perform calculations required to simulate the interaction of liquids and gases with surfaces defined by
boundary conditions.

1.2 Motivation

This work deals with problems of Computational Fluid Dynamics (CFD). This branch is dynamically
developing thanks to the strong computer technology, that considerably increased its productivity during
past decades. Together with experiment, the CFD analysis is necessary part of many industrial projects
all over the world.

The work itself deals with numerical simulation of the incompressible fluid flow. Fluids are classified
as Newtonian fluids or non-Newtonian fluids (Or, more precisely, non-Newtonian liquid. None important
non-Newtonian behavior has been observed for gases). The work is generally aimed on non-Newtonian
fluid flow. Non-Newtonian fluid is a fluid for which the shear stress can’t be described by Newton law for
fluids. Non-Newtonian fluid is a general term for very large group of fluids, for which the stress tensor
is described by another relation than Newton law for fluids. Non-Newtonian fluid may be a fluid with
variable viscosity, elastic fluid or chemically reacting fluid. All these three non-Newtonian effects are
assumed in this work.

The phenomenon of variable viscosity is in this work represented by a class of shear-thinning General-
ized Newtonian fluids1 (blood, milk, ...). For the Generalized Newtonian fluids the fluid viscosity changes
with the shear rate (a norm of velocity gradient).

The phenomenon of fluid viscoelasticity2 is in this work represented by a group of Johnson-Segalman
model (Oldroyd B variant). Viscoelasticity can be observed e.g. in flowing blood, some polymers, etc.
For the viscoelastic fluids the fluid stress tensor changes as a function of velocity gradient and other
physical properties of the fluid.

1sometimes called shear-thinning non-Newtonian fluids
2fluid is alway viscous and may be also elastic

3



4 1. The Work Motivation

The phenomenon of blood coagulation is extremely complicated. The blood coagulation model deals
with problem, what happens immediately after damaging the blood vessel wall. We introduce the state of
art model focused on estimation of growth, rise and lysis of the clot (blood thrombus). The flowing blood
model described by Navier-Stokes equations is completed by 28 differential equations for real chemical
reactants in human blood. These 28 chemicals represented by their concentrations react each other to
form a clot (certain level of fibrin concentration).

All the introduced models can be directly applied in hemodynamics. Hemodynamics3, meaning liter-
ally ”blood movement” is the study of blood flow or the circulation. Nevertheless, the work was written
with effort to be general enough to keep a wide range of usability of introduced methods. There were
selected ten test cases on which is shown the methods’ and models’ performance. Three test cases are
aimed on validation of the method. Four test cases are aimed on testing models for Generalized New-
tonian fluids. Two test cases are aimed on testing viscoelastic models. The last test case is aimed on
testing blood coagulation model.

In order to keep consistency in the scope of the work, we decided the work to be focused on internal
aerodynamics. It means that we have been exploring the flow in various channels and ducts. There was
one exception made, that is the flat plate, falling to external aerodynamics. The flat plate test case as
one of the most common test cases in CFD. Anyway, from computational point of view, the difference
between internal and external aerodynamics is only a question of boundary conditions.

1.3 The State of the Art

In this section we mention the most important works to form this work. Each important chapter of this
work has it’s own state-of-art section.

The first known attempts to study the blood flow properties were made by Young and Poiseuille in
the seventeen century, who estimated the resistance to blood flow by means of flow experiments in tubes.
Although Poiseuille knew that some deviations from others fluids exists, they considered blood to be a
Newtonian fluid. Later in twentieth century Denning & Watson and Fahraeus & Lindqvist [34] observed
the anomalous flow property of blood that viscosity appear to depend upon the diameter to the tube
used for the measurement.

The development of rotational viscometers in the middle of twentieth century facilitated rigorous ex-
perimentations towards the study of the abnormal flow properties of blood. The investigations essentially
showed that the blood is shear-thinning generalized Newtonian fluid, see e.g. Chien [27], Dintenfass [32]
and Caro [22].

Other research discovered the microstructure of blood can store the mechanical energy (due to the
red blood cell properties) and found out the whole blood is viscoelastic fliud, see e.g. Chien [28], Chmiel

[29], Lowe [60], Oldroyd [64].

The numerical modeling of blood flow made huge progress together with developing computer power
at the end of the twentieth century. At the beginning of computational fluid dynamics the blood was
modeled as a Newtonian fluid. Later the shear-thinning variable viscosity models were introduced to
imitate the blood flow, see e.g. Cho & Kensey [30], Gijsen [40], Berger & Jou [10], Leuprecht & Perktold

[58].

More complex blood flow models taking into account both variable viscosity and viscoelasticity were
introduced e.g. by Yeleswarapu [86] and Anand & Rajagopal. [58]

The first attempts to model the blood coagulation process were e.g. [8], [20], [54], [61]. The very
complex blood coagulation model was recently introduced by Anand at al. [3], reviewed version [15]. The
Anand’s model was later successfully tested by Bodnár [15] in three dimensions. The blood coagulation
modeling still remains a big challenge.

The numerical solution of Navier-Stokes equations is well described e.g. in Kozel & Dvořák [53],
Bodnár [15] and Fürst [12].

3following [101]



1.4 Objectives 5

1.4 Objectives

The main objective of this work is to contribute to CFD modeling in hemodynamics. To do so, the work
has following goals:

1. To show the possible way how to solve Navier-Stokes equations using Finite Volume Method

2. To summarize and implement models for viscoelastic and generalized Newtonian fluid flows

3. To implement the state-of-art blood coagulation model

4. To create original solver which can solve viscoelastic and generalized Newtonian fluid flow

5. To compare results with other relevant methods or solvers

6. To investigate the differences and curiosities in Newtonian, generalized Newtonian and viscoelastic
type of flow

1.5 The Work Structure

The first part is Introduction and gives the general information about this work. The part defines the
field o interest, motivation and objectives. The work itself is divided into three main parts:

I. Mathematical models
x Basic System of Balance Laws
x Concept of Viscosity of Materials
x Viscoelastic Fluid Model
x Blood Coagulation Model

II. Numerical methods
x Finite Volume Method
x Solvers

III. Numerical experiments
x Validation of Numerical Methods
x Tests of Generalized Newtonian Models
x Tests of Viscoelastic Models
x Application to Blood Coagulation Model

Each part consists of a few chapters. Chapters are divided into sections. The part Mathematical

models describes the physical background of the problem from mathematical point if view. Starting
from basic conservation laws for Newtonian fluid we continue with extending the problem for Generalized
Newtonian fluid. Further in this work we introduce models for viscoelastic fluids. Finally, the governing
system based on Navier-Stokes equations is modified for viscoelastic Generalized Newtonian fluid. In
addition the state of art blood coagulation models is presented.

The part Numerical methods introduces numerical method used to solve the equations. The Finite
Volume Method which was used in this work and the numerical scheme (MacCormack) are described in
detail. The introduced numerical method is steady state using artificial compressibility method, central
scheme and structured cell-centered grid.

The part Numerical experiments show selected test cases with results from numerical simulations that
were performed using described models. All the ten test cases are marked with symbols Ci. Three test
cases are aimed on validation of the method. Four test cases are aimed on testing models for Generalized
Newtonian fluid. Two test cases are aimed on testing viscoelastic models. The last test case is aimed on
testing blood coagulation model.
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2.1 Blood micostructure

Blood1 is undeniably the most important bodily fluid. It performs the essential function of providing
nutrition and gas exchange for all tissues, maintaining chemical and thermal equilibrium of the body and
defending against infection trough the action of antibodies. The blood circulation in the human body
depends not only on the driving force of the heart and the mechanical properties of the vascular system,
but also on the rheology of blood itself.

Blood is a suspension of large number of formed elements (cells) in an aqueous polymer solution
(plasma). There are three kinds of cells: Red blood cells (RBC) , white blood cells (WBC) and platelets.
RBC has biconcave shape with diameter of about 7 · 10−6m. The blood cells are present in a ratio of
approximately 45% cells and 55% plasma.

Plasma contains water (approximately 90-92% by weight), mineral ions such as K+, Na−, Cl−,
HCO−

3 , HPO
−
4 , (approximately 1-2%) and the reminder (7%) are various proteins. Following figure

illustrates bloodstream and the basic members that can be find in it:

1following [73] and [101]

7
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Figure 2.1: The micro-structure of the blood (image reprinted from [104])

2.2 Aggregation and deformability of red blood cells

The red blood cells have a tendency to attach themselves side by side to form what are described as
rouleaux, resembling a stack of coins. The phenomena to form rouleaux is called aggregation. The
attraction is attributed to charged groups on the surface of cells. The process is reversible and also
depends on the presence fibrinogen and globulins.

The red blood cells also can deform into a infinite variety of shapes without changing volume or
surface area as is shown in following figure:

Figure 2.2: Rouleaux, normal cells and deformed cells under microscope (image reprinted from [73])

At high shear rates RBCs exist as an individual particles (like if layers of fluid cut rouleaux) and
take a thinner shape. At lower shear rates they aggregate, forming rouleaux resulting in an increase of
viscosity. Aggregation and deformability of red blood cells just cause the blood non-Newtonian behavior.
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Figure 2.3: Viscosity influenced by aggregation and deformability of red blood cells (image reprinted
from [73])

2.3 Blood coagulation

Coagulation2 is a complex process by which blood forms clots. It is an important part of hemostasis,
the cessation of blood loss from a damaged vessel, wherein a damaged blood vessel wall is covered by a
platelet and fibrin-containing clot to stop bleeding and begin repair of the damaged vessel. Disorders of
coagulation can lead to an increased risk of bleeding (hemorrhage) or obstructive clotting (thrombosis).

Coagulation is highly conserved throughout biology; in all mammals, coagulation involves both a
cellular (platelet) and a protein (coagulation factor) component. The system in humans has been the
most extensively researched and is therefore the best understood. Figure 2.4 shows an illustration of
interaction of chemical reactions.

Figure 2.4: Simple illustration of coagulation chemical interactions (image reprinted from [101])

2following [106] and [4])
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Coagulation begins almost instantly after an injury to the blood vessel has damaged the endothelium
lining the vessel. Exposure of the blood to proteins such as tissue factor initiates changes to blood
platelets and the plasma protein fibrinogen, a clotting factor. Platelets immediately form a plug at the
site of injury; this is called primary hemostasis. Secondary hemostasis occurs simultaneously: Proteins
in the blood plasma, called coagulation factors or clotting factors, respond in a complex cascade to form
fibrin strands, which strengthen the platelet plug.

A thrombus, sometimes called blood clot or simply clot, is the final product of the blood coagulation
step in hemostasis. It is achieved via the aggregation of platelets that form a platelet plug, and the
activation of the coagulation system (i.e. clotting factors). A clot is normal in cases of injury, but
pathologic in instances of thrombosis. In this study we perform a numerical simulation in injured vessel
watching the clot growth and clot lysis due to the blood chemical reactions.

(a) Simple illustration of
clotting process

(b) Clotting blood under microscope

Figure 2.5: Simple illustration of blood clotting process (images reprinted from [107] and [108])

2.3.1 Clot Formation, Growth and & Lysis

In this work the following case is considered: A blood vessel is challenging to a surface injury, exposing
the subendothelial layer (which is rich on membrane-bound tissue factor TF) to a quiescent pool of
plasma. There are two interacting processes that matter: platelet activation followed by aggregation and
tissue-factor-initiated coagulation. This interaction leads to formation, growth and lysis of the clot.

Tissue-factor-initiated blood coagulation process has three stages: initiation, propagation and termi-
nation. All these stages are reaction of the system on the vessel injury. The formation, growth and lysis
of the clot is governed by boundary conditions, namely the surface concentration TF V IIa. The clot is
the region where fibrin concentration equals or exceeds a specific concentration CIa

critical. Fibrinolysis
3 is

defined to occur in the regions where fibrin concentration drops below CIa
critical after previously equaling

or exceeding it. Many details about blood coagulation process can be found e.g. in [4], [15] or [55].

2.4 Resulting blood flow properties

Particularly, the red blood cells deformability and aggregation determine the blood behavior. Assuming
all above mentioned blood properties, the blood flow has following attributes4:

• Blood is shear thinning fluid, due to the aggregation of red blood cells, these are forming rouleaux
structures. At high shear-rates the viscosity goes thin (like if layers of fluid cut the rouleaux
structures). At low shear-rates the red blood cells aggregate and the viscosity remains relatively
high.

3or simply clot lysis
4following [73], [4], [19].
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• Blood is viscoelastic fluid due to the deformability of red blood cells. The biconcave shape and
the cellular elastic wall make the red blood cell elastic. Therefore the whole blood stream is both
viscous and elastic.

• Blood shows time-dependent rheology. The blood reaction on outer impulses or inner changes is
not immediate. There always exists some delay between action and reaction.

• Blood is also proved to be a thixotropic fluid. A thixotropic fluid shows a decrease in viscosity over
time at a constant shear rate.

• Blood coagulates forming clots with significant influence on local velocity changes, due to the
changed geometry and blood viscosity.
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Chapter 3

Basic System of Balance Laws
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3.1 Some preliminary ideas & simplifications

The usual way how to describe a fluid flow is by means of the expression for the flow velocity u at any
point x at any time t:

u = u(x, t) (3.1)

The velocity field provides the information what all elements of the fluid are ”doing” at given time.
Finding equation (3.1) is usually the main task. In general the equation (3.1) is convenient shortcut for:

u = (u, v, w)T , x = [x, y, z] (3.2)

and:

u = u(x, y, z, t), v = v(x, y, z, t), w = w(x, y, z, t). (3.3)

Generally, we must expect this task to be quite difficult. In this work we assume the following
simplifications:

15



16 3. Basic System of Balance Laws

• Incompressibility of fluid (ρ = const):

div u = 0, (3.4)

As incompressible fluids are commonly assumed liquids. As incompress-
ible fluids may be also assumed gasses in which the density varies up to
5%, that corresponds to velocities up to ≈ 100 m/s in the atmosphere.

• Isothermal flow:
temperature is considered to be constant in space and time.

• Volume forces:

(Coriolis force, Gravity, ...) are considered to be zero.

• For selected test cases we assume two-dimensional (2D) flow:

u = (u(x, y, t), v(x, y, t), 0)T , (3.5)

in such a case velocity u is independent on one spatial coordinate (often
selected to be z ) and has no component in that direction.

• For selected test cases we assume Steady flow:

∂u

∂t
= 0 (3.6)

in such a case u depends on x only. At any fixed point in space speed
and direction of flow are both constant.

• The fluid flow is assumed to be laminar all over this work. Most of
applications of introduced models are of Reynolds number (Re < 200).

3.2 Balance equations in fluid dynamics

In this section1 we will take a closer look to basic differential equations of fluid dynamics. The flow of
an incompressible viscous fluid is governed by conservation of mass (continuity equation), conservation
of momentum (Navier-Stokes equation).

3.3 System of incompressible Navier-Stokes equations

div u = 0 (3.7)

ρ
du

dt
= divT−∇p (3.8)

where p is pressure, ρ is fluid density2, T is fluid shear stress.

The velocity gradient may be rewritten:

L = ∇u =






∂u1
∂x1

∂u1

∂x2

∂u1

∂x3

∂u2
∂x1

∂u2

∂x2

∂u2

∂x3

∂u3
∂x1

∂u3

∂x2

∂u3

∂x3




 =





ux uy uz
vx vy vz
wx wy wz



 = D+W (3.9)

where D is rate of deformation tensor (symmetric part of velocity gradient):

1following e.g. [53], [16]
2density is assumed to be a constant all over this work
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D =
1

2

(
∇u+∇uT

)
=

1

2





2ux uy + vx uz + wx

vx + uy 2vy vz + wy

wx + uz wy + vz 2wz



 (3.10)

W is skew-symmetric part of velocity gradient:

W =
1

2

(
∇u−∇uT

)
=

1

2





0 uy − vx uz − wx

vx − uy 0 vz − wy

wx − uz wy − vz 0



 (3.11)

Equations 3.7 can be rewritten for incompressible, viscous, Newtonian fluid:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.12)

ρ
(∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

= − ∂p

∂x
+

∂

∂x

(

µ
∂u

∂x

)

+
∂

∂y

(

µ
∂u

∂y

)

+
∂

∂z

(

µ
∂u

∂z

)

(3.13)

ρ
(∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

= −∂p
∂y

+
∂

∂x

(

µ
∂v

∂x

)

+
∂

∂y

(

µ
∂v

∂y

)

+
∂

∂z

(

µ
∂v

∂z

)

(3.14)

ρ
(∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z

)

= −∂p
∂z

+
∂

∂x

(

µ
∂w

∂x

)

+
∂

∂y

(

µ
∂w

∂y

)

+
∂

∂z

(

µ
∂w

∂z

)

(3.15)

3.4 System of Navier-Stokes equations in vector form

Sometimes it is useful to use vector form of equations. Let us rewrite governing equations (3.12) in
following form3:

PWt + Fx + Gy + Hz = Rx + Sy + Tz (3.16)

where: W denotes the vector of unknowns, F,G and H are the vectors of inviscid (convective) fluxes,
R,S and T are the vectors of viscous (diffuse) fluxes, P is an additional matrix, that will be discussed.

Before using artificial compressibility method4 let us consider the vectors in the above equation have
the following meaning:

P = diag(0, 1, 1)

W = (p, u, v, w)T

F = (u, u2 + p, uv, uw)T

G = (v, vu, v2 + p, vw)T

H = (w,wu,wv, w2 + p)T

R = (0, µux, µvx, µwx)
T

S = (0, µuy, µvy , µwy)
T

T = (0, µuz, µvz, µwz)
T

3.5 System of governing equations in dimensionless form

Lets rewrite the system (3.16) into the following form:

3subscripts x, y, z, t denotes partial derivatives with respect to time and x, y, z coordinates
4see section 7.8
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PW∗
t + F∗

x + G∗
y + H∗

z = R∗
x + S∗y + T∗

z (3.17)

P = diag(0, 1, 1, 1)

W∗ = (p∗, u∗, v∗, w∗)T

F∗ = (u∗, u∗2 + p∗, u∗v∗, u∗w∗)T

G∗ = (v∗, v∗u∗, v∗2 + p∗, v∗w∗)T

H∗ = (w∗, w∗u∗, w∗v∗, w∗2 + p∗)T

R∗ = (0, µu∗x, µv
∗
x, µw

∗
x)

T

S∗ = (0, µu∗y, µv
∗
y , µw

∗
y)

T

T∗ = (0, µu∗z, µv
∗
z , µw

∗
z)

T

where (∗) denotes dimensional values. Equations (3.17) can be transferred to the dimensionless form
by following way. Each variable will be divided by its characteristic value of the same dimension.

v =
v∗

v∞
(3.18)

Typical characteristic values are: velocity of free-stream U∞ and some characteristic distance,e.g.
diameter of channel D∞. All of the rest variables can be extended with using combination of them:

x =
x∗

D∞
, u =

u∗

U∞
, p =

p∗

U2
∞

(3.19)

After having used these relations and (3.17), the system of governing equations can be written in
dimensionless form. Following equations describe flow of incompressible fluid:

PWt + Fx + Gy + Hz = Rx + Sy + Tz (3.20)

where:

P = diag(0, 1, 1, 1)

W = (p, u, v, w)T

F = (u, u2 + p, uv, uw)T

G = (v, vu, v2 + p, vw)T

H = (w,wu,wv, w2 + p)T

R =
1

Re
(0, ux, vx, wx)

T

S =
1

Re
(0, uy, vy, wy)

T

T =
1

Re
(0, uz, vz , wz)

T

where Re is called Reynolds number. Reynolds number is very important dimensionless variable,
providing information of flow regime of fluid. It is a ratio of inertial and viscous forces. Up to certain
(critical) value of Re a flow is laminar while for higher values the flow becomes turbulent. Reynolds
number Re is defined:

Re =
u∞D∞

ν
=

u∞D∞ρ

µ
(3.21)

The flow regime is laminar (the layers of the fluid don’t mix together), until the Reynolds number
(3.21) reaches its critical value. The governing system (3.20) is ready to solve laminar type of flow. There
are not too many real cases of laminar flows. On the other hand, solution of this flow cases provides
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valuable information on fluid flow behavior. Laminar cases5 are for example the flows through tubes
or capillaries (Poiseuille flows), or the low speed flow over flat plate, or between two parallel flat plates
(Couette flows).

5only up to critical Reynolds number
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4.1 Rheological constitutive relations

Let us take closer look at some terms, that have to be clarified for better orientation in this work. Here
we will describe basic information, specific details will be discussed in following chapters, if needed.

4.1.1 Shear stress (Stress tensor) for Newtonian Fluid

Isaac Newton was the first to express the basic law of rheology describing the flow behavior of an ideal
fluid:

T = 2µD [Pa] (4.1)

where T is fluid shear stress, see equation (3.7), µ is dynamic viscosity of fluid and D is rate-of-

deformation tensor, see equation (3.10).

4.1.2 Viscosity

Viscosity could be interpreted as a parameter describing the tendency of a fluid to resist to flow as a
result of internal friction. There are two commonly used types of viscosity.

Dynamic viscosity

is a material (fluid) property. The typical symbol used to denote dynamic viscosity is µ [Pa.s] =
[kg.m−1.s−1].

21
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Kinematic viscosity

is given by:

ν =
µ

ρ
[m2.s−1] (4.2)

Here is an example of same typical materials’ dynamic viscosity1:

Substance ≈ µ [Pa.s]

Air 1.0 · 10−5

Petrol 6.5 · 10−4

Water 1.0 · 10−3

Mercury 1.5 · 10−3

Grape juice 2.0÷ 5.0 · 10−3

Blood [at 37oC] 4.0÷ 25.0 · 10−3

Olive oil 1.0 · 10−1

Honey 1.0 · 101
Bitumen 1.0 · 105

Glass 1.0 · 1020

Viscosity is often considered to be constant, but in general it is function2 of flow parameters.

µ = ̥
(
S, T, γ̇, p, t, E

)
(4.3)

• S- denotes the physical-chemical nature of a substance being the primary in-
fluence on viscosity.

• γ̇- shear rate is important factor influencing viscosity of many fluids, the vis-
cosity can either decrease or increase with shear rate, this dependency will be
discussed in detail.

• T - is linked to the temperature of substance. Experience shows that viscosity is
heavily influenced by changes of temperature. In general holds for liquids: the
viscosity decreases when temperature increases, and for gases: the viscosity
increases when temperature increases.

• p- pressure is not experienced as often as previous parameters. Pressure com-
presses fluids and increases intermolecular resistance. Viscosity can increase.

• t- time denotes the phenomenon that the viscosity of some substances, usually
dispersions, depends on previous shear history.

• E - parameter electrical field is related to a family of suspensions character-
ized by the phenomenon that their flow behavior is strongly influenced by the
magnitude of electrical field acting upon them. These suspensions are called
”electro-viscous fluids”.

4.2 Non-Newtonian fluids

4.2.1 Basic types of fluids

As already mentioned, viscosity could be interpreted as a tendency of fluid to resist to flow as a result of
internal friction. Non-Newtonian fluid is a fluid, which can not be described using Newton’s law for fluids
(4.1). A typical non-Newtonian fluid is a fluid with variable viscosity. Fluids with variable viscosity are
called generalized Newtonian and form a specific subclass of non-Newtonian fluids.

1Schramm [76]
2Schramm [76]
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Although the concept of viscosity is commonly used to characterize a material, it can be inadequate
to describe the mechanical behavior of a substance, particularly non-Newtonian fluids. Let us take a
closer look at the basic types of fluids behavior.
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Figure 4.1: Behavior of basic types of fluids

Figure 4.1 shows3 the behavior of basic types of fluids. For ideal fluid flow, ”Newtonian fluid behavior”,
the graphical equivalent of shear stress is straight line, starting from the origin. The value of the viscosity
can also be defined as a slope of shear stress (tangent of the angle a): µ = tan a . This means, that for
Newtonian fluids, µ is not affected by changes in the shear rate.

Bingham plastic fluid shows linear relationship between shear stress and shear rate, if once threshold
shear stress is exceeded. As a Bingham plastic fluids are considered for example paste or mud.

For shear-thickening (dilatant) fluids the viscosity increases with shear rate. This type of behavior is
not so common, As a shear-thickening fluids are considered for example sugar in water or suspension of
corn starch.

The most common non-Newtonian fluid behavior in the nature is shear-thinning (pseudo-plastic),
when the viscosity decreases with shear rate (dashed lines in figure 4.1). As a shear-thinning fluids are
considered for example milk or blood.

4.2.2 Shear thinning fluid viscosity

Viscosity of this group of fluids decreases when the shear rate increases. Figure 4.2 shows4 more details
of shear-thinning fluid behavior:

3e.g. Schramm [76]
4Schramm [76]
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Figure 4.2: Shear-thinning viscosity

For low shear rates (µ0 = tan a) and for high shear rates (µ∞ = tan b) the fluid shows Newtonian
behavior. The problem is to catch the transition of viscosity between the points A and B, where the
viscosity decreases from µ0 to µ∞. The viscosity drop can be divided into three parts. The first part
(I.), where the viscosity µ0 is independent of shear rate and is called zero shear viscosity is called First

Newtonian range. In the second part (II.) the viscosity µ drops as a result of fluid micro-structure
changes. This part between points A and B has to be approximated. The third part (III.), where the
viscosity µ∞ is independent of further increase of shear rate and is called infinity shear viscosity is called
Second Newtonian range.

4.3 Viscosity of Generalized Newtonian fluids

4.3.1 Shear rate

For incompressible Newtonian fluids, the shear stress is proportional to the rate-of-deformation tensor D
(equivalent of Newton’s law (4.1) ) and can be expressed:

T = 2µD (4.4)

where the rate-of-deformation tensor D is also defined by:

D =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (4.5)

and µ5 is viscosity, which is independent on D. For generalized Newtonian fluids, the shear stress can
similarly be written in terms of a generalized Newtonian apparent viscosity µ6 :

T = 2µ(D)D (4.6)

In general, µ is a function of all three invariants of the rate of deformation tensor D. But for
incompressible fluids, µ is considered to be function of the shear rate γ̇ only7. γ̇ is related to the second
invariant of D and is defined as :

γ̇ =
1

2

√
D : D =

1

2

√
∑

i,j

d2i,j (4.7)

As a result of the above assumptions apparent viscosity µ is function of shear rate γ̇ and shear stress
can be expressed:

5constant
6function
7e.g. Šesták J. & Rieger F. [77]
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T = 2µ(γ̇)D (4.8)

4.3.2 Generalized Newtonian viscosity function

Apparent viscosity8 is computed from simple algebraic model, which is determined by numerical fitting
of experimental data. We have tested eight viscosity models, set for human blood. The table 4.1 shows
eight generalized Newtonian shear-thinning viscosity models. The model coefficients are calibrated for
human blood adopted from Cho & Kensey [30].

8sometimes called effective viscosity
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Model name Model equation Model coefficients

Modified Cross µ(γ̇) = µ∞ + (µ0 − µ∞)

[

1
[1+(λγ̇)m]a

]

µ0=0.056 Pa.s,
µ∞=0.00345 Pa.s,
λ = 3.736 s,
m=2.406, a=0.254

Powell-Eyring µ(γ̇) = µ∞ + (µ0 − µ∞)

[

sinh−1λγ̇
λγ̇

]

µ0=0.056 Pa.s,
µ∞=0.00345 Pa.s,
λ=5.383 s

Modified Powell-Eyring µ(γ̇) = µ∞ + (µ0 − µ∞)

[

ln(λγ̇+1)
[λγ̇]m

]

µ0=0.056 Pa.s,
µ∞=0.00345 Pa.s,
λ = 2.415 s,
m=1.089

Cross µ(γ̇) = µ∞ + (µ0 − µ∞)

[

1
1+[λγ̇]m

]

µ0=0.056 Pa.s,
µ∞=0.00345 Pa.s,
λ = 1.007 s,
m=1.028

Simplified Cross µ(γ̇) = µ∞ + (µ0 − µ∞)

[

1
1+λγ̇

]

µ0=0.13 Pa.s,
µ∞=0.005 Pa.s, λ
= 8.0 s

Carreau µ(γ̇) = µ∞ + (µ0 − µ∞)
[

1 + (λγ̇)2
]n−1

2

µ0=0.056 Pa.s,
µ∞=0.00345 Pa.s,
λ = 3.313 s,
n=0.3568

Carreau-Yasuda µ(γ̇) = µ∞ + (µ0 − µ∞)
[

1 + (λγ̇)a
]n−1

a

µ0=0.056 Pa.s,
µ∞=0.00345
Pa.s, λ =1.902
s, n=0.22,a=1.25

Power-Law µ(γ̇) = mγ̇n−1 µmin=0.00345 Pa.s,
µmax=0.056 Pa.s,
n=0.60,m=0.35

Table 4.1: Generalized Newtonian viscosity models, adopted from Cho & Kensey [30].
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5.1 Fluid Viscoelasticity Phenomena

Every real fluid is viscous. Not every fluid is elastic. Viscoelasticity may be viewed as a property of
material that shows both viscous and elastic behavior as a reaction on deformation. Viscous materials
resist the flow with rate-of-deformation tensor. Elastic materials strain instantaneously when stretched
and just as quickly return to their original state once the stress is removed. Viscoelastic materials have
elements of both of these properties. Whereas elasticity is usually the result of bond stretching along
crystallographic planes in an ordered solid, viscosity is the result of the diffusion of atoms or molecules
inside an amorphous material1. As viscoelastic fluids are considered for example blood, various polymers
and gels.

5.1.1 Stokes Model (Newtonian Fluid)

Viscoelastic models can be interpreted as a set of a dash-pot and a spring. System of ’classical’ Navier-
Stokes equations (3.7) is using pure viscous Stokes model, which can be interpreted as a single dash-pot
(a constant viscosity2 simply resists the flow, no elasticity is presented).

µ

γ

ττ

Figure 5.1: Stokes model (image reprinted from [19])

1following [62]
2often called solvent viscosity

27



28 5. Viscoelastic Fluid Model

Using Stokes model the shear stress can be expressed:

T = 2µD (5.1)

5.1.2 Maxwell Model (Viscoelastic Fluid)

The Maxwell model can be represented by a dash-pot and a spring connected in series as shown on
following figure:

EV

µ G
ττ

γ γ

Figure 5.2: Maxwell model (image reprinted from [19])

Using Maxwell model the shear stress can be expressed:

T+ λ1
δT

δt
= 2µD (5.2)

where δT
δt is convected derivative3 of stress tensor T and λ1 is relaxation time.

5.1.3 Oldroyd Type Model (Viscoelastic Fluid)

Oldroyd type model effectively combines the Maxwell model and a Stokes model in parallel. A viscous
material is modeled as a spring and a dash-pot in series with each other, both of which are in parallel
with a single spring.

= +s e

s

e

s e==

s

e

τ ττ

µ G

τ τ

µ

γ γ γ
τ

τ

Figure 5.3: Oldroyd model (image reprinted from [19])

Using Oldroyd type model the shear stress can be expressed:

T+ λ1
δT

δt
= 2µ

(
D+ λ2

δD

δt

)
(5.3)

where δT
δt is convected derivative of stress tensor T, λ1 is relaxation time and λ2 is retardation time.

3see section 5.1.4
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5.1.4 Convected derivative

Convected derivative4 of general tensor A may be expressed:5

(δA

δt

)

a
=
∂A

∂t
+
(
u · ∇

)
A−

(
WA− AW

)
+ a(DA+ AD) (5.4)

where scalar parameter a = 〈−1, 1〉. The derivative is sometimes called Gordon-Schowalter derivative

with parameter a = ξ − 1 where ξ called slip parameter. The choice of parameter a determines the
derivative class.

For choice of a = 1 the derivative is called lower-convected :

(δA

δt

)

a=1
=

△

A=
∂A

∂t
+
(
u · ∇

)
A−

(
WA− AW

)
+ (DA+ AD) (5.5)

For choice of a = −1 the derivative is called upper-convected :

(δA

δt

)

a=−1
=

▽

A=
∂A

∂t
+
(
u · ∇

)
A−

(
WA− AW

)
− (DA+ AD) (5.6)

For choice of a = 0 the derivative is called Co-rotational or Jaumann:

(δA

δt

)

a=0
=

◦

A=
∂A

∂t
+

(
u · ∇

)
A−

(
WA− AW

)
(5.7)

Notice, the co-rotational model has no physical background because one misses complete information
about velocity gradient.

5.2 Viscoelasticity Modeling

The governing system of equations is based on Navier-Stokes equations using Oldroyd type model for stress
tensor. Mathematical model is based on incompressible Navier-Stokes equations which are generalized
to take into account viscoelasticity and shear-thinning properties of blood flow. The system of equations
can be written in the following general form:

div u = 0 (5.8)

ρ
du

dt
= divT−∇p (5.9)

T+ λ1
δT

δt
= 2µ

(
D+ λ2

δD

δt

)
(5.10)

The stress tensor is generally:

T =





τ1 τ2 τ3
τ2 τ4 τ5
τ3 τ5 τ6



 (5.11)

where T is the stress tensor, D is symmetric part of the velocity gradient. It can be shown the parameters
λ1, λ2 and µ can be rewritten:

λ1 =
µe

G
(5.12)

λ2 = λ1
µs

µs + µe
(5.13)

µ = µs + µe (5.14)

where G is elasticity modulus, µe is extra stress viscosity, µs is solvent viscosity.
Stress tensor T can be split into two parts:

4with scalar parameter a
5see e.g.[64]
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T = Ts + Te (5.15)

Ts = 2µsD (5.16)

Te + λ
δT

δt
= 2µeD (5.17)

Where Ts is solvent part of stress tensor that corresponds to Stokes law for Newtonian fluid. Te is
viscoelastic (extra stress) part of stress tensor. Both parts can be solved separately. Viscoelastic part of
stress tensor Te is a symmetric tensor of second order (as well as T and Ts) therefore six components (in
three dimensions) must be computed. Extra stress tensor can be evaluated from the following equation6:

∂Te

∂t
+ (u · ∇)Te =

2µe

λ
D− 1

λ
Te + (WTe − TeW)− a(DTe + TeD) (5.18)

For choice parameter a = 1 the model is called Oldroyd A model. For choice parameter a = −1 the model
is called Oldroyd B model. For choice parameter a = 0 the model is called Co-rotational model. More
details about extra stress equation can be found e.g. in [7], [72], [64] and [13].

Weissenberg number

An important dimensionless number is Weissenberg number. The Weissenberg number is a dimensionless
number used in the study of viscoelastic flows. The dimensionless number is the ratio of the relaxation
time of the fluid and a specific process time. For instance, in simple steady shear, the Weissenberg
number, is defined as the shear rate times the relaxation time.

We = γ̇λ (5.19)

where γ̇ is shear-rate, λ is relaxation time. Relaxation time may be viewed as a proportion of time,
that is required to fluid forgetting the elastic stress (in other words, it is a time of fluid’s remembering
elastic stress). For flow in pipes Weissenberg number is commonly reduced to:

We =
λU

D
=

λ
D
U

(5.20)

where D is characteristic length, typically the channel diameter. U is characteristic velocity.

Deborah number

Another important dimensionless number is Deborah number. The Deborah number is a dimensionless
number, often used in rheology to characterize the fluidity of materials under specific flow conditions.

The Deborah number is defined as the ratio of the relaxation time, and the characteristic time scale
of an experiment7, typically the time in which a particle travels from point A to point B.

De =
λU

L
=

λ
L
U

=
λ

T char
(5.21)

where L is characteristic length, typically the channel length, U is characteristic velocity and T char

is characteristic time.

6following [13]
7an observation time
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6.1 Initial discussion

Physical details about blood properties and rheology are already mentioned in chapter 2. Many details
about clot coagulation modeling can be found e.g. in [4], [15] or [55].

The original study of the blood coagulation model was published in [4]. Model was successfully
tested on three dimensional model [15]. Later the model was extended to 28 advection reaction-diffusion
equations to simulate the biochemical changes and transport of various reactants involved in blood coag-
ulation, see [55]. The formation, growth and lysis of the clot is imitated by boundary conditions, namely
the surface concentration TF V IIa.

In this model the following is considered: A blood vessel is challenging a surface injury, exposing
the subendothelial layer (which is rich on membrane-bound tissue factor TF) to a quiescent pool of
plasma. There are two interacting processes that matter: platelet activation followed by aggregation and
tissue-factor-initiated coagulation. This interaction leads to formation, growth and lysis of the clot.

Tissue-factor-initiated blood coagulation process has three stages: initiation, propagation and termi-
nation. All these stages are reaction of the system on the vessel injury. The formation, growth and lysis
of the clot is governed by boundary conditions, namely the surface concentration TF V IIa. The clot is
the region where fibrin concentration equals or exceeds a specific concentration CIa

critical. Fibrinolysis
1 is

defined to occur in the regions where fibrin concentration drops below CIa
critical after previously equaling

or exceeding it.

6.2 Blood coagulation model description

It is assumed the blood flow is laminar. Whole blood coagulation process is described using system of
28 constituents2. The time evolution of all 28 constituents is described by following advection-diffusion
equations:

dCi

dt
= div (di∇Ci) + si i = 1..28 (6.1)

Where si are source terms specific for all of 28 constituents, di are diffusion coefficients.

1or simply lysis
2chemical concentration in moles
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6.2.1 Clot formation, growth and lysis

The clot formation, growth and lysis is modeled by a local viscosity changes. The blood viscosity can
locally increase due to fibrin production to simulate the clot. The viscosity increase mimics the increase
in fibrin concentration.

µlocal =
Cfibrin

C0
fibrin

µ (6.2)

There is a limiter applied on viscosity growth, the viscosity can increase only to certain saturation level
e.g.:

µlocal = min(µlocal, 100 · µ) (6.3)

High viscosity at the places with high fibrin concentrations simulates the clot (clot is, where the fibrin
concentration is high elevated).

6.2.2 Clotting surface

Clotting surface is an area on the vessel boundary which is being damaged (simulating injury). At the
clotting surface non-Homogeneous Neumann boundary conditions for five selected constituents are used:

∂IXa

∂x
= −k7,9 · IX · TF V IIa

K7,9M + IX

L

DIXa
(6.4)

∂IX

∂x
=

k7,9 · IX · TF V IIa

K7,9M + IX

L

DIX
(6.5)

∂Xa

∂x
= −k7,10 ·X · TF V IIa

K7,9M +X

L

DXa
(6.6)

∂X

∂x
=

k7,9 ·X · TF V IIa

K7,9M +X

L

DX
(6.7)

∂tPA

∂x
= −(kCtPA + kIIatPA · e−134.8·(t−T0) · IIa+ kIatPA · Ia) ·ENDO · L

DtPA
(6.8)

where L is characteristic length, surface concentration ENDO = 2.0 ·109 cells/m2, Time evolution of the
surface concentration TF V IIa is based on an experimental data approximation, see [4]. Concentration
TF V IIa is modeled using following formula:

TF V IIa = (kTF7a · 10−15) · (93.93 · e(−((t−465.8)/123.4)2) + 58.66 · e(−((t−765.5)/352.2)2)) (6.9)

Figure 6.1 shows time evolution of the surface concentration TF V IIa. Table 13.3 in Appendix B shows
reaction terms for all 28 advection-diffusion equations. Table 13.2 shows diffusion terms and initial values
for all 28 advection-diffusion equations. Tables 13.4 and 13.1 show model parameters. The expression
SIunit displays the dimension of the term3, e.g. [1 -3 0 0 0 0 0] corresponds to kg · m−3.

3[kg m s K mol A cd]
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Figure 6.1: Surface concentration of TF VIIa
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7.1 Finite volume method

Finite volume method1 (FVM) is developed for cases of general (nonorthogonal) meshes. Let us consider
the closed area Ω with finite number of disjoint cells Di,j . Figure 7.1 shows two most common types
of meshes for FVM in two dimensions. The first one is made of triangles and the second one is made
of quadrilaterals. The advantage of the first one (so-called: unstructured triangular mesh) is that it is
easier to generate for complex types of geometry. On the other hand the structured mesh consisting
of quadrilateral cells allows very efficient storage of data in fields and it is possible to easily extend 1D
schemes to multiple dimensions.

7.2 Finite volume discretization

One can rewrite the equation (3.20) into the following vector form2:

Wt + (F− R)x + (G− S)y + (H− T)z = 0 (7.1)

After the space integration we get:

1following Fořt et al. [38]
2Bodnár [12]
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(a) Unstructured mesh (b) Structured mesh

Figure 7.1: Basic types of meshes (two dimensional)

∫

Di,j

WtdV +

∫

Di,j

[

(F− R)x + (G− S)y + (H− T)z

]

dV = 0 (7.2)

Applying Gauss’s theorem (
∫

V ∇ · A dV =
∮

∂V A~n dS) one obtain:

∫

Di,j

WtdV +

∮

∂D

[
(F− R)~nx + (G− S)~ny + (H− T)~nz

]
dS = 0 (7.3)

Now one can substitute, Wi,j = 1
|D|

∫

D WdS, the cell average of W over the cell Di,j and the system

becomes system ordinary differential equations for each cell (Di,j) average:

∂Wi,j

∂t
+

1

|D|

∮

∂D

[
(F− R)~nx + (G− S)~ny + (H− T)~nz

]
dS = 0 (7.4)

7.3 Lax-Wendroff scheme

The numerical scheme (MacCormack scheme), which is used in this project, is a member of family of
central schemes and is based on Lax-Wendroff scheme. Lax-Wendroff scheme follows the idea of Taylor
expansions of the ”new value” in time and substituting time derivatives by space derivatives3.

Consider scalar advection equation:

Wt +AWx = 0 (7.5)

where A is the advection velocity.
The unknown variable W is computed in discrete points W(xi, tn) = Wn+1

i , where xi = x0 + i∆x and
tn = t0 + n∆t. We are looking for solution Wn+1

i :

Wn+1
i = W(xi, tn+1) = W(xi, tn +∆t) (7.6)

Taylor expansions up to the second order at point W(xi, tn) is:

Wn+1
i = Wn

i +Wt∆t+Wtt∆t
2 + O(∆t3) (7.7)

now, we replace time derivatives using 7.5:

Wt = −AWx, (7.8)

Wtt = −AWxt, (7.9)

Wtx = −AWxx, (7.10)

Wtx = Wxt, (7.11)

Wtt = A2Wxx (7.12)

3e.g. LeVeque [59]
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then:

Wn+1
i = Wn

i −AWx∆t+ A2Wxx∆t
2 (7.13)

now, we discretize the space derivatives using central difference approximation:

Wn+1
i = Wn

i − A∆t

2∆x
(Wn

i+1 −Wn
i−1) +

A2∆t2

2∆x2
(Wn

i+1 − 2Wn
i +Wn

i−1) (7.14)

It is possible to show that Lax-Wendroff scheme is of second order accuracy:

T

∆t
O(∆t3) ≈ O(∆t2) (7.15)

7.3.1 Modified equation for Lax-Wendroff scheme

All second-order three-point central schemes of the Lax-Wendroff family generate oscillations around
sharp discontinuities4. Let us take a closer look at this problem. We start with constructing modified

equation for Lax-Wendroff scheme. It can be find by substituting terms of Lax-Wendroff scheme (7.14)
by its’ Taylor expansions at W(xi, tn).

The third-order Taylor expansions of individual terms of Lax-Wendroff scheme (7.14) are:

Wn+1
i = W(xi, tn+1) = W(xi, tn) + ∆tWt(xi, tn) +

∆t2

2
Wtt(xi, tn) +

∆t3

6
Wttt(xi, tn) + O(∆t4)

Wn
i+1 = W(xi+1, tn) = W(xi, tn) + ∆xWx(xi, tn) +

∆x2

2
Wxx(xi, tn) +

∆x3

6
Wxxx(xi, tn) + O(∆x4)

Wn
i−1 = W(xi−1, tn) = W(xi, tn)−∆xWx(xi, tn) +

∆x2

2
Wxx(xi, tn)−

∆x3

6
Wxxx(xi, tn) + O(∆x4)

Now, we substitute these relations into the Lax-Wendroff scheme (7.14):

W(xi, tn) + ∆tWt(xi, tn) +
∆t2

2
Wtt(xi, tn) +

∆t3

6
Wttt(xi, tn) =

W(xi, tn)−
A∆t

2∆x

(

2∆xWx(xi, tn) +
∆x3

3
Wxxx(xi, tn)

)

+
A2∆t2

2∆x2

(

∆x2Wxx(xi, tn)
)

+ O(∆t4,∆x4) (7.16)

that simplifies in:

Wt(xi, tn) +AWx(xi, tn) =

−∆t

2
Wtt(xi, tn)−

∆t2

6
Wttt(xi, tn)−

A∆x2

6
Wxxx(xi, tn)

+
A2∆t

2
Wxx(xi, tn) + O(∆t3,∆x3) (7.17)

Using the same ideas as in section (7.3) we can continue:

Wt(xi, tn) +AWx(xi, tn) =

−∆t2

6
Wttt(xi, tn)−

A∆x2

6
Wxxx(xi, tn) + O(∆t3,∆x3) =

A3∆t2

6
Wxxx(xi, tn)−

A∆x2

6
Wxxx(xi, tn) + O(∆x3) =

−∆x2

6

(

A− ∆t2

∆x2
A3

)

Wxxx(xi, tn) + O(∆x3) (7.18)

4see e.g. Hirsh [41]



40 7. Finite Volume Method

modified equation for Lax-Wendroff scheme:

Wt +AWx = −∆x2

6

(

A− ∆t2

∆x2
A3

)

Wxxx (7.19)

One can see that modified equation of Lax-Wendroff scheme does not contain the numerical viscosity
of the second order. The term on the right hand side has dispersive character5. Hence, it is necessary to
damp non-physical oscillations. One method to do so is using additional artificial viscosity (denoted by
DW). The additional artificial viscosity can be constructed in following way (Lax-Wendroff scheme):

Wn+1
i = Wn

i − A∆t

2∆x
(Wi+1 −Wi−1) +

A2∆t2

2∆x2
(Wi+1 − 2Wi +Wi−1) + ∆x2ǫ(∆xa)(Wi+1 − 2Wi +Wi−1)

︸ ︷︷ ︸

DW = additional artificial viscosity term

(7.20)

where ǫ > 0 is coefficient of additional artificial viscosity.

Modified equation is then:

Wt +AWx = ∆x2ǫ(∆xa)Wxx − ∆x2

6

(

A− ∆t2

∆x2
A3

)

Wxxx (7.21)

Now, the modified equation contains the term with second derivative, that damps oscillations and
helps to preserve the stability of the method.

7.4 MacCormack scheme

MacCormack scheme is a two-step scheme. This is a formulation of Lax-Wendroff scheme in the form
predictor-corrector. Both schemes become identical in case of linear problem solution. It is an iteration
method, that works in three steps. The predictor step (7.22) is computed at first. These ”new values”
from predictor step are used in the corrector step (7.23). In the third step additional artificial viscosity
(artificial dissipation) is added. The next iteration follows, until the solution is sufficiently converged.

Inviscid and viscous fluxes are evaluated6 in a different way, according to sections 7.4.1 and 7.4.2 and
figures 7.3 and 7.4.

Figure 7.2: Computational stencil for Finite Volume Method

5see e.g. [38]
6following Bodnár [12]
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Predictor

W
n+ 1

2

i,j = Wn
i,j −

∆t

|Di,j |

4∑

k=1

{
(
Fn
k − Rn

k

)
~nx +

(
Gn
k − Snk

)
~ny +

(
Hn

k − Tn
k

)
~nz} (7.22)

Corrector (+ Predictor)

(

Wn+1
i,j

)

=
1

2

(

Wn
i,j +W

n+ 1

2

i,j − ∆t

|Di,j |

4∑

k=1

{
(
F
n+ 1

2

k − R
n+ 1

2

k

)
~nx +
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Corrector ( + Predictor) + Artificial viscosity

Wn+1
i,j =

(

Wn+1
i,j

)

+ DWn
i,j (7.24)

7.4.1 Discretization of inviscid fluxes

Predictor F1 = F2 = Fi,j ,F3 = Fi−1,j ,F4 = Fi,j−1

- also applies to G and H.

Corrector F1 = Fi+1,j ,F2 = Fi,j+1,F3 = F4 = Fi,j

- also applies to G and H.

(a) Predictor - backward step (b) Corrector - forward step

(c) Predictor + Corrector

Figure 7.3: Computational Stencil for inviscid fluxes computation
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7.4.2 Discretization of viscous fluxes

Derivatives for viscous fluxes can be obtained by integration over dual cell boundary equation (7.25),
figure 7.4. Integral is replaced by discrete sum over dual cell faces:

Wx ≈ 1

Dk

∮

∂D

W ~nxdxdy ≈ 1

Dk

4∑

m=1

umn
x
mlm (7.25)

where: W is unknown variable in the center of the m-th face, nx
m is outer normal of the face in point m,

lm is length of the m-th face, Dk is volume of a dual cell. Values of variables in the middle of dual faces
are computed as an average of values of its neighbor cells. The member DWn

i,j is artificial viscosity and
is added to corrector in order to damp numerical oscillations. We will discuss details in section (7.5).

i,j i+1,j

m=2

m=1

m=3
m=4

n4

n1 n2

n3

k=1

Figure 7.4: Computational stencil for viscous fluxes computation (dual cells)

7.5 Artificial viscosity

We have used two different types of artificial viscosity. The first one is Von Neumann - Richtmayer (Von
Neumann & Richtmayer, 1950) artificial viscosity, that is traditional and well tested artificial viscosity.
The second one is artificial viscosity with TVD property7. Using this artificial viscosity the whole scheme
is often referred as the TVD MacCormack scheme.

7.5.1 Von Neumann - Richtmayer artificial viscosity

It was used in form8 (1D case for simplicity):

DWn
i = ǫ2∆x

3 d

dx
|Wx|Wx

∣
∣
∣
∣
∣

n

i

+ ǫ4∆x
4Wxxxx

∣
∣
∣
∣
∣

n

i

(7.26)

After replacing derivatives we obtain:

DWn
i = ǫ2

[
|Wn

i+1−Wn
i |(Wn

i+1−Wn
i )−|Wn

i −Wn
i−1|(Wn

i −Wn
i−1)

]
+ǫ4(W

n
i−2−4Wn

i−1+6Wn
i −4Wn

i+1+Wn
i+2)

(7.27)

where ǫ2,ǫ4 ∈ R are constants, that have to be carefully chosen.

7e.g. Fürst [36]
8Hirsh [41]
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7.5.2 Modified Causon’s TVD MacCormack scheme

We mention 1D case9, for simplicity. Two dimensional artificial viscosity is analogical and the second
direction varies in indices only:

DWn
i =

[

Ḡ+(r̄+i ) + Ḡ−(r̄−i+1)
](

Wn
i+1 −Wn

i

)

−
[

Ḡ+(r̄+i−1) + Ḡ−(r̄−i )
](

Wn
i −Wn

i−1

)

(7.28)

where:
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r̄−i =
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i >
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i −Wn

i−1,W
n
i −Wn

i−1 >
(7.30)

Here < ·, · > denotes the standard inner scalar product.

Ḡ+(r̄+i ) =
1

2
C(ν̄i)[1− Φ(r̄+)] (7.31)

Ḡ+(r̄−i ) =
1

2
C(ν̄i)[1− Φ(r̄−)] (7.32)

Φ(r̄±) = max(0,min(2r̄±, 1)) (7.33)

C(ν̄i) =

{
ν̄i(1 − ν̄i) for ν̄i ≤ 0.5

0.25 for ν̄i > 0.5
(7.34)

ν̄i = Ψ(ai)
∆t

∆x
(7.35)

ai = min
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Ψ(ai) =

{

|ai| for |ai| > ǫe
a2

i+ǫ2e
2ǫe

for |ai| ≤ ǫe
(7.37)

where ai is minimal absolute value of eigenvalues of the Jacobi matrix Ai at the point Wi. Ψ(ai) is
called entropy correction with ǫe = 10−3

7.6 Time step restrictions

To keep stability of the method, it is important to use correct time step for the method. Time step is
usually computed for each iteration. For cartesian 3D mesh time step can be computed from the following
relation:

∆t = min
CFL

ρa

∆x + ρb

∆y + ρc

∆z +
(

1
Re

)(
1

∆x2 + 1
∆y2 + 1

∆z2

) (7.38)

where Re is Reynolds number,CFL ≤ 1 is called Courant− Friedrichs−Lewy number, ρa , ρb and
ρc are spectral radii of Jacobian of inviscid fluxes F, G and H:

ρa = |u|+
√

u2 + β2, ρb = |v|+
√

v2 + β2, ρc = |w| +
√

w2 + β2 (7.39)

9e.g. Fürst [36]
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In most cases especially for steady state simulations it is useful to use Local T ime Stepping method.
It is acceleration method, based on the idea that different time step is used for each cell separately
(∆t → ∆ti,j). As a result, each cell has its own iteration time, but it does not harm the final solution,
because of its steady character. This technique can shorten iteration time even to one half. But one
should keep on mind taking risk of some possibility of lost of consistency leading to breaking up stability.

7.7 Monitoring of convergence

For monitoring of convergence of unknowns we have used10 global L2−norm of steady residual. Consider
Rez ∼ ‖Rez(W )‖L2

which in ideal case should come close to zero.

Rez =

√
√
√
√

∑

i,j

1

M ·N
(Wn+1

i,j −Wn
i,j

∆t

)2

(7.40)

7.8 Artificial Compressibility Method

To compute incompressible, steady flow, it is necessary to solve the problem with absence of pressure in
vector of unknowns PW in continuity equation. Artificial compressibility method11 is elegant method
fixing this problem. We can add time derivative of pressure to the continuity equation, which vanishes,
when the solution converges to the steady solution:

1

β2

∂p

∂τ
+
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (7.41)

where β is artificial compressibility coefficient and represents local speed of sound of transformed
system. The system (3.20) changes into:

P̃Wt + Fx + Gy + Hz = Rx + Sy + Tz (7.42)

where the only difference is:

P̃ =





1
β2 0 0

0 1 0
0 0 1





We choose β = 1, then P̃ = I = diag(1, 1, 1) and our system of governing equations is independent
on additional matrix P̃ .

10e.g. Kozel & Dvořák [53]
11e.g. Bodnár [12]



Chapter 8

Solvers

For testing of the above described methods there were used two different solvers. The in-house code and
the open-source code. For test cases C1 - C8 (described later) was used the in-house code. For test cases
C9 and C10 was used the open-source code. Both codes are based on Finite Volume Method.

In test cases C3 and C9 we also compare results of our Finite Volume solvers with another solver
based on Finite Element Method. The Finite Element solver was developed by another group at Charles
University in Prague. The numerical simulations using this FEM code were performed by Karel Tůma.
The details of Finite Element solver are described in Appendix A.

8.1 In-house code

The name of our in-house code is krysa+. Author of this work is also author of the code/solver krysa+.
The code is written in programming language C/C++. The code uses most of the methods described on
previous pages. krysa+ solver is not very efficient code and can not be used for real three-dimensional
applications. For this reason all the models were implemented also to OpenFOAM, an open-source CFD
Toolbox.

krysa+ solver main features:

• Finite Volume Method

• Steady state solver

• Artificial compressibility method

• Three dimensional (3D)

• Structured grid

• Cell centered grid

• Explicit method

• Central scheme, second order

• MacCormack scheme, artificial viscosity
(von Neumann, TVD MacCormack)

• Newtonian, shear-thinning
and viscoelasticity models

• Local time stepping

• OpenMP

Such a in-house code has strong and weak sides. Strong sides are obvious. For example the author
has an absolute freedom in the way of implementation of methods and organizing code structure etc.
Another big benefit can be easy code adaptivity to some special problem. As a last but not least benefit
we can mention an exclusive experience that author gains writing his own code. Many authors confirm
the full understanding of the problem comes after its implementation in some code.

Of course, there are also weak sides of in-house codes. There is seldom good documentation of in-
house codes, which make troubles in involving other people to the project. Team development may often
be a problem. Another problem may be a robustness (importing and exporting various data, switching
models, ...). In-house codes have often problem with a performance, especially in parallel computing.

45
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8.2 Open-source code

The code is based on freely available code OpenFOAM that is written in programming language C++.
The name of the solver is krysaFOAM, which is modified solver pisoFoam under OpenFOAM 1, an open-
source CFD Toolbox. Solver pisoFoam uses the PISO algorithm to solve incompressible Navier-Stokes
equations for newtonian fliud. The PISO (Pressure Implicit with Splitting of Operators) algorithm is an
efficient method to solve incompressible Navier-Stokes equations in unsteady problems. We have imple-
mented all the described models into solver pisoFoam. The new solver krysaFOAM can solve generalized
Newtonian flow, viscoelastic flow and coagulating blood flow.

krysaFOAM solver main features:

• Finite Volume Method

• Unsteady solver

• PISO algorithm

• Three dimensional (3D)

• Unstructured grid

• Cell centered grid

• Implicit method

• Central scheme, second order,
Upwind scheme

• Segregated linear system solver

• method: PBiCG
Preconditioned Bi-Conjugate Gradient

• preconditioner: DILU
Diagonal Incomplete LU

• Newtonian, generalized Newtonian,
viscoelasticity and blood coagulation model

• MPI

OpenFOAM has many strong sides. The code is distributed under GPL (General Public License).
The code is open, which means the source code is available to anyone and can be copied and modified
by any user. The code is stable and has wide community of contributors. Nowadays, not only many
universities use OpenFOAM, it is being used by many industrial companies. OpenFOAM has also a good
parallel efficiency, it is commonly used for computations on many processors (128 cores, or even more).
OpenFOAM documentation and many details of the code can be found e.g.: [65], [66], [105].

1www.openfoam.com
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Numerical Experiments
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Chapter 9

Validation of Numerical Methods
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9.1 C1 : Flow in Gap Between Two Plates

9.1.1 The aim of the test case

The aim of this test case is to compare the results of methods introduced in chapter 7 with analytical
solution. This validation test case aimed on internal aerodynamics, with low Reynolds number. We
will find an analytical solution of velocity distribution in the gap between two endless plates (figure
9.1), Poiseuille flow. The analytically computed velocity distribution will be compared to the developed
velocity profile obtained from numerical simulation. This test case is simplified to two dimensions. Figure
9.1 shows a general sketch of a gap between two plates.

We assume Navier-Stokes equations for incompressible, viscous, Newtonian fluid:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (9.1)

ρ
(∂u

∂t
+ u

∂u
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+
∂2u

∂z2

)

(9.2)
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(9.3)
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(9.4)
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H

L

z

y

U

Figure 9.1: Velocity profile in the gap between two plates

We assume the fluid to flow in direction z , (u = v = 0). Continuity equation (9.1) is then:

∂w

∂z
= 0 (9.5)

Momentum equations(9.2),(9.3) and (9.4) become:

ρw
∂w

∂z
= −∂p

∂z
+ µ

(∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)

(9.6)

We know, the term ∂w/∂x is zero for this case of endless plates. Using equation (9.5), the equation
(9.6) can be simplified:

µ
∂2w

∂y2
=
∂p

∂z
(9.7)

where the pressure gradient can be substituted by the ratio of pressure difference ∆p and distance L:

∂2w

∂y2
=

1

µ

∆p

L
(9.8)

To get the velocity profile w, we integrate equation 9.8:

w =
1

µ

∆p

L

y2

2
+ C1y + C2 (9.9)

Now we can add boundary conditions to get the integration constants:

w = 0, for y = 0 (9.10)

w = 0, for y = H (9.11)

then:

C1 = 0, C2 = − 1

µ

∆p

L

H

2
(9.12)

Now, we have the analytical equation for velocity distribution in the gap between two plates:

w =
1

2µ

∆p

L
(y2 −Hy) (9.13)
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(a) The geometry of the gap between two flat plates

(b) Mesh: 80x50 cells

Figure 9.2: Gap between two flat plates
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Figure 9.3: Test case computational domain and boundary conditions

9.1.2 Test case set up

The introduced numerical steady state method1, based on structured grid and explicit scheme with
artificial viscosity, was applied on the following test case. The fluid is Newtonian. The test case is
assumed to be laminar. Used geometry is the straight channel introduced in figure 9.2.

We want to compare the numerical solution (fully developed velocity profile) with the analytical
solution given by equation (9.13). The test case parameters are: L = 4.5, H = 1.0, ∆p = 1.0, µ = 0.01,
ρ = 1. The boundary conditions are following: At the walls of the channel the velocity components
are zero and pressure is extrapolated. At the inlet is kept constant pressure (p = 1.0) and velocity
components were extrapolated. At the outlet is kept constant pressure (p = 0.0) and velocity components
were extrapolated. The computational mesh is of 80 x 50 x 1 cells.

1solver: krysa+



52 9. Validation of Numerical Methods

Figure 9.4: Pressure distribution

Figure 9.5: Velocity magnitude

Figure 9.6: Comparison of velocity profiles
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Figure 9.7: u-component residual history of iteration process, blue color is TVD MacCormack scheme,
the red color is original MacCormack scheme

9.1.3 Test case conclusion

Pressure magnitude (figure 9.4) is, as expected, linearly decays from the inlet to the outlet. Velocity
magnitude (figure 9.5) is of the same parabolic profile in all the computational domain. Figure 9.6
shows final comparison of analytical solution and two computed schemes, the first one is MacCormack
scheme with von Neumann artificial viscosity introduced in Section 7.5.1 and the second one is TVD
MacCormack scheme introduced in Section 7.5.2. Figure 9.7 shows residual history of iteration process
for u-component of velocity. The blue color belongs to TVD MacCormack scheme and the red color
belongs to the MacCormack scheme.

The first numerical method (MacCormack with von Neumann artificial viscosity) appears to be very
sensitive to the choice of artificial viscosity coefficients. The second numerical method (Modified Causon’s
TVD MacCormack scheme) is a little bit more time consuming, but appears to be closer to analytical
solution. The convergence of both numerical methods is very good thanks to the low Reynolds number.
After all, both introduced numerical methods show good agreement with derived analytical solution of
Navier-Stokes equations in the channel.
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9.2 C2 : Flat Plate Test Case

9.2.1 The aim of the test case

The aim of this test case is to compare the results of methods introduced in chapter 7 with empirical data.
This validation test case aimed on external aerodynamics, with high Reynolds number. The following
test case is simplified to two dimensions. An important validation of the method, for viscous fluid flow,
is a performance of skin friction coefficient cf . It is in general the ratio of the inertial forces of an object
being moved along a surface and of the force that maintains contact between the object and the surface.
It can be expressed:

cf =
2τw
ρU2

(9.14)

where ρ is a reference density and U is a reference velocity, τw is wall shear stress and for Newtonian
fluid can be expressed:

τw = µ
(∂u

∂y

)

y=0
(9.15)

For this test case (infinite flat plate) the friction coefficient cf is following (correlation between exper-
imental measurements and DNS simulations):

Laminar case: cf =
0.664

Re
1

2

x

, Turbulent case: cf =
0.445

ln2(0.06 ·Rex)
(9.16)

where:

Rex =
ρ · U · x

µ
(9.17)

9.2.2 Test case set up

Reynolds number of the case is Re = 2.0 · 105. The test case is assumed to be laminar2. The fluid is
Newtonian. We have performed numerical simulation3 on the flat plate. The governing equations are the
same as in previous test case (standard Navier-Stokes equations for viscous, incompressible, Newtonian
fluid). Figure 9.8 shows the computational domain of the test case. Flat plate begins at the origin and
ends at the point [1,0]. The computational mesh has 100 x 41 x 1 cells and is displayed in the figure 9.9.

2the transition to turbulence is approximately for Re = 500000
3solver: krysa+
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Figure 9.8: Flat plate computational domain and boundary conditions

Figure 9.9: The flat plate mesh, 100x41x1 cells



56 9. Validation of Numerical Methods

(a) Comparison of friction coefficientcf (b) Comparison of velocity profiles

Figure 9.10: Endless flat plate results

9.2.3 Test case conclusion

Figure 9.10 shows the final comparison of the experimental solution and both computed schemes. The
first numerical method (MacCormack with von Neumann artificial viscosity (7.5.1)) confirms to be very
sensitive on choice of artificial viscosity coefficients. The second numerical method (Modified Causon’s
TVD MacCormack scheme (7.5.2)) is a little bit more time consuming, but appears to be closer to
experimental solution. Figure 9.10 shows comparison of cf obtained profiles with experimental solution.
Figure 9.10 shows comparison of obtained velocity profiles in the developed boundary layer (x = 0.9) with
the experimental solution. Both introduced numerical methods show good agreement with experimental
solution.
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9.3 C3 : Newtonian Flow in Stenosed Vessel, Comparison of
Solvers

9.3.1 The aim of the test case

The aim of the following test case is to compare both solvers introduced in chapter 8. This test case is
simplified to two dimensions. The identical test case was solved using Finite Element solver by another
group at Charles University in Prague4. The details of Finite Element solver5 are enclosed in Appendix
A. All together there are three solvers to compare in this case. Both geometry and flow conditions are
set to best imitate real human blood flow in the stenosed vessel. The test case computational domain is
the contracted channel. Its narrowing and widening parts are of cosine shape. The widening part of the
channel is of twice length than the narrowing part. Such a channel may simulate an idealized body vessel
(vessel stenosis). The same test case was computed by Leuprecht A. & K. Perktold [58] and Bodnár T.

& A. Sequeira [16].

9.3.2 Test case set up

The diameter of the channel is D = 2R = 6.2 mm. The mean inlet velocity is U = 6.15 cm.s−1 of
parabolic profile derived in case C1. The fluid density is ρ = 1000 kg/m3. Reynolds number of the case
is Re = 100. The test case is assumed to be laminar. The fluid is Newtonian. The computational mesh
has 200 x 46 x 1 cells, exactly the same for all three solvers.

9R

R2R

2RR2R 4R

Figure 9.11: Contracting channel geometry

9.3.3 Test case conclusion

Set of figures 9.12 shows comparison of pressure distribution for all three solvers. Set of figures 9.13 shows
comparison of pressure distribution for all three solvers. Set of figures 9.14 shows comparison of pressure
and velocity distribution along centerline of the channel and the velocity profiles (in the narrowest section
of the channel and in the end of the channel). Solver krysaFOAM (Finite Volume Method, modified
OpenFOAM solver) and solver FEM (Finite Element Method solver, Charles University) have fantastic
agreement. Both pressure and velocity field are almost identical. Solver krysa+ (Finite Volume Method)
shows a slide difference. After all, all introduced solvers show good agreement each other solving Navier-
Stokes for incompressible, viscous, Newtonian fluid.

4Karel Tůma
5solver FEM
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(b) Solver: krysaFOAM

(c) Solver: krysa+

(d) Solver: FEM

Figure 9.12: Comparison of solvers, pressure distribution

(b) Solver: krysaFOAM

(c) Solver: krysa+

(d) Solver: FEM

Figure 9.13: Comparison of solvers, velocity magnitude
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(a) Pressure along centerline

(b) Velocity along centerline

(c) Velocity profiles at the narrowest section and in the end of channel

Figure 9.14: Comparison of solvers
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10.1 C4 : Fully Developed Flow of Generalized Newtonian Fluid
in a Pipe

10.1.1 The aim of the test case

The aim of the following test case is to demonstrate the differences in the developed velocity profiles
in a straight channel. As already mentioned, there are significant differences between Newtonian and
generalized Newtonian flows described in chapter 4. This test case is simplified to two dimensions. The
developed velocity profiles for Newtonian fluid flow and for generalized Newtonian shear-thinning fluid
flow are not equal because of different magnitude of shear-rate γ̇ (shear rate is not linear for shear thinning
fluid flow). The following schematic picture shows theoretical differences in developed velocity profiles
for Newtonian fluid flow and for generalized Newtonian shear-thinning fluid flow:
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New tonian Flow Non-New tonian Flow

γU U γ

Figure 10.1: Example of developed velocity profiles and corresponding shear rates

10.1.2 Test case set up

Two tests were solved: Newtonian and generalized Newtonian (shear-thinning). The test case set up1 is
the same as C1, now comparing developed velocity profiles having Newtonian and generalized Newtonian
shear-thinning flows. The diameter of the channel is D = 2R = 6.2 mm. At the inlet is prescribed
parabolic velocity profile, mean value U = 6.15 cm.s−1, using equation (9.13). The computational mesh
has 80 x 50 x 1 cells. Reference viscosity for Newtonian case is infinity shear viscosity (µ = µ∞ = 0.00345
Pa.s). The fluid density is ρ = 1000 kg/m3. Reynolds number of the case is Re = 111. The test case is
assumed to be laminar. For generalized Newtonian case is used Modified Cross model2:

µ(γ̇) = µ∞ + (µ0 − µ∞)

[

1

[1 + (αγ̇)m]a

]

(10.1)

where µ0 = 0.056 Pa · s, µ∞ = 0.00345 Pa · s, α = 3.736 s, m = 2.406, a = 0.254. The viscosity
dependence on the shear-rate, which is generated by the Modified Cross model is shown in the figure
10.2.

Figure 10.2: Viscosity generated by Modified Cross model

1solver: krysa+
2described in the table 4.1
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(a) Newtonian flow, velocity magnitude (b) generalized Newtonian flow, velocity magnitude

Figure 10.3: Comparison of velocity magnitude for Newtonian fluid flow and shear-thinning flow

(a) Velocity profiles

Figure 10.4: Comparison of developed velocity profiles for Newtonian fluid flow and shear-thinning flow

10.1.3 Test case conclusion

Figure 10.3 shows velocity magnitude for Newtonian fluid flow and generalized Newtonian shear-thinning
fluid flow. Figure 10.3 shows developed velocity profiles for Newtonian fluid flow and generalized New-
tonian shear-thinning fluid flow. The numerical results shoved significant differences between above
mentioned types of flow. One can see that generalized Newtonian shear-thinning flow is slower in the
center of the channel because of the local increase of viscosity, generalized Newtonian shear-thinning flow
is faster in regions with large velocity gradients (typically near the walls), where the viscosity model gives
lower effective viscosity than Newtonian fluid’s viscosity. (It is consistent with generalized Newtonian
shear-thinning fluid flow properties, e.g. blood micro-structure could be interpreted to be cut by the
layers of fluid, such an effect locally decreases viscosity.).
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10.2 C5 : Comparison of Generalized Newtonian Shear-Thinning
Viscosity Models in Contracting Channel

10.2.1 The aim of the test case

The aim of the following test case is to compare eight viscosity models for generalized Newtonian fluid
introduced in the table 4.1. All the viscosity models are set to imitate the viscosity of human blood. The
asymptotic viscosities are the same for all viscosity models (µ0 = 0.056 Pa · s, µ∞ = 0.00345 Pa · s).
The only difference among models is the model function, that is fitted to empirical data. The model
coefficients are calibrated for human blood adopted from Cho & Kensey [30].

To compare these models’ performances we have set up the following test case. The geometry of the
computational domain is contracting channel introduced in test case C3.

10.2.2 Test case set up

All together nine tests were computed. One for Newtonian fluid, eight for generalized Newtonian shear-
thinning fluid to test eight viscosity models from the table 4.1. The flow conditions of the test case are set
to simulate the human blood behavior3. The computational mesh is of 100 x 40 x 1 cells. The diameter
of the channel is D = 2R = 6.2 mm. At the inlet is prescribed parabolic velocity profile of mean value
U = 6.15 cm.s−1, using equation (9.13). The computational mesh is of 80 x 50 x 1 cells. Reference
viscosity for Newtonian case is infinity shear viscosity (µ = µ∞ = 0.00345 Pa.s). The fluid density is
ρ = 1000 kg/m3. Reynolds number of the case is Re = 111. The test case is assumed to be laminar. For
generalized Newtonian case is used Modified Cross model4:

µ(γ̇) = µ∞ + (µ0 − µ∞)

[

1

[1 + (αγ̇)m]a

]

(10.2)

where µ0 = 0.056 Pa · s, µ∞ = 0.00345 Pa · s, α = 3.736 s, m = 2.406, a = 0.254. The viscosity
dependence on the shear-rate, which is generated by the Modified Cross model is shown in the figure
10.2.

10.2.3 Test case conclusion

Figure 10.5 shows comparison of results obtained using generalized Newtonian viscosity models from
Table (4.1). The left column is velocity magnitude, the right column is viscosity magnitude. We can
observe characteristic trend for all viscosity models: In the regions with large velocity gradients, the
viscosity is low. For regions with small velocity gradients all the models give high viscosity. All the
generalized Newtonian shear-thinning viscosity models give similar velocity magnitude for this test case.
One can see, that there are some differences in models’ viscosity magnitude. After all, the trends are the
same for all eight tested models.

3solver: krysa+
4described in the table 4.1
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(a) Newtonian, velocity magnitude (b) Newtonian, viscosity magnitude

(c) Power Law Model, velocity magnitude (d) Power Law Model, viscosity magnitude

(e) Modified Cross Model, velocity magnitude (f) Modified Cross Model, viscosity magnitude

(g) Powel-Eyring model, velocity magnitude (h) Powel-Eyring model, viscosity magnitude

(i) Modified Powel-Eyring model, velocity magnitude (j) Modified Powel-Eyring model, viscosity magnitude

(k) Cross Model, velocity magnitude (l) Cross Model, viscosity magnitude

(m) Simplified Cross Model, velocity magnitude (n) Simplified Cross Model, viscosity magnitude

(o) Carreau Model, velocity magnitude (p) Carreau Model, viscosity magnitude

(q) Carreau-Yasuda Model, velocity magnitude (r) Carreau-Yasuda Model, viscosity magnitude

Figure 10.5: Comparison of generalized Newtonian shear-thinning viscosity models
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10.3 C6 : Estimation of Reference Viscosity

10.3.1 The aim of the test case

The following test case deals with a simple question. If a generalized Newtonian shear thinning fluid flow
should be represented by Newtonian fluid flow, what should be its viscosity5? Or, in other words, what
viscosity of Newtonian fluid flow best fits the generalized Newtonian fluid flow.

This test case is simplified to two dimensions. We want to find the reference viscosity, which best
describes the blood flow. We have constructed and tested six different hypothesis of definition of reference
blood viscosity µref

i . We start with simple hypothesis and then gradually come to the more sophisticated
ones. The first two hypotheses try to find viscosity directly. Another two hypotheses try to find the
correct shear-rate γ̇ref and then determine the reference blood viscosity from viscosity model formula.
The remaining two hypothesis use the numerical solution approach. As a reference model for generalized
Newtonian fluid is used Modified Cross model:

µ(γ̇) = µ∞ + (µ0 − µ∞)

[

1

[1 + (αγ̇)m]a

]

(10.3)

where µ0 = 0.056 Pa · s, µ∞ = 0.00345 Pa · s, α = 3.736 s, m = 2.406, a = 0.254. The viscosity
dependence on the shear-rate, which is generated by the Modified Cross model is shown in the figure
10.2.

10.3.2 Six hypothesis for constructing reference viscosity

1. The first hypothesis is simple and considers µref
1 to be equal µ∞ for Modified Cross model.

µref
1 = µ∞ = 0.00345 Pa · s (10.4)

2. The second hypothesis considers µref
2 to be an average value of µ0 and µ∞:

µref
2 =

µ0 + µ∞

2
=

0.0560 + 0.00345

2
= 0.029725 Pa · s (10.5)

3. In the third hypothesis we assume the average shear rate ¯̇γanl that corresponds to the Newtonian
fluid flow. An average shear rate ¯̇γanl we can determine from Newtonian velocity profile and then
evaluate the viscosity from the equation (10.11).

µref
3 = 0.005767 Pa · s (10.6)

4. In the fourth hypothesis we assume an maximal shear rate γ̇max that corresponds to the Newtonian
flow and then evaluate the viscosity from following idea. Let us construct the curve of the formula
defining Modified Cross viscosity model, see figure 10.7. The viscosity µref

4 can be found as a mean
value of viscosity up to the maximal shear rate γ̇max.

µref
4 =

∫ γ̇max

0
µ(γ̇)dγ̇

γ̇max
= 0.00707 Pa · s (10.7)

5. In the fifth hypothesis we start with simple numerical simulation. The simulation of generalized
Newtonian fluid flow in the simple straight channel6 is performed in the first step. Modified Cross
model is used for generalized Newtonian viscosity computation. From developed velocity profile
(non-Newtonian) we can obtain the mean value of shear rate ¯̇γsim. Having this value we can easily

evaluate µref
5 from Modified Cross model.

µref
5 = 0.005600 Pa · s (10.8)

5solvent viscosity, a constant
6exactly the same geometry as in the case C6
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New tonian Flow Non-New tonian Flow

γU U

γmax

γanl γsim

γ

Figure 10.6: Reference shear-rate illustration

6. In the sixth hypothesis we start with numerical simulation again. The simulation of generalized
Newtonian fluid flow in the straight channel is made. Modified Cross model is used for generalized
Newtonian viscosity computation. The viscosity µref

6 is evaluated as an average of generalized
Newtonian viscosity, that is generated by the model, in the outlet cross-section of the channel.

µref
6 = 0.006103 Pa · s (10.9)
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Figure 10.7: Reference viscosity illustration

10.3.3 Test case set up

All together seven cases were solved. One for generalized Newtonian shear-thinning fluid and six for
Newtonian fluid to test six reference viscosity hypothesis. The flow conditions of the test case are set to
simulate the human blood behavior7. The computational mesh has 100 x 40 x 1 cells. The diameter of the
channel is D = 2R = 6.2 mm. At the inlet is prescribed parabolic velocity profile of mean value U = 6.15
cm.s−1, using equation (9.13). The fluid density is ρ = 1000 kg/m3. Reynolds number of the case is Re
= 111. The test case is assumed to be laminar. To compare the tested hypothesis we have computed the
generalized Newtonian shear-thinning fluid flow to serve as a reference data. For computation of variable
viscosity we have used Modified Cross Model see table 4.1.

7solver: krysa+
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10.3.4 Results

Reference generalized Newtonian case

The set of figures 10.8 shows the reference test case results (generalized Newtonian shear-thinning fluid
flow).

(a) Velocity magnitude (b) Flow streamtraces

(c) Pressure magnitude (d) Viscosity magnitude

Figure 10.8: generalized Newtonian (reference) test case

All the six hypothesis’ cases were solved and compared to the reference case (generalized Newtonian).
Three test outputs were compared (the first one is pressure distribution along the centerline of the channel,
the second one is position of the reattachment point, the third one is wall shear stress). All the test cases’
results are symmetric along the centerline of the channel. To evaluate all the hypothesis’ results were
assigned grades (0 - the worst, 5- the best) and evaluated at the end of the section.

Pressure distribution along the centerline of the channel

The first comparison is based on the pressure distribution along the centerline (axis of symmetry) of
the channel. The figure 10.9 shows the pressure distribution along the centerline of the channel. We
can see that hypotheses number two totally failed, other hypothesis give comparable results. The table
10.1 shows numerical comparison, where the percentage deviation is considered to be a sum of all the
differences from the reference case divided by an average value of the reference pressure. The best results
in this criteria were achieved by hypothesis 4 and 5.
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(a) Centerline pressure distribution (b) Wall shear stress comparison

Figure 10.9: Comparison of pressure and wall shear stress distribution

Hypothesis No. NN 1 2 3 4 5 6

Relative deviation 0.000 13.071 298.773 6.500 9.240 6.375 7.134

Success points - 1 0 4 2 5 3

Table 10.1: Comparison of centerline pressure distribution

Reattachment point position

The second comparison method is based on the length of recirculation zones that appear in the expanding
part of the channel. We have followed the reattachment point of recirculation zones measured from the
beginning of the computational domain as it is sketched in figure 10.10. The best hypotheses appears to
be number 4. Hypothesis number 1 and 2 showed unsatisfactory prediction, hypotheses number 2 doesn’t
even show any recirculation zone at all!

X

Figure 10.10: Reattachment point position

The table below shows the lengths (in diameters of channel) of the recirculation zones according to
the figure 10.10.
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Hypothesis No. NN 1 2 3 4 5 6

X 2.7398 3.8972 0.00000 3.1025 2.8821 3.1404 3.0402

Success points - 1 0 3 5 2 4

Table 10.2: Reattachment point position comparison

Wall shear stress

The third comparison method is shear stress distribution at the wall. The shear stress distribution at
the wall is shown in the figure 10.9.

The table below shows comparison of shear stress at the (lower) wall. The relative deviation was
evaluated in the same way as in already mentioned pressure comparison. Here, hypothesis number 5
shows the best agreement while number 2 totally failed again.

Hypothesis No. NN 1 2 3 4 5 6

Percentage deviation 0.000 42.031 7680.780 43.520 77.246 40.591 49.690

Success points - 4 0 3 1 5 2

Table 10.3: Wall shear stress comparison

10.3.5 Test case conclusion

The table below (Table 10.4) shows final comparison of all six tested hypotheses (Usability means grades,
A is the best, F is the worst). The best performance showed hypothesis number 5. Hypotheses 3, 4 and

6 appear usable as well. On the other hand, hypothesis 1 ( µref
1 to be equal µ∞) and hypothesis 2 (µref

2

to be an average value of µ0 and µ∞) appear to be wrong and their usage can’t be recommended.

Hypothesis No. 1 2 3 4 5 6

Total success points 6 0 10 8 12 9

Usability E F B D A C

Table 10.4: Final comparison of tested hypothesis

It has turned out that the best hypothesis showed up to be hypothesis number five. Let’s repeat
the hypothesis: The simulation of generalized Newtonian fluid flow in the simple straight channel8 is
performed in the first step. Here, was used Modified Cross model for generalized Newtonian viscosity
computation. From developed velocity profile we can obtain the mean value of shear rate ¯̇γsim. Having
this value we can easily evaluate µref

5 from Modified Cross model.
Thus, for selected geometry and flow conditions the viscosity that best describe blood flow is:

µref
blood = 0.005600 Pa · s (10.10)

8exactly the same geometry as in the case C6
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10.4 C7 : Flow Rate Dependence Test Case

10.4.1 The aim of the test case

The aim of the following test case is to demonstrate the dependence of the viscosity (described by the
generalized Newtonian shear-thinning viscosity model) on the flow-rate. A high flow-rate generates high
velocity gradients9 (and thus shear-rates γ̇), which may have serious influence on the variable viscosity.
This test case is simplified to two dimensions.

10.4.2 Test case set up

9R

R2R

2RR2R 4R

9R

3R2R

2RR2R �R

Figure 10.11: Test case geometries contracting and widening channels

All together 24 tests test simulations were performed. The fluid is generalized Newtonian shear-
thinning fluid. The flow conditions of the test case are set to simulate the human blood behavior. The
computational mesh has 100 x 40 x 1 cells. The diameter of the channel is D = 2R = 6.2 mm. At the
inlet is prescribed parabolic velocity profile with mean value U = 6.15 cm.s−1, using equation (9.13).
The fluid density is ρ = 1000 kg/m3. The test case is assumed to be laminar. For generalized Newtonian
case is used Modified Cross model10:

µ(γ̇) = µ∞ + (µ0 − µ∞)

[

1

[1 + (αγ̇)m]a

]

(10.11)

where µ0 = 0.056 Pa · s, µ∞ = 0.00345 Pa · s, α = 3.736 s, m = 2.406, a = 0.254. The viscosity
dependence on the shear-rate, which is generated by the Modified Cross model is shown in the figure
10.2.

There were performed twelve computations11 for each geometry for decreasing flow rates: Q/Q0 =
16
1 ,

8
1 ,

4
1 ,

2
1 ,

1
1 ,

1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64 ,

1
128 , where Q0 = 2cm2/s. For transparent interpretation of the viscosity

magnitude, lets introduce relative viscosity:

µ̄ =
µ(γ̇)− µ∞

µ∞
(10.12)

µ̄ can be viewed as a measure of viscosity changes. One can define three viscosity regions with different
characteristics. For 0 ≤ µ̄ < 1 (blue area in Figure 10.13), the viscosity is close to µ∞ and doesn’t change
much. This is Low-viscosity region, showing ”pseudo-Newtonian” behavior. For 1 ≤ µ̄ < 10 (green area
in Figure 10.13), one can see highly generalized Newtonian region, where the viscosity strongly varies
with shear rate. For 10 ≤ µ̄ (red area in Figure 10.13), there is High-viscosity region, where the viscosity
is high due to the low shear rate.

9high velocity gradients produce high shear-rate
10described in the table 4.1
11solver: krysa+
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Figure 10.12: Viscosity generated by Modified Cross model with indicated relative viscosity scale

10.4.3 Test case conclusion

In the set of figures 10.14 and 10.13, one can see the relative viscosity magnitude contours for selected
flow rates. Figure 10.12 shows the viscosity values generated by Modified Cross model. One can see
that the generalized Newtonian shear-thinning fluid flow behavior of blood, viscosity magnitude strongly
depends on the flow rate (having constant diameter of the channel).

For smaller flow rates the viscosity is high due to the lower shear-rate (small velocity gradient). At
low shear-rates red blood cells create complicated structures, roulax, which cause high viscosity. Typical
regions with smaller shear-rates are near the center of the channel.

For higher flow rates the viscosity is low due to the higher shear-rate (large velocity gradient). Typical
regions with higher shear-rates are near the walls of the channel, where large velocity gradients appear.

Decreasing the flow rate the viscosity increases, in the other hand increasing flow rate the viscos-
ity decreases. It is consistent with generalized Newtonian shear-thinning fluid flow properties. Blood
structures could be interpreted to be cut by the layers of fluid, such an effect locally decreases viscosity.
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(a) Q/Q0 = 16 (b) Q/Q0 = 8

(c) Q/Q0 = 4 (d) Q/Q0 = 2

(e) Q/Q0 = 1 (f) Q/Q0 = 1/2

(g) Q/Q0 = 1/4 (h) Q/Q0 = 1/8

(i) Q/Q0 = 1/16 (j) Q/Q0 = 1/32

(k) Q/Q0 = 1/64 (l) Q/Q0 = 1/128

Figure 10.13: Relative viscosity magnitude for various flow rates, µ̄ = (µ(γ̇) − µ∞)/µ∞, in stenosed
channel
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(a) Q/Q0 = 16 (b) Q/Q0 = 8

(c) Q/Q0 = 4 (d) Q/Q0 = 2

(e) Q/Q0 = 1 (f) Q/Q0 = 1/2

(g) Q/Q0 = 1/4 (h) Q/Q0 = 1/8

(i) Q/Q0 = 1/16 (j) Q/Q0 = 1/32

(k) Q/Q0 = 1/64 (l) Q/Q0 = 1/128

Figure 10.14: Relative viscosity magnitude for various flow rates, µ̄ = (µ(γ̇) − µ∞)/µ∞, in aneurism
channel



Chapter 11

Tests of Viscoelastic Models

Contents
11.1 C8 : Differences between Viscoelastic, Newtonian and Generalized Newto-

nian Fluid Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11.1.1 The aim of the test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11.1.2 Test case set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

11.1.3 Test case conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11.2 C9 : Flow of Viscoelastic fluid in Periodically Contracted Channels . . . . . 78

11.2.1 The aim of the test case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

11.2.2 Test case set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

11.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

11.2.4 Test case conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

11.1 C8 : Differences between Viscoelastic, Newtonian and Gen-

eralized Newtonian Fluid Flows

11.1.1 The aim of the test case

The aim of the following test case is to point out the differences between four different types of fluid
flows. We compare four types of fluids: Newtonian, generalized Newtonian, viscoelastic and generalized
viscoelastic. This test case is simplified to two dimensions. All together there were performed four
computations1 with different models.

11.1.2 Test case set up

The computational domain is contracting channel introduced in test case C3. The diameter of the channel
is D = 2R = 6.2mm. The inlet velocity is U = 6.15 cm.s−1 of parabolic profile derived in the test case C1.
The fluid density is ρ = 1050 kg/m3. Solvent viscosity µs = 0.0056 Pa ·s. Reynolds number is Re = 100.
The test case is assumed to be laminar. The flow rate is Q = 4 cm2/s according to [58]. For viscoelastic
fluid flows the Oldroyd B model is used. Retardation time is λ = 0.06 s. The Weissenberg number is
We = 0.6. Pressure at the outlet of the domain is fixed to a constant. At the walls no-slip conditions are
used for velocity and homogeneous Neumann condition for the pressure. For Oldroyd-B model variables
(Te) the homogeneous Neumann condition is used for all boundaries. The computational mesh is of 100 x
40 x 1 cells. The table 11.1 shows four different set up variants. The first one is pure Newtonian fluid flow.
The second model is generalized Newtonian shear-thinning flow, with shear-thinning viscosity model2.
The third model is Oldroyd B with constant solvent viscosity (Newtonian fluid). The fourth model is

1solver: krysa+
2Modified Cross viscosity model used

75
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(b) Newtonian model

(c) Oldroyd-B model

(d) Generalized Newtonian model

(e) Generalized Oldroyd-B model

Figure 11.1: Comparison of axial velocity distribution

generalized Oldroyd-B (shear-thinning), which is Oldroyd B model with variable solvent viscosity using
same model as generalized Newtonian shear-thinning fluid flow.

Model name Shear-Thinning Viscoelasticity µs Te

Newtonian no no µ∞ 0
Generalized Newtonian yes no µ(γ̇) 0

Oldroyd-B no yes µ∞ Te

Generalized Oldroyd-B yes yes µ(γ̇) Te

Table 11.1: An overview of four different models’ set up

11.1.3 Test case conclusion

Set of figures 11.1 shows velocity magnitude for all described types of fluids. Set of figures 11.2 shows
pressure distribution and axial velocity distribution along the central axis of the channel. The models’
differences are larger in pressure distribution than in velocity distribution. For the case set up we have
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Figure 11.2: Pressure and axial velocity distribution along the centerline of the channel

used, the contribution3 coming from shear-thinning viscosity model is much higher than contribution
coming prom viscoelastic effects. One should keep in mind that the shear-thinning viscosity strongly
depends on shear rate and flow rate. On the other hand viscoelasticity (generation of extra stress)
depends mainly on geometry of the domain and the flow-rate. Such a comparison, that we made in this
test case thus depends on the selected geometry.

3in sense of influence to fluid flow
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11.2 C9 : Flow of Viscoelastic fluid in Periodically Contracted
Channels

11.2.1 The aim of the test case

Viscoelastic fluid flow is very complicated phenomenon. An extremely important dimensionless number
for viscoelastic fluid flow is Weissenberg number, introduced in subsection 5.2. In the following test
case we have focused on computation of viscoelastic fluid flows at moderate Weissenberg number. The
introduced viscoelasticity model4 has some limitations, it works well only up to certain Weissenberg
number. The aim of this test case is to explore the solution dependence on the Weissenberg number.
This test case is simplified to two dimensions. We have solved this test case using Finite Volume Method.

This test case was also solved by the other independent group at the Charles University in Prague.
The physical model was exactly the same, but the numerical method was completely different5. Both
groups made their data available each other, which allowed to make a results comparison of both methods.

11.2.2 Test case set up

The following test case is assumed to be laminar. The fluid is Newtonian. There were performed lots
of computations6 finding maximal possible Weissenberg number for each geometry. The computational
domain is a channel with a certain number of contractions and special slope of those contractions. The
geometry of the computational domain is sketched in figure 11.3.
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Figure 11.3: Computational domain geometry (image reprinted from [17])

For this test case we have selected six variants of possible geometries according to figure 11.3. The
selected geometries are sketched in figure 11.4.

4Oldroyd B
5Finite Element Method
6solver: krysaFOAM
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(a) Geometry 1, Nseg = 2, D = 1 cm, Lseg = 2 cm,
Lin = 2 cm, Lout = 5 cm,

(b) Geometry 2, Nseg = 2, D = 1 cm, Lseg = 4 cm, Lin = 2 cm, Lout = 5 cm,

(c) Geometry 3, Nseg = 3, D = 1 cm, Lseg = 2 cm, Lin = 2
cm, Lout = 5 cm,

(d) Geometry 4, Nseg = 3, D = 1 cm, Lseg = 4 cm, Lin = 2 cm, Lout = 5 cm,

(e) Geometry 5, Nseg = 4, D = 1 cm, Lseg = 2 cm, Lin = 2 cm, Lout =
5 cm,

(f) Geometry 6, Nseg = 4, D = 1 cm, Lseg = 4 cm, Lin = 2 cm, Lout = 5 cm,

Figure 11.4: Six selected geometries

The diameter of the channel is D = 1.0 cm. The mean inlet velocity is U = 10.0 cm.s−1 of parabolic
profile derived in the test case C1. The fluid density is ρ = 1000 kg/m3. Solvent viscosity µs = 0.009
Pa · s. Extra stress viscosity µe = 0.001 Pa · s. The diameter of the channel and the inlet velocity
always remain the same for all the test geometries. The Reynolds number is constant for all case Re =
100. The only variable parameter in Weissenberg number is retardation time λ. Retardation time can be
interpreted as an ability of the fluid to remember the extra stress in the fluid. In other words, retardation
time is a parameter that tells us, how long extra stress survives in the fluid. The computational meshes7

are 506x36x1, 722x36x1, 578x36x1, 867x36x1, 650x36x1 and 1011x36x1 cells respectively. Both solvers
have used exactly same meshes.

11.2.3 Results

Comparison of Finite Volume Method with Finite Element Method

Set of figures 11.5 shows velocity magnitude for both computational methods.

Set of figures 11.6 shows comparison of velocity magnitude along the centerline of the channel for
both computational methods.

Set of figures 11.7 shows comparison of velocity magnitude along the centerline of the channel for
both computational methods.

7co-author Karel Tůma
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(b) Geometry 1, Velocity magnitude, Finite Volume Method

(c) Geometry 1, Velocity magnitude, Finite Element Method

Figure 11.5: Comparison of Finite Volume Method with Finite Element Method, Geometry 1, Velocity
distribution, Newtonian fluid flow (We = 0.0)

(a)

(b) Velocity magnitude, We = 0.5, Finite Volume Method

(c) Velocity magnitude, We = 0.5, Finite Element Method

(d) Centerline velocity comparison, We = 0.5

Figure 11.7: Comparison of Finite Volume Method and Finite Element Method, We = 0.5
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(a) Geometry 1, Centerline velocity

(b) Geometry 1, Centerline velocity, detail

(c) Geometry 1, Centerline pressure

(d) Geometry 1, Centerline pressure, detail

Figure 11.6: Comparison of Finite Volume Method with Finite Element Method, pressure and velocity
distribution along centerline of the channel
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(b) Geometry 1, axial velocity, We = 1.0

(c) Geometry 2, axial velocity, We = 1.0

(d) Geometry 3, axial velocity, We = 1.0

(e) Geometry 4, axial velocity, We = 1.0

(f) Geometry 5, axial velocity, We = 1.0

(g) Geometry 6, axial velocity, We = 1.0

Figure 11.8: Axial velocity for all six geometries, We = 1.0
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(b) Geometry 1, radial velocity, We = 1.0

(c) Geometry 2, radial velocity, We = 1.0

(d) Geometry 3, radial velocity, We = 1.0

(e) Geometry 4, radial velocity, We = 1.0

(f) Geometry 5, radial velocity, We = 1.0

(g) Geometry 6, radial velocity, We = 1.0

Figure 11.9: Radial velocity for all six geometries, We = 1.0
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(b) Geometry 1, Extra stress tensor magnitude, We = 0.1

(c) Geometry 1, Extra stress tensor magnitude, We = 0.5

(d) Geometry 1, Extra stress tensor magnitude, We = 1.0

(e) Geometry 1, Extra stress tensor magnitude, We = 2.0

Figure 11.10: Comparison of extra stress tensor magnitude for increasing Weissenberg number

Extra Stress Accumulation Phenomena

The previous experiences showed that for each geometry there exists a certain maximal Weissenberg
number for which the simulation crashes due to the blow-up of extra stress tensor. To find possible
dependence between maximal Weissenberg number and the geometry shape there were performed a
number of computations for each geometry. For each geometry the Weissenberg number was gradually
increased until the computation crashed. For example geometry number one was able to handle maximal
Weissenberg We = 2.0. The complete list of maximal Weissenberg numbers and its comparison can be
found in table 11.2. These investigations showed up, that until reaching certain Weissenberg number
value, the extra stress magnitude periodically the same with each contraction of the channel. After
reaching this value the extra stress starts to accumulate with each contraction of the channel. It can be
interpreted, the fluid is not able to forget the extra stress, in time that runs up while the fluid particles
get from one contraction to another. This extra stress accumulation phenomena probably leads to the
computation crash. The set of figures 11.10 shows extra stress tensor magnitude for moderate Weissenberg
numbers. For the geometry number one the extra stress tensor is perfectly periodic up to Weissenberg
number We = 0.5.

The set of figures 11.11 shows axial velocity, radial velocity and extra stress tensor magnitude for
Weissenberg number We = 1.0 on the geometry number five. One can observe extra stress accumulation
phenomena (maximal extra stress magnitude grows from one contraction to another).

Growth of the Maximum Velocity Phenomena

Above mentioned extra stress accumulation phenomena also causes the local increase of axial velocity. The
set of figures 11.13 shows axial velocity for different Weissenberg numbers. Increasing the Weissenberg
number, at certain level, suddenly the extra stress magnitude stops to be periodic and extra stress starts
to accumulate. As a result of such effect, the maximal velocity slightly increases. In the set of figures
11.13 one can see the detail of this phenomena.
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(a) Geometry 5, Axial velocity, We = 1.0

(b) Geometry 5, Radial velocity, We = 1.0

(c) Geometry 5, Extra stress tensor magnitude, We = 1.0

Figure 11.11: Geometry 5, We = 1.0

(a) Centerline velocity magnitude for different Weissenberg numbers

(b) Centerline velocity magnitude for different Weissenberg numbers, detail

Figure 11.12: Comparison of centerline velocity magnitude for different Weissenberg numbers
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Figure 11.13: Residual history for geometry number one, We = 0.5, u and v are velocity components,
T 11, T 21, T 12 and T 22 are components of extra stress tensor

11.2.4 Test case conclusion

The conclusion number one is following: The geometries with longer segments can handle higher maximal
Weissenberg number, which was confirmed by both solvers8. The reason is the fluid has more physical
time to relax until it reaches another contraction.

The conclusion number two is following: With increasing number of segments the maximal Weis-
senberg number decreases due to the extra stress accumulation phenomena, which was also confirmed by
both solvers.

The table 11.2 shows maximal Weissenberg numbers for each geometry for both solvers (krysaFOAM
and FEM).

Geometry # Nseg Lseg [cm] Wemax (FEM) Wemax (FVM - krysaFOAM)
1 2 2 4.0 2.0
2 2 4 5.5 4.0
3 3 2 3.5 1.5
4 3 4 5.5 3.0
5 4 2 3.0 1.0
6 4 4 5.5 2.0

Table 11.2: Comparison of maximal Weissenberg numbers for both solvers for all test geometries

The FEM solver can reach higher Weissenberg numbers than solver krysaFOAM in all tested cases.
The reason is the use of different numerical stabilization (the FEM solver has ability of strong numerical
stabilization).

8krysaFOAM (Finite Volume method solver) and FEM (Finite Element Method solver, Charles University)
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12.1 C10 : Blood Coagulation Test Case

12.1.1 The aim of the test case

The aim of th following test case is to test the state-of-art blood coagulation model introduced in chapter
6. The model was designed by prof. K. Rajakopal and is still in an experimental phase of development.

12.1.2 Test case set up

The test case is three dimensional. This is pure unsteady test case1. The physical time is set T = 5000 s.
The computational domain of the test case is a tube, to imitate an idealized blood vessel. The test case
is three dimensional. Figure 12.1.2 shows a sketch of the computational domain (a cut along tube axis).

Figure 12.1: Test case geometry, axis cut

1solver: krysaFOAM
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The computational geometry in three dimensions is shown in figure 12.2. The computational mesh is
unstructured2. It is made of hexahedrals in blocks and is of 25 000 cells.

(a) inlet/outlet
view

(b) side view

(c) 3d channel

Figure 12.2: 3d tube, rectangular zone at the wall indicates the clot surface

The clot surface at the tube boundary is indicated in the figure 12.2. It is a rectangular part of the
tube wall, asymmetrically placed closer to the inlet of the domain. Boundary conditions are following:
Five of twenty eight chemical constituents Ci have a special treatment, at the clot surface, the time
dependent non-homogenous Neumann boundary conditions are applied: ∂Ci/∂n = f(Ci,t). For the rest
of constituents homogeneous Neumann (∂Ci/∂n = 0 ) is applied everywhere on the wall. Velocity U is
zero at the walls and constant at the inlet. Pressure p is kept constant at the outlet of the domain. The
diameter of the tube is one centimeter, the length of the tube is 5.5 cm. The mean inlet velocity is 10
cm/s. The density of flowing blood is 1060 kg/m3. Dynamic viscosity is µ = 0.0056 Pa · s. Reynolds
number of the case is Re = 190. The test case is assumed to be laminar.

Figure 12.3: indication of three selected points

12.1.3 Test case conclusion

Set of figures 12.4 shows time development of selected concentrations in three selected points of the
geometry. All three points are placed on the clotting surface according to figure 12.3. The growth and
lysis of the clot were clearly observed. Set of figures 12.6 shows time development of velocity magnitude.

2created in blockMesh, part of OpenFOAM, co-author Daniel LaCroix



12.1 C10 : Blood Coagulation Test Case 89

(a) Fibrin concentration time development (b) Fibrinogen concentration time development

(c) Thrombin concentration time development (d) Prothrombin concentration time development

Figure 12.4: Selected concentrations at three selected points, 1 - geometrical center of the clot, 2 - point
in the middle of leading edge of the clot, 3 - point at the end of the clot, all three points are in one single
line

Figure 12.5: Time evolution of the clot volume in mm3
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(b) T = 0 s (c) T = 200 s (d) T = 300 s (e) T = 400 s

(f) T = 500 s (g) T = 600 s (h) T = 700 s (i) T = 800 s

(j) T = 900 s (k) T = 1000 s (l) T = 1100 s (m) T = 1200 s

(n) T = 1400 s (o) T = 1600 s (p) T = 1800 s (q) T = 2000 s

Figure 12.6: Time development of velocity magnitude in cross-section at point 1
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On the right hand side of intersections one can observe the velocity decreases, which clearly indicates the
existence of the clot. Figure 12.5 shows the time development of the size of the clot. The maximal clot
size is at time t = 1200 s and disappears at time t = 2600 s, both times have good agreement with [4].
The model is still in experimental stage of development.
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Chapter 13

Conclusion & Remarks

This work is final result of nearly seven years of the studies of applied mathematics at The Faculty of
Mechanical Engineering (Department of Technical Mathematics) at The Czech Technical University. The
work was written with afford to be understandable, even if a numerical solution of fluid flow is relatively
complicated phenomenon. Particular conclusions are mentioned in special section in each of ten test
cases. We have showed, that over a number of simplifications, the introduced models can be used. The
presented work has demonstrated:

1. The way of numerical solution of Navier-Stokes equations using Finite Volume Method.

2. Physical and mathematical basics of solving problems of incompressible, viscous, Newtonian, gen-
eralized Newtonian and viscoelastic fluid flow.

3. The state-of-art blood coagulation model was described and tested (test case C10).

4. The original Finite Volume Method solver (in-house code) was created. The in-house code can solve
incompressible, viscous, Newtonian, generalized Newtonian and viscoelastic fluid flow. In addition
an open-source code was modified to solve all the described models, including state-of-art blood
coagulat ion model.

5. Numerical results’ agreement with analytical solution and another solver using different numerical
approach (test cases C1,C2,C3 and C9).

6. The comparison of generalized Newtonian viscosity models (test case C5). All the implemented
generalized Newtonian viscosity models give approximately identical results and show good ap-
plicability. In another case was shown the possible way to find reference Newtonian viscosity for
generalized Newtonian fluid (test case C6) and the generalized Newtonian viscosity dependence
on flow-rate (test case C7). In another case was investigated the difference between Newtonian
and generalized Newtonian type of flow (test case C4). We have shown the differences in velocity
distribution in both cases. These comparisons prove that generalized Newtonian behavior of fluid
shouldn’t be left out if apparently exists. In another case were shown differences among Newtonian,
generalized Newtonian and viscoelastic fluid flow (test case C8).

Future plans

• To compare introduced models with relevant experimental data

• To test the time dependent behavior of viscoelastic models

• To incorporate and test another non-Newtonian fluid models

• To find a robust model best describing blood flow

93
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Technical details

All the presented results are displayed in Tecplot 10.0, ParaView and Gnuplot. All the meshes were
generated using home madeC++ code, Tecplot 10.0, blockMesh(part of OpenFOAM). The pictures are
made in Adobe Illustrator CE 10.0 and in Inkscape. The work itself was typeset by LATEX in application
Kile.

After defending of this work author is ready to release to anyone the source code of the solver or any
part of this project on request. Eventual questions or reminders please send to: Lubos.Pirkl@seznam.cz.
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T

[78] Thurston G. B., Viscoelasticity of human blood, Biophysical Journal 12 (1972) 1205-1217.

[79] Thurston G. B., Non-Newtonian viscosity of human blood: Flow induced changes in microstructure,
Biorheology 31(2) (1994) 179-192.

V

[80] Verdier C., Rheological properties of living materials. from cells to tissues, Journal of Theoretical
Medicine 5 (2) (2003) 67-91.

[81] Versteeg H. K. , W. Malalasekera An Introduction to Computational Fluid Dynamics - The Finite

Volume Method, Longman Scientific & Technical, Harlow 1995

[82] Vierendeels J. , K. Riemslagh, E. Dick A multigrid semi-implicit line method for viscous incom-

pressible and low-mach-number flows on high aspect ratio grids, Journal of Computational Physics
154 (1999) 310-344.

[83] Vlastos G. , D. Lerche, B. Koch, The superposition of steady on oscillatory shear and its effect on

the viscoelasticity of human blood and a blood-like model fluid, Biorheology 34 (1997) 19-36.

W

[84] Walburn F. J., D. J. Schneck, A constitutive equation for whole human blood, Biorheology 13 (1976)
201-210.

[85] Wang N., Fogelson A. L., Computational methods for continuum models of platelet aggregation, J.
Comput. Phys. 151 (1999)



vi REFERENCES

Y

[86] Yeleswarapu K. K., M. V. Kameneva, K. R. Rajagopal, J. F. Antaki The flow of blood in tubes:

Theory and experiment, Mech. Res. Comm. 25 (1998) 257-262.

[87] Yeleswarapu Krishna Kumar , Evaluation of Continuum Models for Characterizing the Constitutive

Behavior of Blood , University of Pittsburgh, 1996.

Z

[88] Zarnitsina V. I., Pokhilko A. V., Ataullakhanov F. I., A mathematical model for the spatio-temporal

dynamics of intrinsic pathway of blood coagulation - I. The models description, Thromb. Res. 84(4)
1996

[89] Zarnitsina V. I., Pokhilko A. V., Ataullakhanov F. I., A mathematical model for the spatio-temporal

dynamics of intrinsic pathway of blood coagulation - II. Results, Thromb. Res. 84(5) 1996

Author’s work
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Appendix A

Finite element method

We show how the Finite element method works on a steady incompressible Navier-Stokes equations in
two dimensions. Finite element method is based on the weak formulation of the problem. We will use
a less standard definition of a weak solution, which is similar to the Galerkin system used for the Finite
element method.

Definition 1. Let Ω ⊂ R2 is a bounded domain with Lipschitz boundary ∂Ω consisting of two parts

ΓD and ΓN such that ∂Ω = ΓD ∪ ΓN . We say that (~v, p) is the weak solution of the incompressible

Navier-Stokes equations if

p ∈ L2(Ω),

~v − ~̃v ∈ V :=
{
~w ∈ (W 1,2(Ω))2, ~w|ΓD

= 0
}

and ~̃v = ~vD on ΓD

satisfying

∫

Ω

(div~v)ψ dx = 0, ∀ψ ∈ L2(Ω),

∫

Ω

ρ(~v · ∇~v) · ~ϕdx = −
∫

Ω

T · ∇~ϕdx+

∫

ΓN

T~n · ~ϕdS, ∀~ϕ ∈ V,

where T is the Newtonian stress tensor

T = −pI+ η
(
∇~v + (∇~v)T

)
.

Then the Galerkin system for the Finite element method is in the same form. The problem is to find
(~vh, ph) such that

ph ∈ Ph,

~vh − ~̃vh ∈ Vh, where ~̃vh = ~vD on ΓD

satisfying
∫

Ωh

(div~vh)ψh dx = 0, ∀ψh ∈ Ph,

∫

Ωh

ρ(~vh · ∇~vh) · ~ϕh dx = −
∫

Ωh

Th · ∇~ϕh dx+

∫

ΓN

Th~n · ~ϕh dS, ∀~ϕh ∈ Vh,

where
Th = −phI+ η

(
∇~vh + (∇~vh)T

)

and the finite dimensional spaces are following

Ph =
{
qh ∈ L2(Ωh), qh|T ∈ P disc

1 (T ) ∀T ∈ Th

}
,

Vh =
{
~wh ∈ (C(Ωh))

2, ~wh|T ∈ Q2(T ) ∀T ∈ Th

}
.

ix
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The domain Ωh has a polygonal boundary and it is an approximation of the domain Ω. By Th we denote
a set of quadrilateral elements T covering the domain Ωh. We assume that Th is regular which means
that any two quadrilaterals are disjoint or have one common edge or a common vertex.

This combination of Q2 (standard continuous biquadratic with nine degrees of freedom per quadri-
lateral) for the velocity and P disc

1 (discontinuous linear with three degrees of freedom per quadrilateral)
for the pressure is a stable pair for the incompressible problem.

Now, let us denote {~wi}li=1 a usual Finite element basis of the finite dimensional space Vh and {qi}mi=1

a basis of the finite dimensional space Ph. Then we can express the approximate solution in the form

~vh = ~̃vh +

l∑

i=1

Vi ~wi,

ph =

m∑

i=1

Piqi,

where l is equal to the number of all vertices + number of all edges + number of all quadrilaterals, m
is equal to three times number of all quadrilaterals. We use the following test functions in the Galerkin
system

~ϕh = ~wi, i = 1, . . . , l,

ψh = qi, i = 1, . . . ,m,

after substitution we get1

̺

∫

Ωh

l∑

i,k=1

(

(~̃vh + Vi ~wi) · (∇~̃vh + Vk∇~wk)
)

∇~wj

︸ ︷︷ ︸

N(~V )j

+ η

∫

Ωh

∇~̃vh · ∇~wj

︸ ︷︷ ︸

Fj

+

+
l∑

i=1

Vi η

∫

Ωh

∇~wi · ∇~wj

︸ ︷︷ ︸

Aji

−
m∑

i=1

Pi

∫

Ωh

qi div ~wj

︸ ︷︷ ︸

−Bji

= 0, j = 1, . . . , l

l∑

i=1

Vi

∫

Ωh

(div ~wi)~wj

︸ ︷︷ ︸

−Bij

dx+

∫

Ωh

(div ~̃vh)~wj

︸ ︷︷ ︸

Gj

= 0, j = 1, . . . ,m

which can be rewritten into the set of (l +m) nonlinear algebraic equations

Φ

(
~V
~P

)

:=

(
A~V + ~N(~V ) +B~P + ~F

−BT~V + ~G

)

= ~0.

We solve it by the Newton method
J~δ = ~R,

where the Jacobian J is computed by finite differences

J =

DΦ

(
~V k

~P k

)

D

(
~V
~P

)

and

~δ =

(
~V k+1

~P k+1

)

−
(
~V k

~P k

)

, ~R = −Φ

(
~V k

~P k

)

.

1The boundary term is now missing because we prescribe T~n = ~0 on ΓN .
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We iterate in the Newton method in this sense

(
~V k+1

~P k+1

)

=

(
~V k

~P k

)

+ ω~δ, ω ∈ (0, 1],

where ω is adaptively chosen to improve the convergence. Stopping criterion is the L2 norm and energetic
norm of the residuum. The set of linear algebraic equations (13.1) for the unknown ~δ is computed by the
direct solver UMFPACK (see [31]).

The implementation is based on the code developed in [42].
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Appendix B

Blood Coagulation Model Constants

Constant name Symbol SI Unit Value

h11L1 h11L1 [0 0 -1 0 -1 0 0] 216.6667;

h11A3 h11A3 [0 0 -1 0 -1 0 0] 26666.6667;
h9 h9 [0 0 -1 0 -1 0 0] 270000;
h10 h10 [0 0 -1 0 -1 0 0] 5783333.33;

hTFPI hTFPI [0 0 -1 0 -1 0 0] 8000000;
h2 h2 [0 0 -1 0 -1 0 0] 11900000;
hPC hPC [0 0 -1 0 -1 0 0] 11;
hPLA hPLA [0 0 -1 0 -1 0 0] 1600000;

hPCI12a hPCI12a [0 0 -1 0 -1 0 0] 3666.6667;
halphaAP halphaAP [0 0 -1 0 -1 0 0] 183.3333;
h12A3 h12A3 [0 0 -1 0 -1 0 0] 0.0216667;

hPCI11a hPCI11a [0 0 -1 0 -1 0 0] 2300;
h8 h8 [0 0 -1 0 0 0 0] 0.0037;
hC8 hC8 [0 0 -1 0 0 0 0] 0.17;
h5 h5 [0 0 -1 0 0 0 0] 0.002833333;
hC5 hC5 [0 0 -1 0 0 0 0] 0.17;
h1 h1 [0 0 -1 0 0 0 0] 25;
h12 h12 [0 0 -1 0 0 0 0] 0.014166667;
hkalli hkalli [0 0 -1 0 0 0 0] 0.01133333;
H1M H1M [0 0 0 0 1 0 0] 250000e-9;
HC8M HC8M [0 0 0 0 1 0 0] 14.6e-9;
HC5M HC5M [0 0 0 0 1 0 0] 14.6e-9;

Table 13.1: Summary of constituents, model parameters, part 2

xiii
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Constituent name Symbol Diffusion coefficients di Initial value [M]

Fibrinogen I 3.10e-11 7.00e-6

Fibrin Ia 2.47e-11 7.00e-9

Prothrombin II 5.21e-11 1.40e-6

Thrombin IIa 6.47e-11 1.40e-9

Factor V V 3.12e-11 2.00e-8

Factor Va Va 3.82e-11 2.0e-11

Factor VIII VIII 3.12e-11 0.70e-9

Factor VIIIa VIIIa 3.92e-11 0.7e-12

Factor IX IX 5.63e-11 9.00e-8

Factor IXa IXa 6.25e-11 9.0e-11

Factor X X 5.63e-11 1.70e-7

Factor Xa Xa 7.37e-11 1.7e-10

Factor XI XI 3.97e-11 3.00e-8

Factor XIa XIa 5.00e-11 3.0e-11

Factor XII XII 5.00e-11 5.00e-7

Factor XIIa XIIa 2.93e-11 5.00e-9

Prekallikrein PreK 4.92e-11 4.85e-7

Kallikrein Kalli 4.92e-11 4.85e-9

Tissue Pathway Inhibitor TFPI 6.30e-11 2.50e-9

Protein C PC 5.44e-11 6.00e-8

Activated Protein C APC 5.50e-11 6.0e-11

α1 Antitrypsin α1AT 5.82e-11 4.50e-5

α2 Antiplasmin α2AP 5.25e-11 1.05e-7

Plasminogen PLA 4.93e-11 2.18e-9

Plasmin PLS 4.81e-11 2.18e-6

Protein C1 Inhibitor C1-INH 4.61e-11 2.41e-6

Antithrombin III ATIII 5.57e-11 2.41e-6

tissue pathway Activator tPA 5.28e-11 0.08e-9

Table 13.2: Summary of constituents, diffusion terms, initial values
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Constituent name Symbol Chemical reaction source terms si

Fibrinogen I k1·IIa·I
K1M+I

Fibrin Ia k1·IIa·I
K1M+I − h1·PLA·Ia

H1M+Ia

Prothrombin II −k2·V a·Xa·II
KdW ·(K2M+II)

Thrombin IIa k2·V a·Xa·II
KdW ·(K2M+II)−h2 · IIa ·ATIII

Factor V V −k5·IIa·V
K5M+V − hC5·APC·V a

HC5M+V a

Factor Va Va k5·IIa·V
K5M+V − hC5·APC·V a

HC5M+V a −h5 · V a

Factor VIII VIII −k8·IIa·V III
K8M+V III

Factor VIIIa VIIIa k8·IIa·V III
K8M+V III − hC8·APC·V IIIa

HC8M+V IIIa −h8 · V IIIa

Factor IX IX −k9·XIa·IX
K9M+IX

Factor IXa IXa k9·XIa·IX
K9M+IX −h9 · IXa · ATIII

Factor X X −k10·V IIIa·IXa·X
KdZ·(K10M+IX)

Factor Xa Xa k10·V IIIa·IXa·X
KdZ ·(K10M+IX) −h10 · Xa · ATIII − hTFPI · TFPI · Xa

Factor XI XI −k11·IIa·XI
K11M+XI + −k12a·XIIa·XI

K12aM+XI

Factor XIa XIa k11·IIa·XI
K11M+XI + k12a·XIIa·XI

K12aM+XI +
(

−h11A3·XIa·ATIII−h11L1·XIa·α1AT

−hC1Inh−11a ·XIa·C1INH

)

Factor XII XII −k12·XIIa·XI
K12M+XII + −kkalli·Kalli·XII

KkalliM+XII

Factor XIIa XIIa k12·XII
K12M+XII + kkalli·Kalli·XII

Kkalli+XII +
(

−h12·XIIa−hC1Inh−12a·XIIa·C1INH

−hαAP ·XIIa·α2AP−hAT3·XIIa·ATIII

)

Prekallikrein PreK −kPreKA·XIIa·PreK
KPreKAM+PreK + −kPreKB ·XIIa·PreK

KPreKBM+PreK −hkalli ·Kalli

Kallikrein Kalli kPreKA·XIIa·PreK
KPreKAM+PreK + kPreKB ·XIIa·PreK

KPreKBM+PreK

Tissue Pathway Inhibitor TFPI −hTFPI · TFPI · Xa

Protein C PC kPC ·IIa·PC
KPCM+PC

Activated Protein C APC kPC ·IIa·PC
KPCM+PC −hPC · APC · α1AT

α1 Antitrypsin α1AT −hPC · APC · α1AT − h11L1 · XIa · α1AT

α2 Antiplasmin α2AP −(hPLA · PLA + hα2AP · XIIa) · α2AP

Plasminogen PLA kPLA·tPA·PLS
KPLAM+PLS + kPLA−12a·XIIa·PLS

KPLA−12aM+PLS −hPLA · PLA · α2AP

Plasmin PLS −kPLA·tPA·PLS
KPLAM+PLS + −kPLA−12a·XIIa·PLS

KPLA−12aM+PLS

Protein C1 Inhibitor C1-INH −(hPCI−12a ·XIIa + hPCI−11a · XIa) · C1 − INH

Antithrombin III ATIII −(h9 · IXa + h10 · Xa + h2 · IIa + h11A3 · XIa + hAT3 · XIIa) · ATIII

tissue pathway Activator tPA 0

Table 13.3: Summary of constituents, reaction terms
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Constant name Symbol SI Unit Value

k12a k12a [0 0 -1 0 0 0 0] 0.000566667;

k11 k11 [0 0 -1 0 0 0 0] 0.00013;
k8 k8 [0 0 -1 0 0 0 0] 3.24;
k9 k9 [0 0 -1 0 0 0 0] 0.1883;
k5 k5 [0 0 -1 0 0 0 0] 0.45;
k10 k10 [0 0 -1 0 0 0 0] 39.85;
k2 k2 [0 0 -1 0 0 0 0] 22.4;
k1 k1 [0 0 -1 0 0 0 0] 59;

kPLA kPLA [0 0 -1 0 0 0 0] 0.2;
k12 k12 [0 0 -1 0 0 0 0] 0.033;

kPreKA kPreKA [0 0 -1 0 0 0 0] 3.6;
kPreKB kPreKB [0 0 -1 0 0 0 0] 40.0;
kPC kPC [0 0 -1 0 0 0 0] 0.65;
kkalli kkalli [0 0 -1 0 0 0 0] 7.25;

kPLA12a kPLA12a [0 0 -1 0 0 0 0] 0.0013;
K12aM K12aM [0 0 0 0 1 0 0] 2000e-9;
K11M K11M [0 0 0 0 1 0 0] 50e-9;
K9M K9M [0 0 0 0 1 0 0] 160e-9;
K8M K8M [0 0 0 0 1 0 0] 112000e-9;
K5M K5M [0 0 0 0 1 0 0] 140.5e-9;
KdZ KdZ [0 0 0 0 1 0 0] 0.56e-9;
K10M K10M [0 0 0 0 1 0 0] 160e-9;
KdW KdW [0 0 0 0 1 0 0] 0.1e-9;
K2M K2M [0 0 0 0 1 0 0] 1060e-9;

KPLAM KPLAM [0 0 0 0 1 0 0] 18e-9;
K1M K1M [0 0 0 0 1 0 0] 3160e-9;

KPLA12aM KPLA12aM [0 0 0 0 1 0 0] 270e-9;
K12M K12M [0 0 0 0 1 0 0] 7500e-9;
KkalliM KkalliM [0 0 0 0 1 0 0] 780e-9;

KPreKAM KPreKAM [0 0 0 0 1 0 0] 91e-9;
KPreKBM KPreKBM [0 0 0 0 1 0 0] 36000e-9;
KPCM KPCM [0 0 0 0 1 0 0] 3190e-9;
k79 k79 [0 0 -1 0 0 0 0] 0.54;
k710 k710 [0 0 -1 0 0 0 0] 1.716666667;
K79M K79M [0 0 0 0 1 0 0] 24.0e-9;
K710M K710M [0 0 0 0 1 0 0] 240.0e-9;
kCtPA kCtPA [0 2 -1 0 1 0 0] 1.087e-5;
kIIatPA kIIatPA [0 2 -1 0 0 0 0] 1.545e-13;
kIatPA kIatPA [0 2 -1 0 0 0 0] 8.4317e-20;
kTF7a kTF7a [0 0 0 0 0 0 0] 1.0e4;

Table 13.4: Summary of constituents, model parameters
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