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Chapter 1

FIRST ORDER DIFFERENTIAL
EQUATIONS

1.1 Introduction

Many of the laws of science and engineering are most readily expressed by describing
how some property of interest (position, temperature, population, concentration, etc.)
changes over time. This is usually expressed by describing how the rate of change of the
quantity is related to the quantity at a particular time. In the language of mathematics,
these laws are described by differential equations. An ordinary differential equation
is an equation relating an unknown function y(t) and some of the derivatives of y(t),
and it may also involve the independent variable t, which in many applied problems will
represent time. A partial differential equation is an equation relating an unknown
function u(t) (where the variable t = (t1, . . . , tn)), some of the partial derivatives of u
with respect to the variables t1, . . ., tn, and possibly the variables themselves. In contrast
to algebraic equations, where the given and unknown objects are numbers, differential
equations belong to the much wider class of functional equations in which the given
and unknown objects are functions (scalar functions or vector functions).

Example 1.1.1. Each of the following are differential equations:

1. y′ = y − t

2. 4y′′ − 4y′ + y = 0

3. y′′ = yy′

1
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4. my′′ = f(t)

5.
∂2u

∂t21
+

∂2u

∂t22
= 0

6.
∂u

∂t
= 4

∂2u

∂x2

The first equation involves the unknown function y, the dependent variable t and the
derivative y′. The second, third, and fourth equations involve the unknown function y
and the first two derivatives y′ and y′′, although the first derivative is not explicitly men-
tioned in the fourth equation. The last two equations are partial differential equations,
specifically Laplace’s equation and the heat equation, which typically occur in scientific
and engineering problems.

In this text we will almost exclusively use the prime notation, that is, y′, y′′, etc. to

denote derivatives. In other sources you may find the Leibnitz notation
dy

dt
,

d2y

dt2
, etc. in

use. The objects of study in this text are ordinary differential equations, rather than
partial differential equations. Thus, when we use the term differential equation without
a qualifying adjective, you should assume that we mean ordinary differential equation.

The order of a differential equation is the highest order derivative which appears in
the equation. Thus, the first equation above has order 1, while the others have order 2.
In this course, we shall be primarily concerned with ordinary differential equations (and
systems of ordinary differential equations) of order 1 and 2. The standard form for an
ordinary differential equation is to solve for the highest order derivative as a function of
the unknown function y, its lower order derivatives, and the dependent variable t. Thus,
a first order ordinary differential equation is given in standard form as

y′ = F (t, y) (1)

while a second order ordinary differential equation in standard form is written

y′′ = F (t, y, y′). (2)

In the previous example, the first and third equations are already in standard form,
while the second and fourth equations can be put in standard form by solving for y′′:

y′′ = y′ − 1

4
y

y′′ =
1

m
f(t).
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Remark 1.1.2. In applications, differential equations will arise in many forms. The
standard form is simply a convenient way to be able to talk about various hypotheses to
put on an equation to insure a particular conclusion, such as existence and uniqueness
of solutions (see Section 1.5), and to classify various types of equations (as we do in the
next two sections, for example) so that you will know which algorithm to apply to arrive
at a solution.

Remark 1.1.3. We will see that differential equations generally have infinitely many
solutions so to specify which solution we are interested in we usually specify an initial
value y(t0) for a first order equation and an initial value y(t0) and an initial derivative
y′(t0) in the case of a second order equation. When the differential equation and initial
values are specified, then one obtains what is known as an initial value problem. Thus
a first order initial value problem in standard form is

y′ = F (t, y); y(t0) = y0 (3)

while a second order equation in standard form is written

y′′ = F (t, y, y′); y(t0) = y0, y′(t0) = y1. (4)

For an algebraic equation, such as 2x2 +5x−3 = 0, a solution is a particular number
which, when substituted into both the left and right hand sides of the equation, gives
the same value. Thus, x = 1

2
is a solution to this equation since

2 ·
(

1

2

)2

+ 5 ·
(

1

2

)
− 3 = 0

while x = −1 is not a solution since

2 · (−1)2 + 5 · (−1)− 3 = −6 6= 0.

A solution of an ordinary differential equation is a function y(t) defined on some specific
interval I = (a, b) ⊆ R such that substituting y(t) for y and substituting y′(t) for y′,
y′′(t) for y′′, etc. in the equation gives a functional identity. That is, an identity which
is satisfied for all t ∈ I. For example, if the first order equation is given in standard
form as y′ = F (t, y), then y(t) defined on I = (a, b) is a solution on I if

y′(t) = F (t, y(t)) for all t ∈ I,

while y(t) is a solution of a second order equation y′′ = F (t, y, y′) on the interval I if

y′′(t) = F (t, y(t), y′(t)) for all t ∈ I.
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Example 1.1.4. 1. The function y1(t) = 3e−2t, defined on (−∞, ∞), is a solution
of the differential equation y′ + 2y = 0 since

y′1(t) + 2y1(t) = (−2) · 3e−2t + 2 · 3e−2t = 0

for all t ∈ (−∞, ∞), while the function y2(t) = 2e−3t, also defined on (−∞, ∞),
is not a solution since

y′2(t) + 2y2(t) = (−3) · 2e−3t + 2 · 2e−3t = −2e−3t 6= 0.

More generally, if c is any real number, then the function yc(t) = ce−2t is a solution
to y′ + 2y = 0 since

y′c(t) + 2yc(t) = (−2) · ce−2t + 2 · ce−2t = 0

for all t ∈ (−∞,∞).

2. The function y1(t) = t + 1 is a solution of the differential equation

y′ = y − t (†)

on the interval I = (−∞,∞) since

y′1(t) = 1 = (t + 1)− t = y1(t)− t

for all t ∈ (−∞,∞). The function y2(t) = t + 1 − 7et is also a solution on the
same interval since

y′2(t) = 1− 7et = t + 1− 7et − t = y2(t)− t

for all t ∈ (−∞.∞). Note that y3(t) = y1(t) − y2(t) = 7et is not a solution of (†)
since

y′3(t) = 7et = y3(t) 6= y3(t)− t.

There are, in fact, many more solutions to y′ = y − t. We shall see later that all
of the solutions are of the form yc(t) = t + 1 + cet where c ∈ R is a constant. Note
that y1 is obtained by taking c = 0 and y2 is obtained by taking c = 7. We leave
it as an exercise to check that yc(t) is in fact a solution to (†).

3. The function y(t) = tan t for t ∈ I =
(−π

2
, π

2

)
is a solution of the differential

equation y′ = 1 + y2 since

y′(t) =
d

dt
tan t = sec2 t = 1 + tan2 t = 1 + y(t)2
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for all t ∈ I. Note that z(t) = 2y(t) = 2 tan t is not a solution of the same equation
since

z′(t) = 2 sec2 t = 2(1 + tan2 t) 6= 1 + 4 tan2 t = 1 + z(t)2.

Note that in this example, the interval on which y(t) is defined, namely I =(−π
2
, π

2

)
, is not apparent from looking at the equation y′ = 1 + y2. This phe-

nomenon will be explored further in Section 1.5.

4. Consider the differential equation

y′′ + 16y = 0. (‡)
Let y1(t) = cos 4t. Then

y′′1(t) =
d

dt
(y′1(t)) =

d

dt
(−4 sin 4t) = −16 cos 4t = −16y1(t)

so that y1(t) is a solution of (‡). We leave it as an exercise to check that y2(t) =
sin 4t and y3(t) = 2y1(t) − y2(t) = 2 cos 4t − sin 4t are also solutions to (‡). More
generally, you should check (as usual by direct substitution) that y(t) = c1 cos 4t+
c2 sin 4t is a solution to (‡) for any choice of real numbers c1 and c2.

Examples of Differential Equations

We will conclude this introductory section by describing a few examples of situations
where differential equations arise in the description of natural phenomena. The goal will
be to describe the differential equations or initial value problems which arise, however, we
will postpone the solution of all but one of the resulting differential equations until later
in the chapter when some techniques have been developed. Prior to the examples, we
remind you of various useful interpretations of the terms derivative and proportion, both
of which are pervasive in the formulation of mathematical models of natural phenomena.

Remark 1.1.5 (Derivative). In calculus you spent a good deal of time studying what
the derivative of a function y(t) is. That is, its “definition” and various interpretations
of the derivative, together with rules for calculating the derivative for specific functions.
All of these are important in understanding and working with differential equations, and
not just the rules for calculating derivatives, which may be the part you remember best.
The following is a summary of some of the interpretations of derivatives which you will
find useful. The function y is defined on an interval I = (a, b) and t0 ∈ I.

• Definition: The derivative of y at t0 is

y′(t0) = lim
t→t0

y(t)− y(t0)

t− t0
(∗)
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provided the limit exists. This is the definition you learned in calculus.

• Rate of Change: The derivative of y at t0, y′(t0), is the instantaneous rate
of change of y at t0. This is the fundamental interpretation of derivative which
appears in setting up mathematical models of many natural phenomena. The re-

lationship to the definition of derivative is that the fraction
y(t)− y(t0)

t− t0
represents

the rate of change of y(t) between times t and t0 so that the limit (∗) is interpreted
as the instantaneous rate of change of y at t0.

• Slope of the tangent line: The derivative of y at t0, y′(t0), is the slope of
the tangent line to the graph of the function y(t) at the point (t0, y(t0)). The

relationship to the definition of derivative is that the fraction
y(t)− y(t0)

t− t0
is the

slope of the secant line joining the two points (t0, y(t0)) and (t, y(t)), so that the
limit (∗) is interpreted as the slope of the line which best approximates the graph
of y(t) at the point (t0, y(t0)), that is, the slope of the tangent line.

• Differentiation formulas: What you may remember best from calculus are the
formulas for calculating derivatives for various functions. You will certainly need
these in studying differential equations, but the other properties (interpretations)
of the derivative are equally necessary. For your convenience, a short table (Table
1.1) of commonly used derivatives (and integrals) is included. For a more extensive
table consult your calculus book.

Remark 1.1.6 (Proportion). A commonly used principle in setting up a mathematical
model is that of proportionality. A function f said to be proportional (or directly
proportional to a function g if f = kg for some constant k. Recall that this means that
f(t) = kg(t) for all t in the domain of f . For example, the area of a circle is proportional
to the square of the radius (since A = πr2), the circumference of a circle is proportional
to the radius (since C = 2πr), the volume of a sphere is proportional to the cube of the
radius (since V = 4

3
πr3), and the surface area of a sphere is proportional to the square

of the radius (since S = 4πr2). Some other variants of proportionality which you are
likely to encounter in setting up mathematical models involving differential equations

include: f is inversely proportional to g if f(t) = k
1

g(t)
where k is a constant; f if

proportional to the square of g if f(t) = k(g(t))2 where k is a constant; f is proportional
to the square root of g if f(t) = k

√
g(t) where k is a constant; etc. A simple example

you may have seen is the ideal gas law PV = kT , which relates the pressure P , volume
V , and temperature T of an ideal gas (k is a constant). This equation can be read as
several different proportionalities: if P is constant, then V is directly proportional to T ;
if V is constant, then P is directly proportional to T ; if T is constant, then P and V
are inversely proportional.
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Table 1.1: Table of Derivatives and Integrals

f(t) f ′(t)
∫

f(t) dt

k 0 kt + c

tn ntn−1 tn+1

n + 1
+ c if n 6= −1

1/t ln |t|+ c

ekt kekt ekt

k
+ c

ln |t| 1/t

sin t cos t − cos t + c

cos t − sin t sin t + c

One of the main purposes of differential equations in applications is to serve as
a tool for the study of change in the physical world. In this context the variable t
denotes time and y(t) denotes the state of a physical system at time t. It is a fact
of life that humans are not very good in describing “what is”, but much better in
recognizing how and why things change. A reflection of this metaphysical principle is
the fact that many of the laws of physics are expressed in the mathematical language of
differential equations, which is another way of saying that one has a formula expressing
the way a quantity y changes, rather than giving an explicit description of y. As a
first illustration of this basic insight into human nature, we go back to the seventeenth
century when the Italian scientist Galileo Galilei (1564 – 1642) dropped stones from the
leaning tower of his home town of Pisa. The problem he attempted to solve was to
determine the height y(t) at all times t of a stone dropped at time t0 = 0 from height
y(0) = y0. After hundreds of experiments which consisted of measurements of time
and height when stones were dropped from the tower, he and his co-workers eventually
found experimentally that y(t) = −16t2 + y0. The most important aspect of Galileo’s
work in describing falling bodies (he also described sliding bodies, planetary orbits, and
found two of the laws of motion, among others) was not so much in the derivation of the
explicit formulas, but in his tremendous success in popularizing the general idea that
physical phenomena could be expressed in mathematical terms. The efforts of Galileo
and contemporaries like Johannes Kepler (1571 – 1630), who succeeded after thousands
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of years of purely observational astronomy to formulate three simple laws governing
planetary motion, paved the way for the creation of calculus by Gottfried Leibniz (1646
– 1716) and Isaac Newton (1642 – 1727). With calculus available, the derivation of
the formula y(t) = −16t2 + y0 can be done at the desk and with only one experiment
performed instead of spending years at a tower dropping stones. It is the first and
simplest differential equation of all; it’s derivation proceeds as follows.

Example 1.1.7 (Falling Bodies). If y(t) denotes the position (position is measured as
height above the ground) of a falling body at time t, then its derivative y′(t) denotes the
rate of change of position at time t (see Remark 1.1.5). In other words, y′(t) is the falling
body’s velocity at time t. Similarly, since y′′(t) denotes the rate of change of velocity, the
second derivative y′′(t) denotes the falling body’s acceleration at time t. If the bodies
considered are such that air resistance plays only a minor role, then we observe that they
hit the ground at the same time if they are dropped at the same time from the same
height. Thus, it is not unreasonable to consider the hypothesis that all of these falling
bodies experience the same acceleration and the simplest acceleration to postulate is
that of constant acceleration. Thus, we arrive at the second order differential equation

y′′(t) = −g (∗)

as our proposed mathematical model for describing the height y(t) of the stone, where
we choose the negative sign to indicate that the motion is downwards and not upwards,
and we assume that g does not depend on time. Equation (∗) is our first differential
equation describing how a state (namely y(t)) of a physical system (namely, the height
of the stone) changes with time. Moreover, the use of calculus makes the solution of (∗)
straightforward. Indeed, we see immediately (by integrating Equation (∗)) that

y′(t) = −gt + v0

for some constant v0. Since y′(0) = v0, the constant v0 denotes the initial velocity of the
body. Integrating once more we obtain

y(t) = −g

2
t2 + v0t + y0

for some constant y0. Clearly, if we just drop the body, then the initial velocity v0 = 0,
and since y(0) = y0, the constant y0 denotes the initial position (initial height) of the
body.

Before we can test our hypothesis against real world data, we have to find the constant
g (observe that v0 and y0 are known initial data). To do this we go to a window on the
second or third floor of a building, measure the height y0 of the window (in feet), drop
a stone (i.e., v0 = 0), and measure the time th (in seconds) it takes for the stone to hit
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the ground. Then we go back to our desk and assuming that our hypothesis was true,

we conclude that 0 = y(th) = −g

2
t2h + y0 or

g =
2y0

t2h
.

If your watch does not need a new battery and if your measurement of the height of the
window was not too bad, then the numerical result will be g = 32 ft/sec2 and we come
up with the following statement. If a falling body is such that air resistance plays only
a minor role, then the assumption y′′(t) = −g leads to the conclusion that the position
of such a falling body at time t is given by the formula

y(t) = −16t2 + v0t + y0, (∗∗)

where v0 denotes the initial velocity and y0 the initial height of the body. Now you can
leave your desk and test this formula against real world measurements. If the computed
results match with the observed ones, then you are in luck and you feel more confident
in your original hypothesis. If not, you know that your original hypothesis was wrong
and you have to go back to the drawing board. Since Galileo came up with the same
formula as we did based on his thousands of experiments, we know that we are lucky
this time and can stand in awe before our result.

There are many ways humans can describe the motion of a falling body. We can use
drawings, music, language, poetry, or y(t) = −16t2 + v0t+ y0. The latter may appear to
be the most complicated of the methods, but it is vastly superior to others because it is
predictive (that is, it predicts where you will find the stone at some future time after it
is dropped), and therefore it contains within itself the means for justifying its validity.
Simply compare actual and predicted positions. Moreover Equation (∗∗) is the first step
toward what is known as Newton’s second law of motion. If we assume that a body
moves in only one dimension (measured by y) and that the mass m remains constant,
the second law can be expressed as

y′′(t) =
F (t)

m
,

where F (t) is the force required to accelerate the body, and y′′(t) is the acceleration.
Despite its simplicity, this second order differential equation

force equals mass times acceleration

is a cornerstone for treating problems in the physical sciences.
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Example 1.1.8 (Population Growth). Let P (t) denote the population of a given
species (e.g., bacteria, rabbits, humans, etc.) at time t in an isolated environment,
which simply means that there is no immigration or emigration of the species so that
the only changes in population consist of birth and death. If we let b denote the birth
rate, that is, the number of births per unit population per unit time, and if we let d
denote the death rate, then the change in population between times t0 and t is given by

P (t)− P (t0) ≈ bP (t0)(t− t0)− dP (t0)(t− t0).

Note that each of the two terms on the right hand side is of the form

Rate (= b or d) × Population (= P (t0)) × Time (= t− t0).

The approximation symbol ≈ is used since the birth rate and death rates are not assumed
to be constant; in fact, they may very well depend on both time t and the current
population P . If we divide by t − t0 and let t → t0 we find that population growth in
an isolated community is governed by the differential equation

P ′(t) = k(t, P )P (t) (5)

where k(t, P ) = b(t, P )− d(t, P ) is the difference between the instantaneous birth rates
and death rates. If we assume that k(t, P ) is a constant k, then the differential equation
of population growth is P ′ = kP . This model of population growth is known as the
Malthusian model after the English economist Thomas Robert Malthus (1766 - 1834).
An inspection of Table 1.1 shows that P (t) = ekt is one solution of this equation since,
in this case P ′(t) = kekt = kP (t) for all t ∈ R. Similarly, P (t) = cekt is also a solution
for any c ∈ R. Since P (0) = c the meaning of the constant c is that it is the population
at time 0. We shall see in the next section that the solutions P (t) = cekt are all of the
solutions of the population equation P ′ = kP when k is a constant (known as the growth
rate of the population).

Continuing with the assumption that the growth rate k is constant, if k > 0 then
P (t) = P0e

kt (where P0 = P (0)) and the population grows without bound (recall that
limt→∞ ekt = ∞ if k > 0). This is unrealistic since populations of any species will be
limited by space and food, so we should try to modify it to obtain a differential equation
whose solutions are more in line with observed population data. If we can do so, then we
might also have some confidence that any predictions made for the future population will
also have some validity. One possible model that one can devise is to assume that the
environment will support a maximum population, call it M , and then we can assume
that the growth rate is proportional to how close the population is to the maximum
supportable population M . This can be expressed as an equation by

k(t, P ) = c(M − P ),
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where c is a proportionality constant. With this assumption, Equation (5) becomes

P ′ = c(M − P )P . (6)

This model of population growth was first introduced by the Belgian mathematician
Pierre Verhulst (1804 – 1849). Is this a better model for population growth than the
simple constant growth model P ′ = kP? At this point we can’t answer this question
since, unlike the constant growth model P ′ = kP , it is not so easy to guess what solutions
to Equation (6) look like. As it turns out, Equation (6) is one of the types of equations
which we can solve explicitly. We shall do so in Section 1.2.

Example 1.1.9. Consider a tank which contains 2000 gallons of water in which 10 lbs
of salt are dissolved. Suppose that a water-salt mixture containing 0.1 lb/gal enters the
tank at a rate of 2 gal/min, and assume that the well-stirred mixture flows from the tank
at the same rate of 2 gal/min. Find an initial value problem to describe the amount
y(t) of salt (expressed in pounds) which is present in the tank at all times t measured
in minutes after the initial time (t = 0) when 10 lbs are present.

I Solution. This is another example of where it is easier to describe how y(t) changes,
that is y′(t), than it is to directly describe y(t). Since the description of y′(t) will also
include y(t), a differential equation will result. Start by noticing that at time t0, y(t0)
lbs of salt are present and at a later time t, the amount of salt in the tank is given by

y(t) = y(t0) + A(t0, t)− S(t0, t)

where A(t0, t) is the amount of salt added between times t0 and t and S(t0, t) is the
amount removed between times t0 and t. To compute A(t0, t) note that

A(t0, t) = (Number of lbs/gal)·(Number of gal/min)·(Number of minutes from t0 to t)

so that
A(t0, t) = (0.1) · (2) · (t− t0).

By exactly the same reasoning,

S(t0, t) = (Number of lbs/gal)·(Number of gal/min)·(Number of minutes from t0 to t).

The number of gallons per minute flowing out of the tank is still 2 gal/min. However,
the number of pounds per gallon at any given time t will be given by y(t)/V (t), that
is divide the total number of pounds of salt in the tank at time t by the current total
volume V (t) of solution in the tank. In our case, V (t) is always 2000 gal (the flow in and
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the flow out balance), but y(t) is constantly changing and that is what we ultimately
will want to compute. If t is “close” to t0 then we can assume that y(t) ≈ y(t0) so that

S(t0, t) ≈
(

y(t0)

2000
lbs/gal

)
· (2gal/min) · (t− t0).

Combining all of these results gives

y(t)− y(t0) = A(t0, t)− S(t0, t)

≈ (0.2)(t− t0)− 2
y(t0)

2000
(t− t0).

Dividing this by t− t0 and letting t → t0 gives the equation

y′(t0) = 0.2− 1

1000
y(t0),

which we recognize as a differential equation. Note that it is the process of taking the
limit as t → t0 that allows us to return to an equation, rather than dealing only with
an approximation. This is a manifestation of what we mean when we indicate that it is
frequently easier to describe the way something changes, that is y′(t), rather than “what
is,” i.e. y(t) itself.

Since t0 is an arbitrary time, we can write the above equation as a differential equation

y′ = (0.2)− 1

1000
y (7)

and it becomes an initial value problem by specifying that we want y(0) = 10, that is,
there are 10 lbs of salt initially present in the tank.

The differential equation obtained is an example of what is known as a first order
linear differential equation. This is an important class of differential equations which
we will study in detail in Section 1.3. At that time we shall return to this example and
solve Equation (7). J

We will conclude this section by summarizing a slightly more general situation than
that covered by the previous numerical example.

Example 1.1.10 (Mixing problem). A tank initially holds V0 gal of brine(a water-
salt mixture) that contains a lb of salt. Another brine solution, containing c lb of salt
per gallon, is poured into the tank at a rate of r gal/min. The mixture is stirred to
maintain uniformity of concentration of salt at all parts of the tank, and the stirred
mixture flows out of the tank at the rate of R gal/min. Let y(t) denote the amount of
salt (measured in pounds) in the tank at time t. Find an initial value problem for y(t).



1.1. INTRODUCTION 13

I Solution. We are searching for an equation which describes the rate of change of the
amount of salt in the tank at time t, i.e., y′(t). The key observation is that this rate of
change is the difference between the rate at which salt is being added to the tank and
the rate at which the salt is being removed from the tank. In symbols:

y′(t) = Rate in− Rate out.

The rate that salt is being added is easy to compute. It is rc lb/min (c lb/gal × r
gal/min = rc lb/min). Note that this is the appropriate units for a rate, namely an
amount divided by a time. We still need to compute the rate at which salt is leaving
the tank. To do this we first need to know the number of gallons V (t) of brine in the
tank at time t. But this is just the initial volume plus the amount added up to time t
minus the amount removed up to time t. That is, V (t) = V0 + rt−Rt = V0 + (r −R)t.
Since y(t) denotes the amount of salt present in the tank at time t, the concentration of
salt at time t is y(t)/V (t) = y(t)/(V0 − (r − R)t), and the rate at which salt leaves the
tank is R× y(t)/V (t) = Ry(t)/(V0 + (r −R)t). Thus,

y′(t) = Rate in− Rate out

= rc− R

V0 + (r −R)t
y(t)

In the standard form of a linear differential equation, the equation for the rate of change
of y(t) is

y′(t) +
R

V0 + (r −R)t
y(t) = rc. (8)

This becomes an initial value problem by remembering that y(0) = a. As in the previous
example, this is a first order linear differential equation, and the solutions will be studied
in Section 1.3. J

Remark 1.1.11. You should definitely not memorize a formula like Equation (8). What
you should remember is how it was set up so that you can set up your own problems,
even if the circumstances are slightly different from the one given above. As one example
of a possible variation, you might encounter a situation in which the volume V (t) varies
in a nonlinear manner such as, for example, V (t) = 5 + 3e−2t.

Exercises

What is the order of each of the following differential equations?
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1. y2y′ = t3

2. y′y′′ = t3

3. t2y′ + ty = et

4. t2y′′ + ty′ + 3y = 0

5. 3y′ + 2y + y′′ = t2

Determine whether each of the given functions yj(t) is a solution of the corresponding
differential equation.

6. y′ = 2y: y1(t) = 2, y2(t) = t2, y3(t) = 3e2t, y4(t) = 2e3t.

7. y′ = 2y − 10: y1(t) = 5, y2(t) = 0, y3(t) = 5e2t, y4(t) = e2t + 5.

8. ty′ = y: y1(t) = 0, y2(t) = 3t, y3(t) = −t, y4(t) = t3.

9. y′′ + 4y = 0: y1(t) = e2t, y2(t) = sin 2t, y3(t) = cos(2t− 1), y4(t) = t2.

Verify that each of the given functions y(t) is a solution of the given differential equation
on the given interval.

10. y′ = 3y + 12 y(t) = ce3t − 4 for t ∈ (−∞,∞), c ∈ R

11. y′ = −y + 3t y(t) = ce−t + 3t− 3 for t ∈ (−∞,∞), c ∈ R

12. y′ = y2 − y y(t) = 1/(1− cet) as long as the denominator is not 0, c ∈ R

13. y′ = 2ty y(t) = cet2 for t ∈ (−∞,∞), c ∈ R

14. (t + 1)y′ + y = 0 y(t) = c(t + 1)−1 for t ∈ (−1,∞), c ∈ R

Find the general solution of each of the following differential equations by integration.
(See the solution of Equation (∗) in Example 1.1.7.)

15. y′ = t + 3

I Solution. y(t) =
∫

y′(t) dt =
∫

(t + 3) dt = t2

2 + 3t + c J

16. y′ = e2t − 1

17. y′ = te−t
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18. y′ =
t + 1

t

19. y′′ = 2t + 1

20. y′′ = 6 sin 3t

Find a solution to each of the following initial value problems. See Exercises 10 through
20 for the general solutions of these equations.

21. y′ = 3y + 12, y(0) = −2

I Solution. The general solution is y(t) = ce3t − 4 from Exercise 10. −2 = y(0) =
c− 4 =⇒ c = 2, so y(t) = 2e3t − 4. J

22. y′ = −y + 3t, y(0) = 0

23. y′ = y2 − y, y(0) = 1/2

24. (t + 1)y′ + y = 0, y(1) = −9

25. y′ = e2t − 1, y(0) = 4

26. y′ = te−t, y(0) = −1

27. y′′ = 6 sin 3t, y(0) = 1, y′(0) = −2

28. Radium decomposes at a rate proportional to the amount present. Express this propor-
tionality statement as a differential equation for R(t), the amount of radium present at
time t.

29. One kilogram of sugar dissolved in water is being transformed into dextrose at a rate
which is proportional to the amount not yet converted. Write a differential equation
satisfied by y(t), the amount of sugar present at time t. Make it an initial value problem
by giving y(0).

30. Bacteria are placed in a sugar solution at time t = 0. Assuming adequate food and space
for growth, the bacteria will grow at a rate proportional to the current population of
bacteria. Write a differential equation satisfied by the number P (t) of bacteria present
at time t.

31. Continuing with the last exercise, assume that the food source for the bacteria is ade-
quate, but that the colony is limited by space to a maximum population M . Write a
differential equation for the population P (t) which expresses the assumption that the
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growth rate of the bacteria is proportional to the product of the number of bacteria
currently present and the difference between M and the current population.

32. Newton’s law of cooling states that the rate at which a body cools (or heats up) is
proportional to the difference between the temperature of the body and the temperature
of the surrounding medium. If a bottle of your favorite beverage is at room temperature
(say 70◦ F) and it is then placed in a tub of ice at time t = 0, write an initial value
problem which is satisfied by the temperature T (t) of the bottle at time t.

33. On planet P the following experiment is performed. A small rock is dropped from a
height of 4 feet and it is observed that it hits the ground in 1 sec. Suppose another stone
is dropped from a height of 1000 feet. What will be the height after 5 sec.? How long
will it take for the stone to hit the ground.

1.2 Separable Equations

In this section and the next we shall illustrate how to obtain solutions for two particularly
important classes of first order differential equations. Both classes of equations are
described by means of restrictions on the type of function F (t, y) which appears on the
right hand side of a first order ordinary differential equation given in standard form

y′ = F (t, y). (1)

The simplest of the standard types of first-order equations are those with separable
variables; that is, equations of the form

y′ = h(t)g(y). (2)

Such equations are said to be separable equations. Thus, an equation y′ = F (t, y)
is a separable equation provided that the right hand side F (t, y) can be written a a
product of a function of t and a function of y. Most functions of two variables are not
the product of two one variable functions.

Example 1.2.1. Identify the separable equations from among the following list of dif-
ferential equations.

1. y′ = t2y2

2. y′ = t2 + y
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3. y′ =
t− y

t + y

4. y′ = y − y2

5. (2t− 1)(y2 − 1)y′ + t− y − 1 + ty = 0

6. y′ = f(t)

7. y′ = p(t)y

8. y′′ = ty

I Solution. Equations 1, 4, 5, 6, and 7 are separable. For example, in Equation 4,
h(t) = 1 and g(y) = y − y2, while, in Example 6, h(t) = f(t) and g(y) = 1. To see that
Equation 5 is separable, we bring all terms not containing y′ to the other side of the
equation; i.e.,

(2t− 1)(y2 − 1)y′ = −t + y + 1− ty = −t(1 + y) + 1 + y = (1 + y)(1− t).

Solving this equation for y′ gives

y′ =
(1− t)

(2t− 1)
· (1 + y)

(y2 − 1)
,

which is clearly separable. Equations 2 and 3 are not separable since neither right hand
side can be written as product of a function of t and a function of y. Equation 8 is not a
separable equation, even though the right hand side is ty = h(t)g(y), since it is a second
order equation and our definition of separable applies only to first order equations. J

Equation 6 in the above example, namely y′ = f(t) is particularly simple to solve.
This is precisely the differential equation that you spent half of your calculus course
understanding, both what it means and how to solve it for a number of common functions
f(t). Specifically, what we are looking for in this case is an antiderivative of the
function f(t), that is, a function y(t) such that y′(t) = f(t). Recall from calculus that if
f(t) is a continuous function on an interval I = (a, b), then the Fundamental Theorem
of Calculus guarantees that there is an antiderivative of f(t) on I. Let F (t) be any
antiderivative of f(t) on I. Then, if y(t) is any solution to y′ = f(t), it follows that
y′(t) = f(t) = F ′(t) for all t ∈ I. Since two functions which have the same derivatives
on an interval I differ by a constant c, we see that the general solution to y′ = f(t) is

y(t) = F (t) + c. (3)

There are a couple of important comments to make concerning Equation (3).
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1. The antiderivative of f exists on any interval I on which f is continuous. This
is the main point of the Fundamental Theorem of Calculus. Hence the equation
y′ = f(t) has a solution on any interval I on which the function f is continuous.

2. The constant c in Equation 3 can be determined by specifying y(t0) for some
t0 ∈ I. For example, the solution to y′ = 6t2, y(−1) = 3 is y(t) = 2t3 + c where
3 = y(−1) = 2(−1)3 + c so c = 5 and y(t) = 2t3 + 5.

3. The indefinite integral notation is frequently used for antiderivatives. Thus the
equation

y(t) =

∫
f(t) dt

just means that y(t) is an antiderivative of f(t). In this notation the constant c in
Equation 3 is implicit, although in some instances we may write out the constant
c explicitly for emphasis.

4. The formula y(t) =
∫

f(t) dt is valid even if the integral cannot be computed
in terms of elementary functions. In such a case, you simply leave your answer
expressed as an integral, and if numerical results are needed, you can use numerical
integration. Thus, the only way to describe the solution to the equation y′ = et2

is to express the answer as

y(t) =

∫
et2 dt.

The indefinite integral notation we have used here has the constant of integration
implicitly included. One can be more precise by using a definite integral notation,
as in the Fundamental Theorem of Calculus. With this notation,

y(t) =

∫ t

t0

eu2

du + c, y(t0) = c.

We now extend the solution of y′ = f(t) by antiderivatives to the case of a general
separable equation y′ = h(t)g(y), and we provide an algorithm for solving this equation.

Suppose y(t) is a solution on an interval I of Equation (2), which we write in the
form

1

g(y)
y′ = h(t),

and let Q(y) be an antiderivative of
1

g(y)
as a function of y, i.e., Q′(y) =

dQ

dy
=

1

g(y)
and let H be an antiderivative of h. It follows from the chain rule that

d

dt
Q(y(t)) = Q′(y(t))y′(t) =

1

g(y(t))
y′(t) = h(t) = H ′(t).
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This equation can be written as

d

dt
(Q(y(t))−H(t)) = 0.

Since a function with derivative equal to zero on an interval is a constant, it follows that
the solution y(t) is implicitly given by the formula

Q(y(t)) = H(t) + c. (4)

Conversely, assume that y(t) is any function which satisfies the implicit equation (4).
Differentiation of both sides of Equation (4) gives, (again by the chain rule),

h(t) = H ′(t) =
d

dt
(Q(y(t))) = Q′(y(t))y′(t) =

1

g(y(t))
y′(t).

Hence y(t) is a solution of Equation (2).

Note that the analysis in the previous two paragraphs is valid as long as h(t) and

q(y) =
1

g(y)
have antiderivatives. From the Fundamental Theorem of Calculus, we know

that a sufficient condition for this to occur is that h and q are continuous functions, and
q will be continuous as long as g is continuous and g(y) 6= 0. We can thus summarize
our results in the following theorem.

Theorem 1.2.2. Let g be continuous on the interval J = {y : c ≤ y ≤ d} and let h be
continuous on the interval I = {t : a ≤ t ≤ b}. Let H be an antiderivative of h on I, and

let Q be an antiderivative of
1

g
on an interval J ′ ⊆ J for which y0 ∈ J ′ and g(y0) 6= 0.

Then y(t) is a solution to the initial value problem

y′ = h(t)g(y); y(t0) = y0 (5)

if and only if y(t) is a solution of the implicit equation

Q(y(t)) = H(t) + c, (6)

where the constant c is chosen so that the initial condition is satisfied. Moreover, if y0

is a point for which g(y0) = 0, then the constant function y(t) ≡ y0 is a solution of
Equation (5).
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Proof. The only point not covered in the paragraphs preceding the theorem is the case
where g(y0) = 0. But if g(y0) = 0 and y(t) = y0 for all t, then

y′(t) = 0 = h(t)g(y0) = h(t)g(y(t))

for all t. Hence the constant function y(t) = y0 is a solution of Equation (5).

We summarize these observations in the following separable equation algorithm.

Algorithm 1.2.3 (Separable Equation). To solve a separable differential equation,
perform the following operations.

1. First put the equation in the form

(I) y′ =
dy

dt
= h(t)g(y),

if it is not already in that form.

2. Then we separate variables in a form convenient for integration, i.e. we formally
write

(II)
1

g(y)
dy = h(t) dt.

Equation (II) is known as the “differential” form of Equation (I).

3. Next we integrate both sides of Equation (II) (the left side with respect to y and
the right side with respect to t) and introduce a constant c, due to the fact that
antiderivatives coincide up to a constant. This yields

(III)

∫
1

g(y)
dy =

∫
h(t) dt + c.

4. Now evaluate the antiderivatives and solve the resulting implicit equation for y as
a function of t, if you can (this won’t always be possible).

5. Additionally, the numbers y0 with g(y0) = 0 will give constant solutions y(t) ≡ y0

that will not be seen from the general algorithm.

Example 1.2.4. Find the solutions of the differential equation y′ =
t

y
.
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I Solution. We first rewrite the equation in the form

(I)
dy

dt
=

t

y

and then in differential form as

(II) y dy = t dt.

Integration of both sides of Equation (II) gives

(III)

∫
y dy =

∫
t dt + c

or
1

2
y2 =

1

2
t2 + c.

Multiplying by 2 we get y2 = t2 + c, where we write c instead of 2c since twice an
arbitrary constant c is still an arbitrary constant. Thus, if a function y(t) satisfies the
differential equation yy′ = t, then

y(t) = ±
√

t2 + c (∗)

for some constant c ∈ R. On the other hand, since all functions of the form (∗) solve
yy′ = t, it follows that the solutions are given by (∗). Figure 1.1 shows several of the
curves y2 = t2 + c which implicitly define the solutions of yy′ = t. Note that each of
the curves in the upper half plane is the graph of y(t) =

√
t2 + c for some c, while each

curve in the lower half plane is the graph of y(t) = −√t2 + c. None of the solutions are
defined on the t-axis, i.e., when y = 0. Notice that each of the solutions is an arm of
the hyperbola y2 − t2 = c. J

Example 1.2.5. Solve the differential equation y′ = ky where k ∈ R is a constant.

I Solution. First note that the constant function y = 0 is one solution. When y 6= 0

we rewrite the equation in the form
y′

y
= k, which in differential form becomes

1

y
dy = k dt.

Integrating both sides of this equation (the left side with respect to y and right side with
respect to t) gives

ln |y| = kt + c. (†)
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Figure 1.1: The solutions of yy′ = t are the level curves of y2 = t2 + c. The constant c
is labeled on each curve.

Applying the exponential function to both sides of (†), and recalling that eln x = x for
all x > 0, we see that

|y| = eln|y| = ekt+c = ecekt,

so that
y = ±ecekt. (‡)

Since c is an arbitrary constant, ec is an arbitrary positive constant, so ±ec is an arbitrary
nonzero constant, which (as usual) we will continue to denote by c. Thus we can rewrite
Equation (‡) as

y = cekt. (7)

Letting c = 0 will give the solution y = 0 of y′ = ky. Thus, as c varies over R, Equation
(7) describes all solutions of the differential equation y′ = ky. Note that c = y(0) is the
initial value of y. Hence, the solution of the initial value problem y′ = ky, y(0) = y0 is

y(t) = y0e
kt. (8)

Figure 1.2 illustrates a few solution curves for this equation. J

A concrete example of the equation y′ = ky is given by radioactive decay.



1.2. SEPARABLE EQUATIONS 23

0

0

k > 0; C > 0 

k > 0; C < 0 

0

0

k < 0; C > 0 

k < 0; C > 0 

Figure 1.2: Some solutions of y′ = ky for various y(0) = c. The left picture is for k > 0,
the right for k < 0.

Example 1.2.6 (Radioactive Decay). Suppose that a quantity of a radioactive sub-
stance originally weighing y0 grams decomposes at a rate proportional to the amount
present and that half the quantity is left after a years (a is the so-called half-life of the
substance). Find the amount y(t) of the substance remaining after t years. In particular,
find the number of years it takes such that 1/n-th of the original quantity is left.

I Solution. Since the rate of change y′(t) is proportional to the amount y(t) present,
we are led to the initial value problem

y′ = −ky , y(0) = y0,

with solution y(t) = y0e
−kt, where k is a positive constant yet to be determined (the

minus sign reflects the observation that y(t) is decreasing as t is increasing). Since

y(a) =
y0

2
= e−ka, it follows that k =

ln 2

a
. Thus,

y(t) = y02
− t

a .

This yields easily t = a ln n
ln 2

as the answer to the last question by solving y02
− t

a = y0

n
for

t. J

Example 1.2.7. Solve the differential equation (2t− 1)(y2 − 1)y′ + t− y − 1 + ty = 0.

I Solution. To separate the variables in this equation we bring all terms not containing
y′ to the right hand side of the equation, so that

(2t− 1)(y2 − 1)y′ = −t + y + 1− ty = −t(1 + y) + 1 + y = (1 + y)(1− t).
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This variables can now be separated, yielding

y2 − 1

1 + y
y′ =

1− t

2t− 1
.

Before further simplification, observe that the constant function y(t) = −1 is a solution
of the original problem. If we now consider a solution other than y(t) = −1, the
equation can be written in differential form (after expanding the right hand side in a
partial fraction) as

(y − 1) dy =

(
−1

2
+

1

2

1

2t− 1

)
dt.

Integrating both sides of the equation gives, 1
2
y2 − y = − t

2
+ 1

4
ln |2t − 1| + c. Solving

for y (and renaming the constant several times) we obtain the general solution as either
y(t) = −1 or

y(t) = 1±
√

c− t +
1

2
ln |2t− 1|.

J

Example 1.2.8. Solve the Verhulst population equation p′ = r(m− p)p (Equation (6))
where r and m are positive constants.

I Solution. Since
1

(m− p)p
=

1

m

(
1

p
+

1

m− p

)
,

the equation can be written with separated variables in differential form as

1

(m− p)p
dp =

1

m

(
1

p
+

1

m− p

)
dp = r dt,

and the differential form is integrated to give

1

m
(ln |p| − ln |m− p|) = rt + c,

where c is an arbitrary constant of integration. Multiplying by m and renaming mc as
c (to denote an arbitrary constant) we get

ln

∣∣∣∣
p

m− p

∣∣∣∣ = rmt + c,

and applying the exponential function to both sides of the equation gives
∣∣∣∣

p

m− p

∣∣∣∣ = ermt+c = ecermt,
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or
p

m− p
= ±ecermt.

Since c is an arbitrary real constant, it follows that ±ec is an arbitrary real nonzero
constant, which we will again denote by c. Thus, we see that p satisfies the equation

p

m− p
= cermt.

Solving this equation for p, we find that the general solution of the Verhulst population
equation (6) is given by

p(t) =
cmermt

1 + cermt
. (9)

Multiplying the numerator and denominator by e−rmt, we may rewrite Equation (9) in
the equivalent form

p(t) =
cm

c + e−rmt
. (10)

Some observations concerning this equation:

1. The constant solution p(t) = 0 is obtained by setting c = 0 in Equation (10), even
though c = 0 did not occur in our derivation.

2. The constant solution p(t) = m does not occur for any choice of c, so this solution
is an extra one.

3. Note that

lim
t→∞

p(t) =
cm

c
= m,

independent of c 6= 0. What this means is that if we start with a positive pop-
ulation, then over time, the population will approach a maximum (sustainable)
population m.

4. Figure 1.2 shows the solution of the Verhulst population equation y′ = y(3 − y)
with initial population y(0) = 1. You can see from the graph that y(t) approaches
the limiting population 3 as t grows. It appears that y(t) actually equals 3 after
some point, but this is not true. It is simply a reflection of the fact that y(t) and
3 are so close together that the lines on a graph cannot distinguish them.

J
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Figure 1.3: Solution of the population problem y′ = y(3− y), y(0) = 1

Exercises

In each of the following problems determine whether or not the equation is separable. Do not
solve the equations!!

1. y′ = 2y(5− y)

2. t2y′ = 1− 2ty

3. yy′ = 1− y

4.
y′

y
= y − t

5. ty′ = y − 2ty

6. (t2 + 3y2)y′ = −2ty

7. y′ = ty2 − y2 + t− 1
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8. y′ = t2 + y2

9. ety′ = y3 − y

Find the general solution of each of the following differential equations. If an initial condi-
tion is given, find the particular solution which satisfies this initial condition.

10. yy′ = t, y(2) = −1.

I Solution. The variables are already separated, so integrate both sides of the equation

to get
1
2
y2 =

1
2
t2 + c, which we can rewrite as y2 − t2 = k where k ∈ R is a constant.

Since y(2) = −1, it follows that k = (−1)2 − 22 = −3 so the solution is given implicitly
by the equation y2 − t2 = −3 or we can solve explicitly to get y = −√t2 − 3, where the
negative square root is used since y(2) = −1 < 0. J

11. (1− y2)− tyy′ = 0

I Solution. It is first necessary to separate the variables by rewriting the equation as
tyy′ = (1− y2). This gives an equation

y

1− y2
y′ =

1
t
,

or in the language of differentials:

y

1− y2
dy =

1
t
dt.

Integrating both sides of this equation gives

−1
2

ln |1− y2| = ln |t|+ c.

Multiplying by −2, and taking the exponential of both sides gives an equation |1−y2| =
±kt−2 where k is a positive constant. By considering an arbitrary constant (which we
will call c), this can be written as an implicit equation t2(1− y2) = c. J

12. y3y′ = t

13. y4y′ = t + 2

14. y′ = ty2

15. y′ = t2y2

16. y′ + (tan t)y = tan t, −π
2 < t < π

2
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17. y′ = tmyn, where m and n are positive integers, n 6= 1.

18. y′ = 4y − y2

19. yy′ = y2 + 1

20. y′ = y2 + 1

21. tyy′ + t2 + 1 = 0

22. y + 1 + (y − 1)(1 + t2)y′ = 0

23. 2yy′ = et

24. (1− t)y′ = y2

25. ty − (t + 2)y′ = 0

Solve the following initial value problems:

26. dy
dt − y = y2, y(0) = 0.

27. y′ = 4ty2, y(1) = 0

28. dy
dx = xy+2y

x , y(1) = e

29. y′ + 2yt = 0, y(0) = 4

30. y′ = cot y
t , y(1) = π

4

31. (u2+1)
y

dy
du = u, y(0) = 2

In the following problem you may assume Newton’s Law of Heating and cooling. (See
Exercise 32 in Section 1.1.)

32. A turkey, which has an initial temperature of 40◦ (Fahrenheit), is placed into a 350◦ oven.
After one hour the temperature of the turkey is 120◦. Use Newton’s Law of heating and
cooling to find (1) the temperature of the turkey after 2 hours, and (2) how many hours
it takes for the temperature of the turkey to reach 250◦.

I Solution. Recall that Newton’s Law of heating and cooling states: The change in the
temperature of an object is proportional to the difference between the temperature of the
object and the temperature of the surrounding medium. Thus, if T (t) is the temperature
of the object at time t and Ts is the temperature of the surrounding medium then

T ′(t) = r(T − Ts),
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for some proportionality constant r. Applying this to the problem at hand, the oven is
the surrounding medium and has a constant temperature of 350◦. Thus Ts = 350 and
the differential equation that describes T is

T ′ = r(T − 350).

This equation is separable and the solution is

T (t) = 350 + kert,

where k is a constant. The initial temperature of the turkey is 40◦. Thus, 40 = T (0) =
350 + k and this implies k = −310. Therefore T (t) = 350− 310ert. To determine r note
that we are given T (1) = 120. This implies 120 = T (1) = 350− 310er and solving for r
gives r = ln 23

31 ≈ −.298. To answer question (1), compute T (2) = 350−310e2r ≈ 179.35◦.
To answer question (2), we want to find t so that T (t) = 250, i.e, solve 250 = T (t) =
350− 310ert. Solving this gives rt = ln 10

31 so t ≈ 3.79 hours. J

33. A cup of coffee, brewed at 180◦ (Fahrenheit), is brought into a car with inside tempera-
ture 70◦. After 3 minutes the coffee cools to 140◦. What is the temperature 2 minutes
later?

34. The temperature outside a house is 90◦ and inside it is kept at 65◦. A thermometer is
brought from the outside reading 90◦ and after 10 minutes it reads 85◦. How long will
it take to read 75◦? What will the thermometer read after an hour?

35. A cold can of soda is taken out of a refrigerator with a temperature of 40◦ and left to
stand on the countertop where the temperature is 70◦. After 2 hours the temperature of
the can is 60◦. What was the temperature of the can 1 hour after it was removed from
the refrigerator?

36. A large cup hot of coffee is bought from a local drive through restaurant and placed
in a cup holder in a vehicle. The inside temperature of the vehicle is 70◦ Fahrenheit.
After 5 minutes the driver spills the coffee on himself a receives a severe burn. Doctors
determine that to receive a burn of this severity, the temperature of the coffee must have
been about 150◦. If the temperature of the coffee was 142◦ 6 minutes after it was sold
what was the temperature at which the restaurant served it.

37. A student wishes to have some friends over to watch a football game. She wants to have
cold beer ready to drink when her friends arrive at 4 p.m. According to her tastes the
temperature of beer can be served when its temperature is 50◦. Her experience shows
that when she places 80◦ beer in the refrigerator that is kept at a constant temperature
of 40◦ it cools to 60◦ in an hour. By what time should she put the beer in the refrigerator
to ensure that it will be ready for her friends?
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1.3 Linear First Order Equations

A linear first order differential equation is an equation of the form

y′ + p(t)y = f(t). (1)

The primary objects of study in the current section are the linear first order differential
equations where the coefficient function p and the forcing function f are continuous
functions from an interval I into R. In some exercises and in some later sections of the
text, we shall have occasion to consider linear first order differential equations in which
the forcing function f is not necessarily continuous, but for now we restrict ourselves to
the case where both p and f are continuous. Equation (1) is homogeneous if no forcing
function is present; i.e., if f(t) = 0 for all t ∈ I; the equation is inhomogeneous if the
forcing function f is not 0, i.e., if f(t) 6= 0 for some t ∈ I. Equation (1) is constant
coefficient provided the coefficient function p is a constant function, i.e., p(t) = p0 ∈ R
for all t ∈ I.

Example 1.3.1. Consider the following list of first order differential equations.

1. y′ = y − t

2. y′ + ty = 0

3. y′ = f(t)

4. y′ + y2 = t

5. ty′ + y = t2

6. y′ − 3
t
y = t4

7. y′ = 7y

All of these equations except for y′ + y2 = t are linear. The presence of the y2 term
prevents this equation from being linear. The second and the last equation are homo-
geneous, while the first, third, fifth and sixth equations are inhomogeneous. The first,
third, and last equation are constant coefficient, with p(t) = −1, p(t) = 0, and p(t) = −7
respectively. For the fifth and sixth equations, the interval I on which the coefficient
function p(t) and forcing function f(t) are continuous can be either (−∞, 0) or (0,∞).
In both of these cases, p(t) = 1/t or p(t) = −3/t fails to be continuous at t = 0. For the
first, second, and last equations, the interval I is all of R, while for the third equation
I is any interval on which the forcing function f(t) is continuous. Note that only the
second, third and last equations are separable.
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Remark 1.3.2. Notice that Equation (1), which is the traditional way to express a
linear first order differential equation, is not in the standard form of Equation (1). In
standard form, Equation (1) becomes

y′ = −p(t)y + f(t), (2)

so that the function F (t, y) of Equation (1) is F (t, y) = −p(t)y + f(t). The standard
form of the equation is useful for expressing the hypotheses which will be used in the
existence and uniqueness results of Section 1.5, while the form given by Equation (1) is
particularly useful for describing the solution algorithm to be presented in this section.
From Equation (2) one sees that if a first order linear equation is homogeneous (i.e.
f(t) = 0 for all t), then the equation is separable (the right hand side is −p(t)y) and
the technique of the previous section applies, while if neither p(t) nor f(t) is the zero
function, then Equation (2) is not separable, and hence the technique of the previous
section is not applicable.

We will describe an algorithm for finding all solutions to the linear differential equa-
tion

y′ + p(t)y = f(t)

which is based on first knowing how to solve homogeneous linear equations (i.e., f(t) = 0
for all t). But, as we observed above, the homogeneous linear equation is separable, and
hence we know how to solve it.

Homogeneous Linear Equation: y′ = h(t)y

Since the equation y′ = h(t)y is separable, we first separate the variables and write the
equation in differential form:

1

y
dy = h(t) dt. (∗)

If H(t) =
∫

h(t) dt is any antiderivative of h(t), then integration of both sides of Equation
(∗) gives

ln |y| = H(t) + c

where c is a constant of integration. Applying the exponential function to both sides of
this equation gives

|y| = eln|y| = eH(t)+c = eceH(t).

Since c is an arbitrary constant, ec is an arbitrary positive constant. Then y = ± |y| =
±eceH(t) where ±ec will be an arbitrary nonzero constant, which, as usual we will con-
tinue to denote by c. Since the constant function y(t) = 0 is also a solution to (∗), and
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we conclude that, if H(t) =
∫

h(t) dt, then the general solution to y′ = h(t)y is

y(t) = ceH(t) (3)

where c denotes any real number.

Example 1.3.3. Solve the equation y′ =
3

t
y on the interval (0,∞).

I Solution. In this case h(t) =
3

t
so that an antiderivative on the interval (0,∞) is

H(t) =

∫
3

t
dt = 3 ln t = ln(t3).

Hence then general solution of y′ =
3

t
y is

y(t) = ceH(t) = celn(t3) = ct3.

J

We can now use the homogeneous case to transform an arbitrary first order linear
differential equation into an equation which can be solved by antidifferentiation. What
results is an algorithmic procedure for determining all solutions to the linear first order
equation

y′ + p(t)y = f(t). (†)
The key observation is that the left hand side of this equation looks almost like the
derivative of a product. Recall that if z(t) = µ(t)y(t), then

z′(t) = µ(t)y′(t) + µ′(t)y(t). (‡)

Comparing this with Equation (†), we see that what is missing is the coefficient µ(t) in
front of y′(t). If we multiply Equation (†) by µ(t), we get an equation

µ(t)y′(t) + µ(t)p(t)y(t) = µ(t)f(t).

The left hand side of this equation agrees with the right hand side of (‡) provided the
multiplier function µ(t) is chosen so that the coefficients of y(t) agree in both equations.
That is, choose µ(t), if possible, so that

µ′(t) = p(t)µ(t).
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But this is a homogeneous linear first order differential equation, so by Equation (3) we
may take µ(t) = eP (t) where P (t) is any antiderivative of p(t) on the given interval I.
The function µ(t) is known an an integrating factor for the equation y′+p(t)y = f(t),
since after multiplication by µ(t), the left hand side becomes a derivative (µ(t)y)′ and
the equation itself becomes

(µ(t)y)′ = µ(t)f(t),

which is an equation that can be solved by integration. Recalling that
∫

g′(t) dt = g(t)+c,
we see that integrating the above equation gives

µ(t)y(t) =

∫
µ(t)f(t) dt.

Putting together all of our steps, we arrive at the following theorem describing all
the solutions of a first order linear differential equation. The proof is nothing more than
an explicit codification of the steps delineated above into an algorithm to follow.

Theorem 1.3.4. Let p(t), f(t) be continuous functions on an interval I. A function
y(t) is a solution of of the first order linear differential equation y′ + p(t)y = f(t)
(Equation (1)) on I if and only if

y(t) = ce−P (t) + e−P (t)

∫
eP (t)f(t) dt (4)

for all t ∈ I, where c ∈ R, and P (t) is some antiderivative of p(t) on the interval I.

Proof. Let y(t) = ce−P (t)+e−P (t)
∫

eP (t)f(t) dt. Since P ′(t) = p(t) and
d

dt

∫
eP (t)f(t) dt =

eP (t)f(t) (this is what it means to be an antiderivative of eP (t)f(t)) we obtain

y′(t) = −cp(t)e−P (t) − p(t)e−P (t)

∫
eP (t)f(t) dt + e−P (t)eP (t)f(t)

= −p(t)

(
ce−P (t) + e−P (t)

∫
eP (t)f(t) dt

)
+ f(t)

= −p(t)y(t) + f(t)

for all t ∈ I. This shows that every function of the form (4) is a solution of Equation
(1). Next we show that any solution of Equation (1) has a representation in the form
of Equation (4). This is essentially what we have already done in the paragraphs prior
to the statement of the theorem. What we shall do now is summarize the steps to be
taken to implement this algorithm. Let y(t) be a solution of Equation (1) on the interval
I. Then we perform the following step-by-step procedure, which will be crucial when
dealing with concrete examples.
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Algorithm 1.3.5 (Solution of First Order Linear Equations). Follow the following
procedure to put any solution y(t) of Equation (1) into the form given by Equation (4).

1. Compute an antiderivative P (t) =
∫

p(t) dt and multiply the equation y′+p(t)y =
f(t) by the integrating factor µ(t) = eP (t). This yields

(I) eP (t)y′(t) + p(t)eP (t)y(t) = eP (t)f(t).

2. The function µ(t) = eP (t) is an integrating factor (see the paragraphs prior to the
theorem) which means that the left hand side of Equation (I) is a perfect derivative,
namely (µ(t)y(t))′. Hence, Equation (I) becomes

(II)
d

dt
(µ(t)y(t)) = eP (t)f(t).

3. Now we take an antiderivative of both sides and observe that they must coincide
up to a constant c ∈ R. This yields

(III) eP (t)y(t) =

∫
eP (t)f(t) dt + c.

4. Finally, multiply by µ(t)−1 = e−P (t) to get that y(t) is of the form

(IV) y(t) = ce−P (t) + e−P (t)

∫
eP (t)f(t) dt.

This shows that any solution of Equation (1) is of the form given by Equation (4),
and moreover, the steps of Algorithm 1.3.5 tell one precisely how to find this form.

Remark 1.3.6. You should not memorize formula (4). What you should remember
instead is the sequence of steps in Algorithm 1.3.5, and apply these steps to each con-
cretely presented linear first order differential equation (given in the form of Equation
(1)). To summarize the algorithm in words:

1. Find an integrating factor µ(t).

2. Multiply the equation by µ(t), insuring that the left hand side of the equation is
a perfect derivative.

3. Integrate both sides of the resulting equation.

4. Divide by µ(t) to give the solution y(t).
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Example 1.3.7. Find all solutions of the differential equation t2y′ + ty = 1 on the
interval (0,∞).

I Solution. Clearly, you could bring the equation into the standard form of Equation
(1), that is

y′ +
1

t
y =

1

t2
,

identify p(t) =
1

t
and f(t) =

1

t2
, compute an antiderivative P (t) = ln(t) of p(t) on

the interval (0,∞), plug everything into formula (4), and then compute the resulting
integral. This is a completely valid procedure if you are good in memorizing formulas.
Since we are not good at memorization, we prefer go through the steps of Algorithm
1.3.5 explicitly.

First bring the differential equation into the standard form

y′ +
1

t
y =

1

t2
.

Then compute an antiderivative P (t) of the function in front of y and multiply the
equation by the integrating factor µ(t) = eP (t). In our example, we take P (t) = ln(t)
and multiply the equation by µ(t) = eP (t) = eln(t) = t (we could also take P (t) = ln(t)+c
for any constant c, but the computations are easiest if we set the constant equal to zero).
This yields

(I) ty′ + y =
1

t
.

Next observe that the left side of this equality is equal to
d

dt
(ty) (see Step 2 of Algorithm

1.3.5). Thus,

(II)
d

dt
(ty) =

1

t
.

Now take antiderivatives of both sides and observe that they must coincide up to a
constant c ∈ R. Thus,

(III) ty = ln(t) + c, or

(IV) y(t) = c
1

t
+

1

t
ln(t).

Observe that yh(t) = c
1

t
(c ∈ R) is the general solution of the homogeneous equation

t2y′ + ty = 0, and that yp(t) =
1

t
ln(t) is a particular solution of t2y′ + ty = 1. Thus, all



36 CHAPTER 1. FIRST ORDER DIFFERENTIAL EQUATIONS

solutions are given by y(t) = yh(t)+ yp(t). As the following remark shows, this holds for
all linear first order differential equations. J
Remark 1.3.8. Analyzing the general solution y(t) = ce−P (t) + e−P (t)

∫
eP (s)f(s) ds, we

see that this general solution is the sum of two parts. Namely, yh(t) = ce−P (t) which is
the general solution of the homogeneous problem

y′ + p(t)y = 0,

and yp(t) = e−P (t)
∫

eP (s)f(s) ds which is a particular, i.e., a single, solution of the
inhomogeneous problem

y′ + p(t)y = f(t).

The homogeneous equation y′ + p(t)y = 0 is known as the associated homogeneous
equation of the linear equation y′ + p(t)y = f(t). That is, the right hand side of the
general linear equation is replaced by 0 to get the associated homogeneous equation. The
relationship between the general solution yg(t) of y′+ p(t)y = f(t), a particular solution
yp(t) of this equation, and the general solution yh(t) of the associated homogeneous
equation y′ + p(t)y = 0, is usually expressed as

yg(t) = yh(t) + yp(t). (5)

What this means is that every solution to y′ + p(t)y = f(t) can be obtained by starting
with a single solution yp(t) and adding to that an appropriate solution of y′+ p(t)y = 0.
The key observation is the following. Suppose that y1(t) and y2(t) are any two solutions
of y′ + p(t)y = f(t). Then

(y2 − y1)
′(t) + p(t)(y2 − y1)(t) = (y′2(t) + p(t)y2(t))− (y′1(t) + p(t)y1(t))

= f(t)− f(t)

= 0,

so that y2(t)− y1(t) is a solution of the associated homogeneous equation y′+ p(t)y = 0,
and y2(t) = y1(t)+(y2(t)−y1(t)). Therefore, given a solution y1(t) of y′+p(t)y = f(t), any
other solution y2(t) is obtained from y1(t) by adding a solution (specifically y2(t)−y1(t))
of the associated homogeneous equation y′ + p(t)y = 0.

This observation is a general property of solutions of linear equations, whether they
are differential equations of first order (as above), differential equations of higher order
(to be studied in Chapter 3), linear algebraic equations, or linear equations L(y) = f
in any vector space, which is the mathematical concept created to handle the features
common to problems of linearity.. Thus, the general solution set S = yg of any linear
equation L(y) = f is of the form

yg = S = L−1(0) + yp = yh + yp,

where L(yp) = f and L−1(0) = yh = {y : L(y) = 0}.
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Corollary 1.3.9. Let p(t), f(t) be continuous on an interval I, t0 ∈ I, and y0 ∈ R.
Then the unique solution of the initial value problem

y′ + p(t)y = f(t), y(t0) = y0 (6)

is given by

y(t) = y0e
−P (t) + e−P (t)

∫ t

t0

eP (u)f(u) du, (7)

where P (t) =
∫ t

t0
p(u) du.

Proof. Since P (t) is an antiderivative of p(t), we see that y(t) has the form of Equation
(4), and hence Theorem 1.3.4 guarantees that y(t) is a solution of the linear first order
equation y′ + p(t)y = f(t). Moreover, P (t0) =

∫ t0
t0

p(u) du = 0, and

y(t0) = y0e
−P (t0) + e−P (t0)

∫ t0

t0

eP (u)f(u) du = y0,

so that y(t) is a solution of the initial value problem (6). Suppose that y1(t) is any
other solution of Equation (6). Then y2(t) := y(t)− y1(t) is a solution of the associated
homogeneous equation

y′ + p(t)y = 0, y(t0) = 0.

It follows from Equation (3) that y2(t) = ce−P̃ (t) for some constant c ∈ R and an

antiderivative P̃ (t) of p(t). Since y2(t0) = 0 and e−P̃ (t0) 6= 0, it follows that c = 0. Thus,
y(t) − y1(t) = y2(t) = 0 for all t ∈ I. This shows that y1(t) = y(t) for all t ∈ I, and
hence y(t) is the only solution of Equation (6).

Example 1.3.10. Find the solution of the initial value problem y′ = −ty+t, y(2) = 7
on R.

I Solution. Again, you could bring the differential equation into the standard form

y′ + ty = t,

identify p(t) = t and f(t) = t, compute the antiderivative

P (t) =

∫ t

2

u du =
t2

2
− 2
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of p(t), plug everything into the formula (4), and then compute the integral in (7) to get

y(t) = y0e
−P (t) + e−P (t)

∫ t

t0

eP (u)f(u) du

= 7e
−t2

2
+2 + e

−t2

2
+2

∫ t

2

ue
u2

2
−2 du.

However, we again prefer to follow the steps of the algorithm. First we proceed as
in Example 1.3.7 and find the general solution of

y′ + ty = t.

To do so we multiply the equation by the integrating factor et2/2 and obtain

et2/2y′ + tet2/2y = tet2/2.

Since the left side is the derivative of et2/2y, this reduces to

d

dt

(
et2/2y

)
= tet2/2.

Since et2/2 is the antiderivative of tet2/2, it follows that

et2/2y(t) = et2/2 + c, or y(t) = ce−t2/2 + 1.

Finally, we determine the constant c such that y(2) = 7. This yields 7 = ce−2 + 1 or
c = 6e2. Thus, the solution is given by

y(t) = 6e−
t2

2
+2 + 1.

J
Corollary 1.3.11. Let f(t) be a continuous function on an interval I and p ∈ R. Then
all solution of the first order, inhomogeneous, linear, constant coefficient differential
equation

y′ + py = f(t)

are given by

y(t) = ce−pt +

∫
e−p(t−u)f(u) du.

Moreover, for any t0, y0 ∈ R, the unique solution of the initial value problem

y′ + py = f(t), y(t0) = y0

is given by

y(t) = y0e
−p(t−t0) +

∫ t

t0

e−p(t−u)f(u) du.
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Proof. The statements follow immediately from Corollary 1.3.9.

Example 1.3.12. Find the solution of the initial value problem y′ = −y +4, y(0) = 8
on R.

I Solution. We write the equation as y′ + y = 4 and apply Corollary 1.3.11. This
yields

y(t) = 8e−t +

∫ t

0

4e−(t−u) ds = 8e−t + 4e−t

∫ t

0

eu du = 8e−t + 4e−t
[
et − 1

]
= 4e−t + 4.

J

Example 1.3.13. Find the solution of the initial value problem y′+y = 1
1−t

, y(0) = 0
on the interval (−∞, 1).

I Solution. By Corollary 1.3.11, y(t) = e−t
∫ t

0
1

1−u
eu du. Since the function

1

1− u
eu is

not integrable in closed form on the interval (−∞, 1), we might be tempted to stop at
this point and say that we have solved the equation. While this is a legitimate statement,
the present representation of the solution is of little practical use and a further detailed
study is necessary if you are “really” interested in the solution. Any further analysis
(numerical calculations, qualitative analysis, etc.) would be based on what type of
information you are attempting to ascertain about the solution. J

We can use our analysis of first order linear differential equations to solve the mixing
problem set up in Example 1.1.9. For convenience we restate the problem.

Example 1.3.14. Consider a tank that contains 2000 gallons of water in which 10 lbs
of salt are dissolved. Suppose that a water-salt mixture containing 0.1 lb/gal enters the
tank at a rate of 2 gal/min, and assume that the well-stirred mixture flows from the
tank at the same rate of 2 gal/min. Find the amount y(t) of salt (expressed in pounds)
which is present in the tank at all times t measured in minutes.

I Solution. In Example 1.1.9, it was determined that y(t) satisfies the initial value
problem

y′ + (0.001)y = 0.2, y(0) = 10. (8)

This equation has an integrating factor µ(t) = e(0.001)t, so multiplying the equation by
µ(t) gives (

e(0.001)ty
)′

= (0.2)e(0.001)t.
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Integration of this equation gives e(0.001)ty = 200e(0.001)t + c, or after solving for y,

y(t) = 200 + ce−(0.001)t.

Setting t = 0 gives 10 = y(0) = 200 + c so that c = −190 and the final answer is

y(t) = 200− 190e−(0.001)t.

J

Next we consider a numerical example of the general mixing problem considered in
Example 1.1.10

Example 1.3.15. A large tank contains 100 gal of brine in which 50 lb of salt is
dissolved. Brine containing 2 lb of salt per gallon runs into the tank at the rate of
6 gal/min. The mixture, which is kept uniform by stirring, runs out of the tank at the
rate of 4 gal/min. Find the amount of salt in the tank at the end of t minutes.

I Solution. Let y(t) denote the number of pounds of salt in the tank after t min-
utes; note that the tank will contain 100 + (6 − 4)t gallons of brine at this time. The
concentration (number of pounds per gallon) will then be

y(t)

100 + 2t
lb/gal.

Instead of trying to find the amount (in pounds) of salt y(t) at time t directly, we will
follow the analysis of Example 1.1.10 and determine the rate of change of y(t), i.e., y′(t).
But the the change of y(t) at time t is governed by the principle

y′(t) = input rate − output rate,

where all three rates have to be measured in the same unit, which we take to be lb/min.
Thus,

input rate = 2 lb/gal × 6 gal/min = 12 lb/min,

output rate =
y(t)

100 + 2t
lb/gal × 4 gal/min =

4y(t)

100 + 2t
lb/min.

This yields the initial value problem

y′(t) = 12− 4y(t)

100 + 2t
, y(0) = 50

which can be solved as in the previous examples. The solution is seen to be

y(t) = 2(100 + 2t)− 15(105)

(100 + 2t)2
.

After 50 min, for example, there will be 362.5 lb of salt in the tank and 200 gal of
brine. J
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Exercises

Find the general solution of the given differential equation. If an initial condition is given,
find the particular solution which satisfies this initial condition. Examples 1.3.3, 1.3.7, and
1.3.10 are relevant examples to review, and detailed solutions of a few of the exercises will be
provided for you to study.

1. y′(t) + 3y(t) = et, y(0) = −2.

I Solution. This equation is already in standard form (Equation (3.1.1)) with p(t) = 3.
An antiderivative of p(t) is P (t) =

∫
3 dt = 3t. If we multiply the differential equation

y′(t) + 3y(t) = et by P (t), we get the equation

e3ty′(t) + 3e3ty(t) = e4t,

and the left hand side of this equation is a perfect derivative, namely,
d

dt
(e3ty(t)). Thus,

d

dt
(e3ty(t)) = e4t.

Now take antiderivatives of both sides and observe that they must coincide up to a
constant c ∈ R. This gives

e3ty(t) =
1
4
e4t + c.

Now, multiplying by e−3t gives

y(t) =
1
4
et + ce−3t (∗)

for the general solution of the equation y′(t) + 3y(t) = et. To choose the constant c
to satisfy the initial condition y(0) = −2, substitute t = 0 into Equation (*) to get

−2 = y(0) =
1
4

+ c (remember that e0 = 1). Hence c = −9
4
, and the solution of the

initial value problem is

y(t) =
1
4
et − 9

4
e−3t.

J

2. (cos t)y′(t) + (sin t)y(t) = 1, y(0) = 5
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I Solution. Divide the equation by cos t to put it in the standard form

y′(t) + (tan t)y(t) = sec t.

In this case p(t) = tan t and an antiderivative is P (t) =
∫

tan t dt = ln(sec t). (We
do not need | sec t| since we are working near t = 0 where sec t > 0.) Now multi-
ply the differential equation y′(t) + (tan t)y(t) = sec t by eP (t) = eln sec t = sec t to get
(sec t)y′(t) + (sec t tan t)y(t) = sec2 t, the left hand side of which is a perfect derivative,

namely
d

dt
((sec t)y(t)). Thus

d

dt
((sec t)y(t)) = sec2 t

and taking antiderivatives of both sides gives

(sec t)y(t) = tan t + c

where c ∈ R is a constant. Now multiply by cos t to eliminate the sec t in front of y(t),
and we get

y(t) = sin t + c cos t

for the general solution of the equation, and letting t = 0 gives 5 = y(0) = sin 0+c cos 0 =
c so that the solution of the initial value problem is

y(t) = sin t + 5 cos t.

J

3. y′ − 2y = e2t, y(0) = 4

4. y′ − 2y = e−2t, y(0) = 4

5. ty′ + y = et, y(1) = 0

6. ty′ + y = e2t, y(1) = 0.

7. y′ = (tan t)y + cos t

8. y′ + ty = 1, y(0) = 1.

9. ty′ + my = t ln(t), where m is a constant.



1.3. LINEAR FIRST ORDER EQUATIONS 43

10. y′ = −y
t + cos(t2)

11. t(t + 1)y′ = 2 + y.

12. y′ + ay = b, where a and b are constants.

13. y′ + y cos t = cos t, y(0) = 1

14. y′ − 2
t + 1

y = (t + 1)2

15. y′ − 2
t
y =

t + 1
t

, y(1) = −3

16. y′ + ay = e−at, where a is a constant.

17. y′ + ay = ebt, where a and b are constants and b 6= −a.

18. y′ + ay = tne−at, where a is a constant.

19. y′ = y tan t + sec t

20. ty′ + 2y ln t = 4 ln t

21. y′ − n

t
y = ettn

22. y′ − y = te2t, y(0) = a

23. ty′ + 3y = t2, y(−1) = 2

24. t2y′ + 2ty = 1, y(2) = a

Before attempting the following exercises, you may find it helpful to review the examples
in Section 1.1 related to mixing problems.

25. A tank contains 10 gal of brine in which 2 lb of salt are dissolved. Brine containing 1 lb
of salt per gallon flows into the tank at the rate of 3 gal/min, and the stirred mixture is
drained off the tank at the rate of 4 gal/min. Find the amount y(t) of salt in the tank
at any time t.

26. A 100 gal tank initially contains 10 gal of fresh water. At time t = 0, a brine solution
containing .5 lb of salt per gallon is poured into the tank at the rate of 4 gal/min while
the well-stirred mixture leaves the tank at the rate of 2 gal/min.
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(a) Find the time T it takes for the tank to overflow.

(b) Find the amount of salt in the tank at time T .

(c) If y(t) denotes the amount of salt present at time t, what is limt→∞ y(t)?

27. A tank contains 100 gal of brine made by dissolving 80 lb of salt in water. Pure water
runs into the tank at the rate of 4 gal/min, and the mixture, which is kept uniform by
stirring, runs out at the same rate. Find the amount of salt in the tank at any time t.
Find the concentration of salt in the tank at any time t.

28. For this problem, our tank will be a lake and the brine solution will be polluted water
entering the lake. Thus assume that we have a lake with volume V which is fed by a
polluted river. Assume that the rate of water flowing into the lake and the rate of water
flowing out of the lake are equal. Call this rate r, let c be the concentration of pollutant
in the river as it flows into the lake, and assume perfect mixing of the pollutant in the
lake (this is, of course, a very unrealistic assumption).

(a) Write down and solve a differential equation for the amount P (t) of pollutant in
the lake at time t and determine the limiting concentration of pollutant in the lake
as t →∞.

(b) At time t = 0, the river is cleaned up, so no more pollutant flows into the lake.
Find expressions for how long it will take for the pollution in the lake to be reduced
to (i) 1/2 (ii) 1/10 of the value it had at the time of the clean-up.

(c) Assuming that Lake Erie has a volume V of 460 km3 and an inflow-outflow rate of
r = 175 km3/year, give numerical values for the times found in Part (b). Answer
the same question for Lake Ontario, where it is assumed that V = 1640 km3 and
r = 209 km3/year.

29. A 30 liter container initially contains 10 liters of pure water. A brine solution containing
20 grams salt per liter flows into the container at a rate of 4 liters per minute. The well
stirred mixture is pumped out of the container at a rate of 2 liters per minute.

(a) How long does it take the container to overflow?

(b) How much salt is in the tank at the moment the tank begins to overflow?

30. A tank holds 10 liters of pure water. A brine solution is poured into the tank at a rate of
1 liter per minute and kept well stirred. The mixture leaves the tank at the same rate.
If the brine solution has a concentration of 1 kg salt per liter what will the concentration
be in the tank after 10 minutes.
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1.4 Direction Fields

The geometric interpretation of the derivative of a function y(t) at t0 as the slope of
the tangent line to the graph of y(t) at (t0, y(t0)) provides us with an elementary and
often very effective method for the visualization of the solution curves (:= graphs of
solutions) for a first order differential equation. The visualization process involves the
construction of what is known as a direction field or slope field for the differential
equation. For this construction we proceed as follows.

Construction of Direction Fields

(1) If the equation is not already in standard form (Equation (1)) solve the equation
for y′ to put it in the standard form y′ = F (t, y).

(2) Choose a grid of points in a rectangle R = {(t, y) : a ≤ t ≤ b; c ≤ y ≤ d} in the
(t, y)-plane.

(3) At each grid point (t, y), the number F (t, y) represents the slope of a solution
curve through this point; for example if y′ = y2 − t so that F (t, y) = y2 − t, then
at the point (1, 1) the slope is F (1, 1) = 12 − 1 = 0, at the point (2, 1) the slope is
F (2, 1) = 12 − 2 = −1, and at the point (1,−2) the slope is F (1,−2) = 3.

(4) Through the point (t, y) draw a small line segment having the slope F (t, y). Thus,
for the equation y′ = y2− t, we would draw a small line segment of slope 0 through
(1, 1), slope −1 through (2, 1) and slope 3 through (1,−2). With a graphing
calculator, one of the computer mathematics programs Maple, Mathematica or
MATLAB (which we refer to as the three M’s) 1, or with pencil, paper, and a lot
of patience, you can draw many such line segments. The resulting picture is called
a direction field for the differential equation y′ = F (t, y).

(5) With some luck with respect to scaling and the selection of the (t, y)-rectangle R,
you will be able to visualize some of the line segments running together to make a
graph of one of the solution curves.

(6) To sketch a solution curve of y′ = F (t, y) from a direction field, start with a point
P0 = (t0, y0) on the grid, and sketch a short curve through P0 with tangent slope
F (t0, y0). Follow this until you are at or close to another grid point P1 = (t1, y1).
Now continue the curve segment by using the updated tangent slope F (t1, y1).

1We have used the Student Edition of MATLAB, Version 6, and the functions dfield6 and pplane6
which we downloaded from the webpage http://math.rice.edu/dfield. To see dfield6 in action, enter
dfield6 at the MATLAB prompt
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Continue this process until you are forced to leave your sample rectangle R. The
resulting curve will be an approximate solution to the initial value problem y′ =
F (t, y), y(t0) = y0.
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Figure 1.4: Direction Field of yy′ = −t

Example 1.4.1. Draw the direction field for the differential equation yy′ = −t. Draw
several solution curves on the direction field, then solve the differential equation explicitly
and describe the general solution.

I Solution. Before we can draw the direction field, it is necessary to first put the
differential equation yy′ = −t into standard form by solving for y′. Solving for y′ gives
the equation

(∗) y′ = − t

y
.

Notice that this equation is not defined for y = 0, even though the original equation is.
Thus, we should be alert to potential problems arising from this defect. We have chosen
a rectangle R = {(t, y) : −4 ≤ t, y ≤ 4} for drawing the direction field, and we have
chosen to use 20 sample points in each direction, which gives a total of 400 grid points
where a slope line will be drawn. Naturally, this is being done by computer (using the



1.4. DIRECTION FIELDS 47

−4 −2 0 2 4

−4

−3

−2

−1

0

1

2

3

4

t

y

Figure 1.5: Solution Curves for yy′ = −t

dfield6 tool in MatLab), and not by hand. Figure 1.4 gives the completed direction field,
and Figure 1.5 is the same direction field with several solution curves drawn in. The
solutions which are drawn in are the solutions of the initial value problems yy′ = −t,
y(0) = ±1, ±2, ±3. The solution curves appear to be half circles centered at (0, 0). Since
the equation yy′ = −t is separable, we can verify that this is in fact true by explicitly
solving the equation. Writing the equation in differential form gives ydy = −tdt and
integrating gives

y2

2
= −t2

2
+ c.

After multiplying by 2 and renaming the constant, we see that the solutions of yy′ = −t
are given implicitly by y2 + t2 = c. Thus, there are two families of solutions of yy′ = −t,
specifically, y1(t) =

√
c− t2 (upper semicircle) and y2(t) = −√c− t2 (lower semicircle).

For both families of functions, c is a positive constant and the functions are defined on
the interval (−√c,

√
c). For the solutions drawn in Figure 1.5, the constant c is 1,

√
2,

and
√

3. Notice that, although y1 and y2 are both defined for t = ±√c, they do not
satisfy the differential equation at these points since y′1 and y′2 do not exist at these
points. Geometrically, this is a reflection of the fact that the circle t2 + y2 = c has
a vertical tangent at the points (±√c, 0) on the t-axis. This is the “defect” that you
were warned could occur because the equation yy′ = −t, when put in standard form
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y′ = −t/y, is not defined for y = 0. J
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Figure 1.6: Direction Field of y′ =
t− 2

3y2 − 7

It may happen that a formula solution for the differential equation y′ = F (t, y) is
possible, but the formula is sufficiently complicated that it does not shed much light
on the nature of the solutions. In such a situation, it may happen that constructing a
direction field and drawing the solution curves on the direction field gives useful insight
concerning the solutions. The following example is a situation where the picture is more
illuminating than the formula.

Example 1.4.2. Solve the differential equation y′ =
t− 2

3y2 − 7
.

I Solution. The equation is separable, so we proceed as usual by separating the vari-
ables, writing the equation in differential form, and then integrating both sides of the
equation. In the present case, the differential form of the equation is (3y2 − 7) dy =
(t− 2) dt, so that, after integration and clearing denominators, we find that the general
solution is given by the implicit equation

(∗) 2y3 − 14y = t2 − 4t + c.
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Figure 1.7: Solution Curves for y′ =
t− 2

3y2 − 7

While there is a formula for solving a cubic equation,2 it is a messy formula which
does not necessarily shed great light upon the nature of the solutions as functions of

t. However, if we compute the direction field of y′ =
t− 2

3y2 − 7
, and use it to draw some

solution curves, we see a great deal more concerning the nature of the solutions. Figure
1.6 is the direction field and Figure 1.7 is the direction field with several solutions drawn
in. Some observations which can be made from the picture are:

• In the lower part of the picture, the curves seem to be deformed ovals centered
about the point P ≈ (2,−1.5).

• Above the point Q ≈ (2, 2), the curves no longer are closed, but appear to increase
indefinitely in both directions.

J
2The formula is known as Cardano’s formula after Girolamo Cardano (1501 – 1576), who was the

first to publish it.
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We conclude our list of examples of direction fields with an example for which the
explicit solution formula, found by a method to be considered later, gives even less
insight than that considered in the last example. Nevertheless, the direction field and
some appropriately chosen solution curves drawn on the direction field, suggest a number
of properties of solutions of the differential equation.

Example 1.4.3. The example to be considered is the differential equation

(∗∗) y′ = y2 − t.

This equation certainly does not look any more complicated than those considered in
previous examples. In fact, the right hand side of this equation is a quadratic which
looks simple enough, certainly simpler than the right hand side of the previous example.
The parabola y2−t = 0 has a particularly simple meaning on the direction field. Namely,
every solution of the differential equation y′ = y2 − t which touches the parabola will
have a horizontal tangent at that point. That is, for every point (t0, y(t0)) on the graph
of a solution y(t) for which y(t0)

2− t0 = 0, we will have y′(t0) = 0. The curve y2− t = 0
is known as the nullcline of the differential equation y′ = y2 − t. Figure 1.8 is the
direction field for y′ = y2 − t. Figure 1.9 shows the solution of the equation y′ = y2 − t
which has the initial value y(0) = 0, while Figure 1.10 shows a number of different
solutions to the equation satisfying various initial conditions y(0) = y0. Unlike the
previous examples we have considered, there is no simple formula which gives all of the
solutions of y′ = y2 − t. There is a formula which involves a family of functions known
as Bessel functions. Bessel functions are themselves defined as solutions of a particular
second order linear differential equation. For those who are curious, we note that the
general solution of y′ = y2 − t is

y(t) =
√

t
cK(−2

3
, 2

3
t3/2)− I(−2

3
, 2

3
t3/2)

cK(1
3
, 2

3
t3/2) + I(1

3
, 2

3
t3/2)

,

where

I(µ, z) :=
∞∑

k=0

1

Γ(k + 1)Γ(k + µ + 1)
(z/2)2k+µ

is the modified Bessel function of the first kind, where Γ(x) :=
∫∞
0

e−ttx−1 dt denotes the
Gamma function, and where

K(µ, z) :=
π

2 sin(µx)
(I(−µ, x)− I(µ, x))

is the modified Bessel function of the second kind. 3 As we can see, even if an analytic
expression for the general solution of a first order differential equation can be found, it

3The solution above can be found easily with symbolic calculators like Maple, Mathematica or
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Figure 1.8: Direction Field of y′ = y2 − t
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Figure 1.9: The solution curve for y′ = y2 − t with y(0) = 0
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Figure 1.10: Solution curves for y′ = y2 − t

might not be very helpful on first sight, and the direction field may give substantially
more insight into the true nature of the solutions.

For example, a detailed analysis of the direction field (see Figure 1.10) reveals that
the plane seems to be divided into two regions defined by some curve fu(t). Solution
curves going through points above fu(t) tend towards infinity as t →∞, whereas solution
curves passing through points below fu(t) seem to approach the solution curve fd(t) with
y(0) = 0 as t →∞.

The equation y′ = y2 − t is an example of a type of differential equation known as a
Riccati equation. A Ricatti equation is a first order differential equation of the form

y′ = a(t)y2 + b(t)y + c(t),

where a(t), b(t) and c(t) are continuous functions of t. For more information on this
important class of differential equations, we refer to [Zw] and to Section ??.

As a final observation note that a number of the solution curves on Figure 1.10 appear
to merge into one trajectory at certain regions of the display window. To see that this

MATLAB’s Symbolic Toolbox which provides a link between the numerical powerhouse MATLAB and
the symbolic computing engine Maple. The routine dsolve is certainly one of the most useful differential
equation tools in the Symbolic Toolbox. For example, to find the solution of y′(t) = y(t)2− t one simply
types

dsolve(′Dy = y2 − t ′)

after the MATLAP prompt and pushes Enter.
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is not the case one can use the zoom option in the dfield6 tool, or, one might use the
crucial theoretical results of Section 1.5. As we will see there, under mild smoothness
assumptions on the function F (t, y), it is absolutely certain that the solution curves
(trajectories) of an equation y′ = F (t, y) can never intersect.

Exercises

For each of the following differential equations, sketch a direction field on the rectangle R =
{(t, y) : −2 ≤ t, y ≤ 2}. You may do the direction fields by hand on graph paper using the
points in R with integer coordinates as grid points. That is t and y are each chosen from the
set {−2, −2, 0, 1, 2}. Alternatively, you may use a graphing calculator or a computer, where
you could try 20 sample values for each of t and y, for a total of 400 grid points.

1. y′ = y − 1

2. y′ = t

3. y′ = t2

4. y′ = y2

5. y′ = y(y + 1)

In Exercises 6 – 11, a differential equation is given together with its direction field. One
solution is already drawn in. Draw at least five more representative solutions on the
direction field. You may choose whatever initial conditions seem reasonable, or you can
simply draw in the solutions with initial conditions y(0) = −2, −1, 0, 1, and 2. Looking
at the direction field can you tell if there are any constant solutions y(t) = c? If so, list
them. Are there other straight line solutions that you can see from the direction field?
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6.

y′ = 1− y2
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9.

y′ = y − t2
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10.

y′ = ty2
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1.5 Existence and Uniqueness

Unfortunately, only a few simple types of differential equations can be solved explicitly
in terms of well known elementary functions. In this section we will describe the method
of successive approximations, which provides one of the many possible lines of attack
for approximating solutions for arbitrary differential equations. This method, which is
quite different from what most students have previously encountered, is the primary
idea behind one of the main theoretical results concerning existence and uniqueness of
solutions of the initial value problem

(∗) y′ = F (t, y), y(t0) = y0,

where F (t, y) is a continuous function of (t, y) in the rectangle

R := {(t, y) : a ≤ t ≤ b , c ≤ y ≤ d}

and (t0, y0) ∈ R. The key to the method of successive approximations is the fact that a
continuously differentiable function y(t) is a solution of (∗) if and only if it is a solution
of the integral equation

(∗∗) y(t) = y0 +

∫ t

t0

F (u, y(u)) du.

To see the equivalence of the initial value problem (∗) and the integral equation (∗∗),
we first integrate (∗) from t0 to t and obtain (∗∗). Conversely, if y(t) is a continuously
differentiable solution of (∗∗), then y(t0) = y0 +

∫ t0
t0

F (u, y(u)) du = y0. Moreover, since
y(t) is a continuous function in t and F (t, y) is a continuous function of (t, y), it follows
that g(t) := F (t, y(t)) is a continuous function of t. Thus, by the Fundamental Theorem
of Calculus,

y′(t) =
d

dt

(
y0 +

∫ t

t0

F (u, y(u)) du

)
=

d

dt

(
y0 +

∫ t

t0

g(u) du

)
= g(t) = F (t, y(t)),

which is what it means to be a solution of (∗).
To solve the integral equation (∗∗), mathematicians have developed a variety of so-

called “fixed point theorems”, each of which leads to an existence and/or uniqueness
result for solutions to the integral equation. One of the oldest and most widely used
existence and uniqueness theorems is due to Émile Picard (1856-1941). Assuming that
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the function F (t, y) is sufficiently “nice”, he first employed the method of successive
approximations to prove the existence and uniqueness of solutions of (∗∗). The method
of successive approximations is an iterative procedure which begins with a crude approx-
imation of a solution and improves it using a step by step procedure which brings us as
close as we please to an exact and unique solution of (∗∗). The algorithmic procedure
follows.

Algorithm 1.5.1 (Picard Approximation). Perform the following sequence of steps
to produce an approximate solution to the integral equation (∗∗), and hence to initial
value problem (∗).

(i) A rough initial approximation to a solution of (∗∗) is given by the constant function

y0(t) := y0.

(ii) Insert this initial approximation into the right hand side of equation (∗∗) and
obtain the first approximation

y1(t) := y0 +

∫ t

t0

F (u, y0(u)) du.

(iii) The next step is to generate the second approximation in the same way; i.e.,

y2(t) := y0 +

∫ t

t0

F (u, y1(u)) du.

(iv) At the n-th stage of the process we have

yn(t) := y0 +

∫ t

t0

F (u, yn−1(u)) du,

which is defined by substituting the previous approximation yn−1(t) into the right
hand side of (∗∗).

It is one of Picard’s great contributions to mathematics that he showed that the
functions yn(t) converge to a unique, continuously differentiable solution y(t) of (∗∗)
(and thus of (∗)) if the function F (t, y) and its partial derivative Fy(t, y) :=

∂

∂y
F (t, y)

are continuous functions of (t, y) on the rectangle R.
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Theorem 1.5.2 (Picard’s Existence and Uniqueness Theorem). 4 Let F (t, y) and
Fy(t, y) be continuous functions of (t, y) on a rectangle

R = {(t, y) : a ≤ t ≤ b , c ≤ y ≤ d} .

If (t0, y0) is an interior point of R, then there exists a unique solution y(t) of

(∗) y′ = F (t, y) , y(t0) = y0,

on some interval [a′, b′] with t0 ∈ [a′, b′] ⊂ [a, b]. Moreover, the successive approximations
y0(t) := y0,

yn(t) := y0 +

∫ t

t0

F (u, yn−1(u)) du,

computed by Algorithm 1.5.1 converge towards y(t) on the interval [a′, b′]. That is, for all
ε > 0 there exists n0 such that the maximal distance between the graph of the functions
yn(t) and the graph of y(t) (for t ∈ [a′, b′]) is less than ε for all n ≥ n0.

If one only assumes that the function F (t, y) is continuous on the rectangle R, but
makes no assumptions about Fy(t, y), then Guiseppe Peano (1858-1932) showed that
the initial value problem (∗) still has a solution on some interval I with t0 ∈ I ⊂ [a, b].
This statement is known as Peano’s Existence Theorem.5 However, in this case
the solutions are not necessarily unique (see Example 1.5.5 below). Theorem 1.5.2 is
called a local existence and uniqueness theorem because it guarantees the existence of a
unique solution in some interval I ⊂ [a, b]. In contrast, the following important variant
of Picard’s theorem yields a unique solution on the whole interval [a, b].

Theorem 1.5.3. Let F (t, y) be a continuous function of (t, y) that satisfies a Lipschitz
condition on a strip S = {(t, y) : a ≤ t ≤ b , −∞ < y < ∞}. That is, assume that

|F (t, y1)− F (t, y2)| ≤ K|y1 − y2|

for some constant K > 0. If (t0, y0) is an interior point of S, then there exists a unique
solution of

(∗) y′ = F (t, y) , y(t0) = y0,

on the interval [a, b].

4A proof of this theorem can be found in G.F. Simmons’ book Differential Equations with Applica-
tions and Historical Notes, 2nd edition McGraw-Hill, 1991.

5For a proof see, for example, A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Chapter
3, Section 11, Dover 1975.



1.5. EXISTENCE AND UNIQUENESS 59

Example 1.5.4. Let us consider the Riccati equation y′ = y2− t. Here, F (t, y) = y2− t
and Fy(t, y) = 2y are continuous on all of R2. Thus, by Picard’s Theorem 1.5.2, the
initial value problem

(∗) y′ = y2 − t , y(0) = 0

has a unique solution on some (finite or infinite) interval I containing 0. The direction
field for y′ = y2 − t (see Section 1.4, Example 1.4.3) suggests that the maximal interval
Imax on which the solution exists should be of the form Imax = (a,∞) for some −∞ ≤
a < −1. Observe that we can not apply Theorem 1.5.3 since

|F (t, y1)− F (t, y2)| =
∣∣(y2

1 − t)− (y2
2 − t)

∣∣ = |y2
1 − y2

2| = |y1 + y2||y1 − y2|
can not be bounded by K|y1 − y2| for some constant K > 0 because this would imply
that |y1 + y2| ≤ K for all −∞ < y1, y2 < ∞. Thus, without further analysis of the
problem, we have no precise knowledge about the maximal domain of the solution; i.e.,
we do not know if and where the solution will “blow up”.

Next we show how Picard’s method of successive approximations works in this exam-
ple. To use this method we rewrite the initial value problem (∗) as an integral equation;
i.e., we consider

(∗∗) y(t) =

∫ t

0

(y(u)2 − u) du.

We start with our initial approximation y0(t) = 0, plug it into (∗∗) and obtain our first
approximation

y1(t) =

∫ t

0

(y0(u)2 − u) du = −
∫ t

0

u du = −1

2
t2.

The second iteration yields

y2(t) =

∫ t

0

(y1(u)2 − u) du =

∫ t

0

(
1

4
u4 − u

)
du =

1

4 · 5t5 − 1

2
t2.

Since y2(0) = 0 and

y2(t)
2 − t =

1

42 · 52
t10 − 1

4 · 5t7 +
1

4
t4 − t =

1

42 · 52
t10 − 1

4 · 5t7 + y′2(t) ≈ y′2(t)

if t is close to 0, it follows that the second iterate y2(t) is already a “good” approximation
of the exact solution for t close to 0. Since y2(t)

2 = 1
42·52 t

10 − 1
4·5t

7 + 1
4
t4, it follows that

y3(t) =

∫ t

0

(
1

42 · 52
u10 − 1

4 · 5u7 +
1

4
u4 − u

)
du =

1

11 · 42 · 52
t11− 1

4 · 5 · 8t8+
1

4 · 5t5−1

2
t2.

According to Picard’s theorem, the successive approximations yn(t) converge towards
the exact solution y(t), so we expect that y3(t) is an even better approximation of y(t)
for t close enough to 0.
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Example 1.5.5. Consider the initial value problem

(∗) y′ = 3y2/3 , y(t0) = y0.

The function F (t, y) = y2/3 is continuous for all (t, y), so Peano’s existence theorem shows
that the initial value problem (∗) has a solution for all−∞ < t0, y0 < ∞. Moreover, since

Fy(t, y) =
2

y1/3
, Picard’s existence and uniqueness theorem tells us that the solutions

of (∗) are unique as long as the initial value y0 6= 0. Since the differential equation
y′ = 3y2/3 is separable, we can rewrite it the differential form

1

y2/3
dy = 3dt,

and integrate the differential form to get

3y1/3 = 3t + c.

Thus, the functions y(t) = (t+c)3 for t ∈ R, together with the constant function y(t) = 0,

are the solution curves for the differential equation y′ = 3y2/3, and y(t) = (y
1/3
0 + t− t0)

3

is the unique solution of the initial value problem (∗) if y0 6= 0. If y0 = 0, then (∗)
admits infinitely many solutions of the form

y(t) =





(t− α)3 if t < α

0 if α ≤ t ≤ β

(t− β)3 if t > β,

(1)

where t0 ∈ [α, β]. The graph of one of these functions (where α = −1, β = 1) is depicted
in Figure 1.11. What changes among the different functions is the length of the straight
line segment joining α to β on the t-axis.

Example 1.5.6. The differential equation

(†) ty′ = 3y

is separable (and linear). Thus, it is easy to see that y(t) = ct3 is its general solution.
In standard form Equation (†) is

(‡) y′ =
3

t
y

and the right hand side, F (t, y) =
3

t
y, is continuous provided t 6= 0. Thus Picard’s the-

orem applies to give the conclusion that the initial value problem y′ =
3

t
y , y(t0) = y0
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Figure 1.11: A solution (where α = −1, β = 1 in Equation 1) of y′ = 3y2/3, y(0) = 0.

has a unique local solution if t0 6= 0 (given by y(t) =
y0

t30
t3). However, if t0 = 0, Pi-

card’s theorem contains no information about the existence and uniqueness of solutions.
Indeed, in its standard form (‡), it is not meaningful to talk about solutions of this

equation at t = 0 since F (t, y) =
3

t
y is not even defined for t = 0. But in the origi-

nally designated form (†), where the t appears as multiplication on the left side of the
equation, then an initial value problem starting at t = 0 makes sense, and moreover, the
initial value problem

ty′ = 3y , y(0) = 0

has infinitely many solutions of the form y(t) = ct3 for any c ∈ R, whereas the initial
value problem

ty′ = 3y , y(0) = y0

has no solution if y0 6= 0. See Figure 1.12, where one can see that all of the function
y(t) = ct3 pass through the origin (i.e. y(0) = 0), but none pass through any other point
on the y-axis.

Remark 1.5.7 (Geometric meaning of uniqueness).

1. The theorem on existence and uniqueness of solutions of differential equations
(Theorem 1.5.2) has a particularly useful geometric interpretation. Suppose that
y′ = F (t, y) is a first order differential equation for which Picard’s existence and
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Figure 1.12: Distinct solutions of the initial value problem ty′ = 3y, y(0) = 0.

uniqueness theorem applies. If y1(t) and y2(t) denote two different solutions of
y′ = F (t, y), then the graphs of y1(t) and y2(t) can never intersect. The reason
for this is just that if (t0, y0) is a point of the plane which is common to both the
graph of y1(t) and that of y2(t), then both of these functions will satisfy the initial
value problem

y′ = F (t, y), y(t0) = y0.

But if y1(t) and y2(t) are different functions, this will violate the uniqueness pro-
vision of Picard’s theorem. Thus the situation depicted in Figures 1.11 and 1.12
where several solutions of the same differential equation go through the same point
(in this case (0, 0)) can never occur for a differential equation which satisfies the
hypotheses of Theorem 1.5.2. Similarly, the graphs of the function y1(t) = (t+1)2

and the constant function y2(t) = 1 both pass through the point (0, 1), and thus
both cannot be solutions of the same differential equation satisfying Picard’s the-
orem.

2. The above remark can be exploited in the following way. The constant function
y1(t) = 0 is a solution to the differential equation y′ = y3 + y (check it). Since
F (t, y) = y3 + y clearly has continuous partial derivatives, Picard’s theorem ap-
plies. Hence, if y2(t) is a solution of the equation for which y2(0) = 1, the above
observation takes the form of stating that y2(t) > 0 for all t. This is because, in
order for y(t) to ever be negative, it must first cross the t-axis, which is the graph
of y1(t), and we have observed that two solutions of the same differential equation



1.5. EXISTENCE AND UNIQUENESS 63

can never cross. This observation will be further exploited in the next section.

Exercises

1. (a) Find the exact solution of the initial value problem

(∗) y′ = y2, y(0) = 1.

(b) Apply Picard’s method (Theorem 1.5.2) to calculate the first three approximations
y1(t), y2(t), and y3(t) to (∗) and compare these results with the exact solution.

I Solution. (a) The equation is separable so separate the variables to get y−2dy = dt.
Integrating gives −y−1 = t + c and the initial condition y(0) = 1 implies that the
integration constant c = −1, so that the exact solution of (∗) is

y(t) =
1

1− t
= 1 + t + t2 + t3 + t4 + · · · ; |t| < 1.

(b) To apply Picard’s method, let y0 = 1 and define

y1(t) = 1 +
∫ t

0
(y0(s))2 ds = 1 +

∫ t

0
ds = 1 + t;

y2(t) = 1 +
∫ t

0
(y1(s))2 ds = 1 +

∫ t

0
(1 + s)2 ds = 1 + t + t2 +

t3

3
;

y3(t) = 1 +
∫ t

0
(y2(s))2 ds =

∫ t

0

(
1 + s + s2 +

s3

3

)2

ds

= 1 +
∫ t

0

(
1 + 2s + 3s2 +

8
3
s3 +

5
3
s4 +

2
3
s5 +

1
9
s6

)
ds

= 1 + t + t2 + t3 +
2
3
t4 +

1
3
t5 +

1
9
t6 +

1
63

t7.

Comparing y3(t) to the exact solution, we see that the series agree up to order 3. J

2. Apply Picard’s method to calculate the first three approximations y1(t), y2(t), y3(t) to
the solution y(t) of the initial value problem

y′ = t− y, y(0) = 1.

3. Apply Picard’s method to calculate the first three approximations y1(t), y2(t), y3(t) to
the solution y(t) of the initial value problem

y′ = t + y2, y(0) = 0.
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Which of the following initial value problems are guaranteed a unique solution by Picard’s
theorem (Theorem 1.5.2)? Explain.

4. y′ = 1 + y2, y(0) = 0

5. y′ =
√

y, y(1) = 0

6. y′ =
√

y, y(0) = 1

7. y′ =
t− y

t + y
, y(0) = −1

8. y′ =
t− y

t + y
, y(1) = −1

9. (a) Find the general solution of the differential equation

(†) ty′ = 2y − t.

Sketch several specific solutions from this general solution.

(b) Show that there is no solution to (†) satisfying the initial condition y(0) = 2. Why
does this not contradict Theorem 1.5.2?

10. (a) Let t0, y0 be arbitrary and consider the initial value problem

y′ = y2, y(t0) = y0.

Explain why Theorem 1.5.2 guarantees that this initial value problem has a solution
on some interval |t− t0| ≤ h.

(b) Since F (t, y) = y2 and Fy(t, y) = 2y are continuous on all of the (t, y)−plane, one
might hope that the solutions are defined for all real numbers t. Show that this
is not the case by finding a solution of y′ = y2 which is defined for all t ∈ R and
another solution which is not defined for all t ∈ R. (Hint: Find the solutions with
(t0, y0) = (0, 0) and (0, 1).)

11. Is it possible to find a function F (t, y) that is continuous and has a continuous partial
derivative Fy(t, y) such that the two functions y1(t) = t and y2(t) = t2 − 2t are both
solutions to y′ = F (t, y) on an interval containing 0?

12. Show that the function

y1(t) =

{
0, for t < 0
t3 for t ≥ 0

is a solution of the initial value problem ty′ = 3y, y(0) = 0. Show that y2(t) = 0 for all
t is a second solution. Explain why this does not contradict Theorem 1.5.2.
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1.6 Miscellaneous Nonlinear First Order Equations

We have learned how to find explicit solutions for the standard first order differential
equation

y′ = F (t, y)

when the right hand side of the equation has one of the particularly simple forms:

1. F (t, y) = h(t)g(y), i.e., the equation is separable, or

2. F (t, y) = −p(t)y + f(t), i.e., the equation is linear.

Unfortunately, in contrast to the separable and first order linear differential equations, for
an arbitrary function F (t, y) it is very difficult to find closed form “solution formulas”.
In fact, most differential equations do not have closed form solutions and one has to
resort to numerical or asymptotic approximation methods to gain information about
them. In this section we discuss some other types of first-order equations which you
may run across in applications and that allow closed form solutions in the same sense
as the separable and first order linear differential equations. That is, the ”explicit”
solution may very well involve the computation of an indefinite integral which cannot
be expressed in terms of elementary functions, or the solution may be given implicitly
by an equation which cannot be reasonably solved in terms of elementary function. Our
main purpose in this section is to demonstrate techniques that allow us to find solutions
of these types of first-order differential equations and we completely disregard in this
section questions of continuity, differentiability, vanishing divisors, and so on. If you are
interested in the huge literature covering other special types of first order differential
equations for which closed form solutions can be found, we refer you to books like [Zw]
or to one of the three M’s (Mathematica, Maple, or MatLab) which are, most likely,
more efficient in computing closed form solutions than most of us will ever be.

Exact Differential Equations

A particularly important class of nonlinear first order differential equations that can be
solved (explicitly or implicitly) is that of exact first order equations. To explain the
mathematics behind exact equations, it is necessary to recall some facts about calculus
of functions of two variables.6 Let V (t, y) be a function of two variables defined on a
rectangle

R := {(t, y) : a ≤ t ≤ b , c ≤ y ≤ d} .

6The facts needed will be found in any calculus textbook. For example, you may consult Chapter
14 of Calculus: Early Transcendentals, Fourth Edition by James Stewart, Brooks-Cole, 1999.
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The curve with equation V (t, y) = c, where c ∈ R is a constant, is a level curve of V .

Example 1.6.1. 1. If V (t, y) = t + 2y, the level curves are all of the lines t + 2y = c
of slope −0.5.

2. If V (t, y) = t2 + y2, the level curves are the circles t2 + y2 = c centered at (0, 0)
of radius

√
c, provided c > 0. If c = 0, then the level “curve” t2 + y2 = 0 consists

of the single point (0, 0), while if c < 0 there are no points at all which solve the
equation t2 + y2 = c.

3. If V (t, y) = t2 − y2 then the level curves of V are the hyperbolas t2 − y2 = c if
c 6= 0, while the level curve t2 − y2 = 0 consists of the two lines y = ±t.

4. If V (t, y) = y2 − t then the level curves are the parabolas y2 − t = c with axis of
symmetry the t-axis and opening to the right.

Thus we see that sometimes a level curve defines y explicitly as a function of t (for
example, y = 1

2
(c− t) in number 1 above), sometimes t is defined explicitly as a function

of y (for example, t = −2y + c in number 1, and t = y2− c in number 3 above), while in
other cases it may only be possible to define y as a function of t (or t as a function of y)
implicitly by the level curve equation V (t, y) = c. For instance, the level curve t2+y2 = c
for c > 0 defines y as a function of t in two ways (y = ±√c− t2 for −√c < t <

√
c) and

it also defines t as a function of y in two ways (t = ±
√

c− y2 for −√c < y <
√

c).

If we are given a two variable function V (t, y) is there anything which can be said
about all of the level curves V (t, y) = c? The answer is yes. What the level curves
of a fixed two variable function have in common is that every one of the functions y(t)
defined implicitly by V (t, y) = c, no matter what c is, is a solution of the same differential
equation. The mathematics underlying this observation is the chain rule in two variables,
which implies that

d

dt
V (t, y(t)) = Vt(t, y(t)) + Vy(t, y(t))y′(t),

where Vt, Vy denote the partial derivatives of V (t, y) with respect to t and y, respectively.
Thus, if a function y(t) is given implicitly by a level curve

V (t, y(t)) = c,

then y(t) satisfies the equation

0 =
d

dt
c =

d

dt
V (t, y(t)) = Vt(t, y(t)) + Vy(t, y(t))y′(t).



1.6. MISCELLANEOUS NONLINEAR FIRST ORDER EQUATIONS 67

This means that y(t) is a solution of the differential equation

Vt(t, y) + Vy(t, y)y′ = 0. (1)

Notice that the constant c does not appear anywhere in this equation so that every
function y(t) determined implicitly by a level curve of V (t, y) satisfies this same equation.
An equation of the form given by Equation 1 is referred to as an exact equation:

Definition 1.6.2. A differential equation written in the form

M(t, y) + N(t, y)y′ = 0

is said to be exact if there is a function V (t, y) such that M(t, y) = Vt(t, y) and N(t, y) =
Vy(t, y).

What we observed above is that, if y(t) is defined implicitly by a level curve V (t, y) =
c, then y(t) is a solution of the exact equation 1. Moreover, the level curves determine
all of the solutions of Equation 1, so the general solution is defined by

V (t, y) = c. (2)

Example 1.6.3. 1. The exact differential equation determined by V (t, y) = t + 2y
is

0 = Vt(t, y) + Vy(t, y)y′ = 1 + 2y′

so the general solution of 1 + 2y′ = 0 is t + 2y = c.

2. The exact differential equation determined by V (t, y) = t2 + y2 is

0 = Vt(t, y) + Vy(t, y)y′ = 2t + 2yy′.

Hence, the general solution of the equation t + yy′ = 0, which can be written in
standard form as y′ = −t/y , is t2 + y2 = c.

Suppose we are given a differential equation in the form

M(t, y) + N(t, y)y′ = 0,

but we are not given apriori that M(t, y) = Vt(t, y) and N(t, y) = Vy(t, y). How can we
determine if there is such a function V (t, y), and if there is, how can we find it? That
is, is there a criterion for determining if a given differential equation is exact, and if
so is there a procedure for producing the function V (t, y) whose level curves implicitly
determine the solutions. The answer to both questions is yes. The criterion for exactness
is given by the following theorem; the procedure for finding V (t, y) will be illustrated by
example.
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Theorem 1.6.4 (Criterion for exactness). A first order differential equation

M(t, y) + N(t, y)y′ = 0

in which M(t, y) and N(t, y) have continuous first order partial derivatives is exact if
and only if

My(t, y) = Nt(t, y) (3)

for all t, y in a square region of R2.

Proof. Recall (from your calculus course) that all functions V (t, y) whose second partial
derivatives exist and are continuous satisfy

(∗) Vty(t, y) = Vyt(t, y),

where Vty(t, y) denotes the derivative of Vt(t, y) with respect to y, and Vyt(t, y) is the
derivative of Vy(t, y) with respect to t. The equation (∗) is known as Clairaut’s theorem
(after Alexis Clairaut (1713 – 1765)) on the equality of mixed partial derivatives. If the
equation M(t, y) + N(t, y)y′ = 0 is exact then (by definition) there is a function V (t, y)
such that Vt(t, y) = M(t, y) and Vy(t, y) = N(t, y). Then by Clairaut’s theorem,

My(t, y) =
∂

∂y
Vt(t, y) = Vty(t, y) = Vyt(t, y) =

∂

∂t
Vy(t, y) = Nt(t, y).

Hence condition 3 is satisfied.

Now assume, conversely, that condition 3 is satisfied. To verify that the equation
M(t, y) + N(t, y)y′ = 0 is exact, we need to search for a function V (t, y) which satisfies
the equations

Vt(t, y) = M(t, y) and Vy(t, y) = N(t, y).

The procedure will be sketched and then illustrated by means of an example. The
equation Vt(t, y) = M(t, y) means that we should be able to recover V (t, y) from M(t, y)
by indefinite integration:

V (t, y) =

∫
M(t, y) dt + ϕ(y). (4)

The function ϕ(y) appears as the “integration constant” since any function of y goes to
0 when differentiated with respect to t. The function ϕ(y) can be determined from the
equation

Vy(t, y) =
∂

∂y

∫
M(t, y) dt + ϕ′(y) = N(t, y). (5)
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That is

ϕ′(y) = N(t, y)− ∂

∂y

∫
M(t, y) dt. (6)

The verification that the function on the right is really a function only of y (as it must
be if it is to be ϕ′(y)) is where condition 3 is needed.

Example 1.6.5. Solve the differential equation y′ =
t− y

t + y

I Solution. We rewrite the equation in the form y − t + (t + y)y′ = 0 to get that
M(t, y) = y − t and N(t, y) = y + t. Since My(t, y) = 1 = Nt(t, y), it follows that
the equation is exact and the general solution will have the form V (t, y) = c, where
Vt(t, y) = y − t and Vy(t, y) = y + t. Since Vt(t, y) = y − t it follows that

V (t, y) =

∫
(y − t) dt + ϕ(y) = yt− t2

2
+ ϕ(y),

where ϕ(y) is a yet to be determined function depending on y, but not on t. To determine
ϕ(y) note that y + t = Vy(t, y) = t + ϕ′(y), so that ϕ′(y) = y. Hence

ϕ(y) =
y2

2
+ c1

for some arbitrary constant c1, and thus

V (t, y) = yt− t2

2
+

y2

2
+ c1.

The general solution of y′ =
t− y

t + y
is therefore given by the implicit equation

V (t, y) = yt− t2

2
+

y2

2
+ c1 = c.

This is the form of the solution which we are led to by our general solution procedure
outlined in the proof of Theorem 1.6.4. However, after further simplifying this equation
and renaming constants several times the general solution can be expressed implicitly
by

2yt− t2 + y2 = c,

and explicitly by

y(t) = −t±
√

2t2 + c.

J
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What happens if we try to solve by equation M(t, y)+N(t, y)y′ = 0 by the procedure
outlined above without first verifying that it is exact? If the equation is not exact, you
will discover this fact when you get to Equation 6, since ϕ′(y) will not be a function
only of y, as the following example illustrates.

Example 1.6.6. Try to solve the equation (t − 3y) + (2t + y)y′ = 0 by the solution
procedure for exact equations.

I Solution. Note that M(t, y) = t− 3y and N(t, y) = 2t + y. First apply Equation 4
to get

(†) V (t, y) =

∫
M(t, y), dt =

∫
(t− 3y) dt =

t2

2
− 3ty + ϕ(y),

and then determine ϕ(y) from Equation 6:

(‡) ϕ′(y) = N(t, y)− ∂

∂y

∫
M(t, y) dt = (2t + y)− ∂

∂y

(
t2

2
− 3ty + ϕ(y)

)
= y − t.

But we see that there is a problem since ϕ′(y) in (‡) involves both y and t. This is
where it becomes obvious that you are not dealing with an exact equation, and you
cannot proceed with this procedure. Indeed, My(t, y) = −3 6= 2 = Nt(t, y), so that this
equation fails the exactness criterion 3. J

Bernoulli Equations

It is sometimes possible to change the variables in a differential equation y′ = F (t, y)
so that in the new variables the equation appears in a form you already know how to
solve. This is reminiscent of the substitution procedure for computing integrals. We
will illustrate the procedure with a class of equations known as Bernoulli equations
(named after Jakoub Bernoulli, (1654 – 1705)), which are equations of the form

y′ + p(t)y = f(t)yn. (7)

If n = 0 this equation is linear, while if n = 1 the equation is both separable and linear.
Thus, it is the cases n 6= 0, 1 where a new technique is needed. Start by dividing
Equation 7 by yn to get

(∗) y−ny′ + p(t)y1−n = f(t),

and notice that if we introduce a new variable z = y1−n, then the chain rule gives

z′ =
dz

dt
=

dz

dy

dy

dt
= (1− n)y−ny′,
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and Equation (∗), after multiplying by the constant (1−n), becomes a linear first order
differential equation in the variables t, z:

(∗∗) z′ + (1− n)p(t)z = f(t).

Equation (∗∗) can then be solved by Algorithm 1.3.5, and the solution to 7 is obtained
by solving z = y1−n for y.

Example 1.6.7. Solve the Bernoulli equation y′ + y = y2.

I Solution. In this equation n = 2, so if we let z = y1−2 = y−1, we get z′ = −y−2y′.
After dividing our equation by y2 we get y−2y′ + y−1 = 1, which in terms of the variable
z is −z′ + z = 1. In the standard form for linear equations this becomes

z′ − z = −1.

We can apply Algorithm 1.3.5 to this equation. The integrating factor will be e−t.
Multiplying by the integrating factor gives (e−1z)′ = −e−t so that e−tz = e−t + c. Hence
z = 1 + cet. Now go back to the original function y by solving z = y−1 for y. Thus

y = z−1 = (1 + cet)−1 =
1

1 + cet

is the general solution of the Bernoulli equation y′ + y = y2.

Note that this equation is also a separable equation, so it could have been solved
by the technique for separable equations, but the integration (and subsequent algebra)
involved in the current procedure is simpler. J

There are a number of other types of substitutions which are used to transform
certain differential equations into a form which is more amenable for solution. We will
not pursue the topic further in this text. See the book [Zw] for a collection of many
different solution algorithms.

Exercises

Exact Equations

For Exercises 1 – 9, determine if the equation is exact, and if it is exact, find the general
solution.

1. (y2 + 2t) + 2tyy′ = 0
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I Solution. This can be written in the form M(t, y) + N(t, y)y′ = 0 where M(t, y) =
y2 + 2t and N(t, y) = 2ty. Since My(t, y) = 2y = Nt(t, y), the equation is exact (see
Equation (3.2.2)), and the general solution is given implicitly by F (t, y) = c where the
function F (t, y) is determined by Ft(t, y) = M(t, y) = y2 + 2t and Fy(t, y) = N(t, y) =
2ty. These equations imply that F (t, y) = t2 + ty2 will work so the solutions are given
implicitly by t2 + ty2 = c. J

2. y − t + ty′ + 2yy′ = 0

3. 2t2 − y + (t + y2)y′ = 0

4. y2 + 2tyy′ + 3t2 = 0

5. (3y − 5t) + 2yy′ − ty′ = 0

6. 2ty + (t2 + 3y2)y′ = 0, y(1) = 1

7. 2ty + 2t2 + (t2 − y)y′ = 0

8. t2 − y − ty′ = 0

9. (y3 − t)y′ = y

10. Find conditions on the constants a, b, c, d which guarantee that the differential equation
(at + by) = (ct + dy)y′ is exact.

Bernoulli Equations. Find the general solution of each of the following Bernoulli
equations. If an initial value is given, also solve the initial value problem.

11. y′ − y = ty2, y(0) = 1

12. y′ + ty = t3y3

13. (1− t2)y′ − ty = 5ty2

14. y′ + ty = ty3

15. y′ + y = ty3

General Equations. The following problems may any of the types studied so far.

16. y′ = ty − t, y(1) = 2

17. (t2 + 3y2)y′ = −2ty
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18. t(t + 1)y′ = 2
√

y

19. y′ =
y

t2 + 2t− 3

20. sin y + y cos t + 2t + (t cos y + sin t)y′ = 0

21. y′ +
1

t(t− 1)
y = t− 1

22. y′ − y = 1
2ety−1, y(0) = −1

23. y′ =
8t2 − 2y

t

24. y′ =
y2

t
, y(1) = 1
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Chapter 2

THE LAPLACE TRANSFORM

In this chapter we introduce the Laplace Transform and show how it gives a direct
method for solving certain initial value problems. This technique is extremely important
in applications since it gives an easily codified procedure that goes directly to the solution
of an initial value problem without first determining the general solution of the differen-
tial equation. The same theoretical procedure applies to ordinary differential equations
of arbitrary order (with constant coefficients) and even to systems of constant coefficient
linear ordinary differential equations, which will be treated in Chapter 6. Moreover the
same procedure applies to linear constant coefficient equations (of any order) for which
the forcing function is not necessarily continuous. This will be addressed in Chapter 4.

You are already familiar with certain operators which transform one function into
another. One particularly important example is the differentiation operator D which
transforms each function which has a derivative into its derivative, i.e., D(f) = f ′. The
Laplace transform L is an integral operator on certain spaces of functions on the interval
[0, ∞). By an integral operator, we mean an operator T which takes an input function
f and transforms it into another function F = T {f} by means of integration with a
kernel function K(s, t). That is,

T {f(t)} =

∫ ∞

0

K(s, t)f(t) dt = F (s).

The Laplace transform is the particular integral transform obtained by using the kernel
function

K(s, t) = e−st.

When applied to a (constant coefficient linear) differential equation the Laplace trans-
form turns it into an algebraic equation, one that is generally much easier to solve.
After solving the algebraic equation one needs to transform the solution of the algebraic

75
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equation back into a function that is the solution to the original differential equation.
This last step is known as the inversion problem.

This process of transformation and inversion is analogous to the use of the logarithm
to solve a multiplication problem. When scientific and engineering calculations were
done by hand, the standard procedure for doing multiplication was to use logarithm
tables to turn the multiplication problem into an addition problem. Addition, by hand,
is much easier than multiplication. After performing the addition, the log tables were
used again, in reverse order, to complete the calculation. Now that calculators are
universally available, multiplication is no more difficult than addition (one button is as
easy to push as another) and the use of log tables as a tool for multiplication is essentially
extinct. The same cannot be said for the use of Laplace transforms as a tool for solving
ordinary differential equations. The use of sophisticated mathematical software (Maple,
Mathematica, MatLab) can simplify many of the routine calculations necessary to apply
the Laplace transform, but it in no way absolves us of the necessity of having a firm
theoretical understanding of the underlying mathematics, so that we can legitimately
interpret the numbers and pictures provided by the computer. For the purposes of this
course, we provide a table (Table C.2) of Laplace transforms for many of the common
functions you are likely to see. This will provide a basis for studying many examples.

2.1 Definition of The Laplace Transform

If f(t) is a function defined for all t ≥ 0, then the Laplace transform of f is the
function L{f(t)} (s) = F (s) defined by the equation

F (s) = L{f(t)} (s) =

∫ ∞

0

e−stf(t) dt = lim
r→∞

∫ r

0

e−stf(t) dt (1)

provided the limit exists for all sufficiently large s. This means that there is a number
N , which will depend on the function f , so that the limit exists whenever s > N . If
there is no such N , then the function f will not have a Laplace transform.

Let’s analyze this equation somewhat further. The function f with which we start
will sometimes be called the input function. Generally, ‘t’ will denote the variable
for an input function f , while the Laplace transform of f , denoted L{f} (s), is a new
function (the output function), whose variable will usually be ‘s’. Thus Equation (1)
is a formula for computing the value of the function L{f} at the particular point s, so
that, in particular

F (2) = L{f} (2) =

∫ ∞

0

e−2tf(t) dt and F (−3) = L{f} (−3) =

∫ ∞

0

e3tf(t) dt,
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provided s = 2 and s = −3 are in the domain of L{f}.
Normally, we will use a lower case letter to denote the input function and the cor-

responding uppercase letter to denote its Laplace transform. Thus, F (s) is the Laplace
transform of f(t), Y (s) is the Laplace transform of y(t), etc. Hence there are two distinct
notations that we will be using for the Laplace transform. Thus

F (s) =

∫ ∞

0

e−stf(t) dt and L{f(t)} (s) =

∫ ∞

0

e−stf(t) dt

are interchangeable notations for the same function of s. It is also worth emphasizing
that, while the input function f has a well determined domain [0, ∞), the Laplace
transform L{f} (s) = F (s) is only defined for all sufficiently large s, and the domain
will depend on the particular input function f . In practice this will not be a problem,
and we will generally not emphasize the particular domain of F (s).

In this chapter we will only consider continuous input functions. However, later we
will ease this restriction and consider Laplace transforms of some functions which are
not continuous.

A particularly useful property of the Laplace transform, both theoretically and com-
putationally, is that of linearity. For the Laplace transform linearity means the follow-
ing, which, because of its importance, we state formally as a theorem.

Theorem 2.1.1. The Laplace transform is linear. In other words, if f and g are input
functions and a and b are constants then

L{af + bg} = aL{f}+ bL{g} .

Proof. This follows from the fact that (improper) integration is linear.

Laplace Transform of Elementary Functions

Example 2.1.2 (Constant Functions). Compute the Laplace transform of the con-
stant function 1.

I Solution. For the constant function 1 we have

L{1} (s) =

∫ ∞

0

e−st · 1 dt = lim
r→∞

e−ts

−s

∣∣∣∣
r

0

= lim
r→∞

e−rs − 1

−s
=

1

s
for s > 0.

J
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Some comments are in order. The condition s > 0 is needed for the limit

lim
r→∞

e−rs − 1

−s

that defines the improper integral
∫∞

0
e−st dt to exist. This is because

lim
r→∞

erc =

{
0 if c < 0

∞ if c > 0.

More generally, it follows from L’Hôpital’s rule that

lim
t→∞

tnect = 0 if n ≥ 0 and c < 0. (2)

This important fact (which you learned in calculus) is used in a number of calcu-
lations in the following manner. We will use the notation h(t)|∞a as a shorthand
for limr→∞ h(t)|ra = limr→∞(h(r) − h(a)). In particular, if limt→∞ h(t) = 0 then
h(t)|∞a = −h(a), so that Equation (2) implies

tnect
∣∣∞
0

=

{
0 if n > 0 and c < 0

−1 if n = 0 and c < 0.
(3)

Example 2.1.3 (Power functions). Compute the Laplace transform of tn.

I Solution. If n = 0 then f(t) = t0 = 1 and this case is thus given above. Assume
now that n > 0. Then

L{tn} (s) =

∫ ∞

0

e−sttn dt

and this integral can be computed using integration by parts with the choice of u and
dv from the following table:

u = tn dv = e−st dt

du = ntn−1 dt v =
−e−st

s

Using this table and the observations concerning L’Hôpital’s rule in the previous para-
graph, we find that if n > 0 and s > 0, then

L{tn} (s) =

∫ ∞

0

e−sttn dt

= tn
e−st

−s

∣∣∣∣
∞

0

+
n

s

∫ ∞

0

e−sttn−1 dt

=
n

s
L{

tn−1
}

(s).
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By iteration of this process (or by induction), we obtain (again assuming n > 0 and
s > 0)

L{tn} (s) =
n

s
L{

tn−1
}

(s)

=
n

s
· (n− 1)

s
L{

tn−2
}

(s)

=
n

s
· n− 1

s
· · · 2

s
· 1

s
L{

t0
}

(s).

But L{t0} (s) = L{1} (s) = 1/s so we conclude

L{tn} (s) =
n!

sn+1
, s > 0.

J
Example 2.1.4 (The exponential function). Compute the Laplace transform of eat

I Solution.

L{
eat

}
(s) =

∫ ∞

0

e−steat dt =

∫ ∞

0

e−(s−a)t dt =
e−(s−a)t

−(s− a)

∣∣∣∣
∞

0

.

From Equation (3), the right hand limit evaluates to 1/(s − a) provided the coefficient
of t in the exponential is negative. That is, provided s > a. Hence,

L{
eat

}
(s) =

1

s− a
, s > a.

J

We note that in this example the calculation can be justified for a ∈ C, once we have
noted what we mean by the complex exponential function. The main thing that we
want to note is that the complex exponential function ez (z ∈ C) satisfies the same rules
of algebra as the real exponential function, namely, ez1+z2 = ez1ez2 . This is achieved
by simply noting that the same power series which defines the real exponential makes
sense for complex values also. Recall that the exponential function ex has a power series
expansion

ex =
∞∑

n=0

xn

n!
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which converges for all x ∈ R. This infinite series makes perfectly good sense if x is
replaced by any complex number z, and moreover, it can be shown that the resulting
series converges for all z ∈ C. Thus, we define the complex exponential function by
means of the convergent series

ez :=
∞∑

n=0

zn

n!
. (4)

It can be shown that this function ez satisfies the expected functional equation, that is

ez1+z2 = ez1ez2 .

Since e0 = 1, it follows that
1

ez
= e−z. Taking z = it in Definition 4 leads to an important

formula for the real and imaginary parts of eit:

eit =
∞∑

n=0

(it)n

n!
= 1 + it− t2

2!
− i

t3

3!
+

t4

4!
+ i

t5

5!
− · · ·

= (1− t2

2!
+

t4

4!
− · · · ) + i(t− t3

3!
+

t5

5!
− · · · ) = cos t + i sin t,

where one has to know (from studying calculus) that the two series following the last
equality are the Taylor series expansions for cos t and sin t, respectively. In words, this
says that the real part of eit is cos t and the imaginary part of eit is sin t. Combining
this with the basic exponential functional property gives the formula, known as Euler’s
formula, for the real and imaginary parts of eαt (α = a + bi):

eαt = e(a+bi)t = eat+ibt = eateibt = eat(cos bt + i sin bt).

We formally state this as a theorem.

Theorem 2.1.5 (Euler’s Formula). If α = a + bi ∈ C and t ∈ R, then

eαt = eat(cos bt + i sin bt). (5)

An important conclusion of Euler’s formula is the limit formula

lim
t→∞

e(a+bi)t = 0, if a < 0.

More generally, the analog of Equation (3) (which also follows from Equation (2)) is

tne(a+bi)t
∣∣∞
0

=

{
0 if n > 0 and a < 0

−1 if n = 0 and a < 0.
(6)
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Example 2.1.6 (The complex exponential function). Compute the Laplace trans-
form of eαt, where α = a + bi.

I Solution.

L{
eαt

}
(s) =

∫ ∞

0

e−steαt dt

=

∫ ∞

0

e−(s−α)t dt =
e−(s−α)t

−(s− α)

∣∣∣∣
∞

0

.

From Equation (6), the right hand limit evaluates to 1/(s − α) provided the real part
of the coefficient of t in the exponential, i.e., −(s − a), is negative. That is, provided
s > a. Hence,

L{
eαt

}
(s) =

1

s− α
, s > a = Re α.

J
Example 2.1.7 (Sine and Cosine). Compute the Laplace transform of sin at and
cos at.

I Solution. A direct application of the definition of the Laplace Transform applied to
sin or cos would each require two integrations by parts; a tedious calculation. Linearity
and the use of the complex exponential function simplifies this substantially. On the
one hand, we have

L{
eibt

}
(s) =

1

s− ib

=
1

s− ib

s + ib

s + ib
=

s + ib

s2 + b2

=
s

s2 + b2
+ i

b

s2 + b2

On the other hand,

L{
eibt

}
(s) = L{cos bt + i sin bt} (s) by Euler’s Formula

= L{cos bt} (s) + iL{sin bt} (s) by linearity.

By equating the real and imaginary parts we obtain

L{cos bt} (s) =
s

s2 + b2
and L{sin bt} (s) =

b

s2 + b2

J
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Example 2.1.8. Compute the Laplace transform of tneat.

I Solution. Notice that

L{
tneat

}
(s) =

∫ ∞

0

e−sttneat dt =

∫ ∞

0

e−(s−a)tn dt = L{tn} (s− a). (7)

What this formula says is that the Laplace transform of the function tneat evaluated
at the point s is the same as the Laplace transform of the function tn evaluated at the
point s− a. Since L{tn} (s) = n!/sn+1, we conclude

L{
tneat

}
(s) =

n!

(s− a)n+1
, for s > a. (8)

We note that this formula is also valid for a ∈ C, where the condition s > a will be
replaced by s > Re a. J

As special cases of this example, we note that

L{
te2t

}
=

1

(s− 2)2
, L{

t2et
}

=
2

(s− 1)3
, and L{

t3e−2t
}

=
6

(s + 2)4
.

If the function tn in Equation (7) is replaced by an arbitrary function f(t) with a
Laplace transform F (s), then we obtain the following:

L{
eatf(t)

}
(s) =

∫ ∞

0

e−steatf(t) dt =

∫ ∞

0

e−(s−a)f(t) dt = L{f(t)} (s− a) = F (s− a).

This is an important observation, which usually is called the first translation formula
for the Laplace transform:

L{
eatf(t)

}
(s) = F (s− a). (9)

In words, this formula says that to compute the Laplace transform of f(t) multiplied
by eat, then it is only necessary to take the Laplace transform of f(t) (namely, F (s))
and replace the variable s by s − a, where a is the coefficient of t in the exponential
multiplier. Here is an example of this formula in use.

Example 2.1.9. Compute the Laplace transform of eat sin bt and eat cos bt.
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I Solution. From Example 2.1.7 we know that

L{cos bt} (s) =
s

s2 + b2
and L{sin bt} (s) =

b

s2 + b2
.

Replacing s by s− a in each of these formulas gives

L{
eat cos bt

}
(s) =

s− a

(s− a)2 + b2
and L{

eat sin bt
}

(s) =
b

(s− a)2 + b2
. (10)

J

For a numerical example, note that

L{
e−t sin 3t

}
=

3

(s + 1)2 + 9
and L

{
e3t cos

√
2t

}
=

s− 3

(s− 3)2 + 2
.

Example 2.1.10. Compute the Laplace transform of the functions tneat cos bt and
tneat sin bt.

I Solution. If α = a + bi then Euler’s formula shows that eαt = eat(cos bt + i sin bt) so
that multiplying by tn gives

tneαt = tneat cos bt + itneat sin bt.

That is, tneat cos bt is the real part and tneat sin bt is the imaginary part of tneαt. Since

L{
tneat cos bt

}
(s)+iL{

tneat sin bt
}

(s) = L{
tneαt

}
(s) =

n!

(s− α)n+1
=

n!

(s− (a + bi))n+1
,

we conclude that

L{tneat cos bt} (s) = Re

(
n!

(s− (a + bi))n+1

)
and

L{tneat sin bt} (s) = Im

(
n!

(s− (a + bi))n+1

)
.

(11)

J
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If we take n = 1 in the above example, then

1

(s− α)2
=

1

((s− a)− ib)2

=
1

((s− a)− ib)2
· ((s− a) + ib)2

((s− a) + ib)2

=
((s− a)2 − b2) + i2(s− a)b

((s− a)2 + b2)2
.

By taking real and imaginary parts of this last expression, we conclude that

L{
teat cos bt

}
(s) =

(s− a)2 − b2

((s− a)2 + b2)2
and L{

teat sin bt
}

(s) =
2(s− a)b

((s− a)2 + b2)2
. (12)

The functions that we have dealt with in this section occur repeatedly in the context
of differential equations. To be able to speak succinctly of these functions, we shall say
that the class E of elementary functions consists of all of the functions that can be
written as sums of scalar multiples of the functions tneat cos bt and tneat sin bt for some
integer n ≥ 0 and real numbers a and b. Thus, the linearity theorem (Theorem 2.1.1)
combined with the formulas (11) allow one to compute the Laplace transform of any
elementary function.

Example 2.1.11. The following are typical elementary functions:

1. 3t2 + te−0.5t + 1
2
cos t 2. et(t− 2 sin t)

3. 1 + t + t2 + · · ·+ tn 4. (t + e2t)2

5. sin2 t 6. (1 + 3 cos t)(t− 4et/3)

The first three functions are clearly in the class E . We will leave it as an exercise to
check that the last three are also in E .

The following are some typical functions that you might easily encounter, but which
are not in the class E that we have labelled elementary functions.

1. 1/t 2. ln t 3. et2 4. tan t 5.
√

t

Example 2.1.12. Compute the Laplace transform of 3− 5 cos 2t + 2e3t.

I Solution. Using the formulas derived above and linearity we obtain

L{
3− 5 cos 2t + 2e3t

}
(s) = 3L{1} (s)− 5L{cos 2t} (s) + 2L{

e3t
}

(s)

=
3

s
− 5s

s2 + 4
+

2

(s− 3)

J
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Exercises

1. Compute the Laplace transform of each function given below directly from the integral
definition given in Equation (1).

(a) 3t + 1

I Solution.

L{3t + 1} (s) =
∫ ∞

0
(3t + 1)e−st dt

= 3
∫ ∞

0
te−st dt +

∫ ∞

0
e−st dt

= 3
(

t

−s
e−st

∣∣∣∣
∞

0

+
1
s

∫ ∞

0
e−st dt

)
+
−1
s

e−st

∣∣∣∣
∞

0

= 3
((

1
s

)(−1
s

)
e−st

∣∣∣∣
∞

0

)
+

1
s

=
3
s2

+
1
s
.

J

(b) 5t− 9et (c) e2t − 3e−t (d) te−3t

2. Use linearity and the formulas for the Laplace transform of elementary functions to verify
your answers in Exercise 1.

Using the formulas for the Laplace transform of the elementary functions and the theorem
on linearity, compute the Laplace transform of each of the elementary functions in Exercises 3
– 22.

3. 5e2t

4. 3e−7t − 7t3

5. t2 − 5t + 4

6. t3 + t2 + t + 1

7. e−3t + 7e−4t

8. e−3t + 7te−4t

9. cos 2t + sin 2t

10. et(t− cos 2t)
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11. e−t/3 cos
√

6t

12. (t + e2t)2

13. (
√

2 + (0.123)t)e−(1.1)t

14. 5 cos 2t− 3 sin 2t + 4

15. e5t(8 cos 2t + 11 sin 2t)

16. t2 sin 2t

17. e−at − e−bt for a 6= b.

18. cos2 bt (Hint: cos2 θ = 1
2(1 + cos 2θ))

19. sin2 bt

20. sin bt cos bt Hint: Use an appropriate trigonometric identity.

21. cosh bt (Recall that cosh bt = (ebt + e−bt)/2.)

22. sinh bt (Recall that sinh bt = (ebt − e−bt)/2.)

23. Verify that the function f(t) = et2 does not have a Laplace transform. That is, show
that the improper integral that defines F (s) does not converge for any value of s.

24. Determine which of the following functions are in the class E of elementary functions.

(a) t2e−2t

(b) t−2e2t

(c) t/et

(d) et/t

(e) (t + et)2

(f) (t + et)−2

(g) tet/2

(h) t1/2et

(i) sin 2t/e2t

(j) e2t/ sin 2t

25. Verify that the class of elementary functions E is closed under the following operations.

(a) Addition. That is, show that if f and g are in E , then so is f + g.

(b) Multiplication. That is, show that if f and g are in E , then so is fg.

(c) Differentiation. That is, show that if f is in E , then so is the derivative f ′.
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Show that E is not closed under the operation of multiplicative inverse. That is, find a
function f in E such that 1/f is not in E .

2.2 Inverse Laplace Transform

In the previous section we introduced the class of elementary functions E . An elementary
function f(t) is one which can be obtained by taking sums of scalar multiples of functions
of the form tneat cos bt and tneat sin bt for some choices of the integer n ≥ 0 and real
numbers a and b. Formulas (8) and (11), in conjunction with the linearity theorem
(Theorem 2.1.1) provide the ability to compute the Laplace transform of any elementary
function. A review of each of these formulas then shows that the Laplace transform of
an elementary function is a sum of scalar multiples of terms

Re

(
n!

(s− α)n+1

)
and Im

(
n!

(s− α)n+1

)
. (1)

where α = a + bi. We can write

n!

(s− a− bi)n+1)
=

n!

(s− a− bi)n+1
· (s− a + bi)n+1

(s− a + bi)n+1
=

n!(s− a + bi)n+1

((s− a)2 + b2)n+1
,

and then expand the numerator into powers of s. Since i2k = (−1)k and i2k+1 = (−1)ki
it follows that both parts of formula (1) are of the form

P (s)

Q(s)
(2)

where P (s) is a (real) polynomial in the variable s of degree ≤ n + 1 and Q(s) =
((s − a)2 + b2)n+1 is a polynomial in s of degree 2n + 2. Recall that a polynomial is
a function f(s) of the form f(s) = amsm + am−1s

m−1 + · · · + a1s + a0 where m is a
nonnegative integer, and the coefficients aj are real numbers. The degree of f(s) is
m if am 6= 0. A function P (s)/Q(s) which is the quotient of two (real) polynomials is
referred to as a (real) rational function. If the degree of the numerator is less than
the degree of the denominator, then P (s)/Q(s) is a proper rational function. The
set of rational functions (with real coefficients) will be denoted by R(s) and the set of
proper rational functions will be denoted by Rpr(s).

Example 2.2.1. Among the following functions,

1.
1

s2 + 4
2.

1

s
+

3

s2
3. s2 + 4 4.

s2 + 3s− 1

3s3 + 2s + 5
5.

s3 + 1

s2 − 1
6.

1

s1/2
,
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functions 1–5 are rational functions, that is in the set R(s), while functions 1, 2, and
4 are proper rational functions, that is, they are in the set Rpr(s). Function 6 is not
rational since the exponent in the denominator is 1/2, which is not even an integer.

Example 2.2.2. Let F1(s) = 1/(s + 1) and F2(s) = s/(s2 + 4). Note that each of these
rational functions is proper because the degree of the polynomial in the denominator is
larger than the degree in the numerator. Computing F1(s) + F2(s) and F1(s)F2(s) gives

F1(s) + F2(s) =
1

s + 1
+

s

s2 + 4
=

2s2 + s + 4

s3 + s2 + 4s + 4

F1(s)F2(s) =
1

s + 1

s

s2 + 4
=

s

s3 + s2 + 4s + 4
.

What we observe is that F1(s)+F2(s) and F1(s)F2(s) are also proper rational functions.
That is, the property of being a proper rational function is preserved under the algebraic
operations of addition and multiplication. This is not a special property of the particular
functions written down here, but is a general property of proper rational functions. This
property is normally expressed by saying that the set Rpr(s) of proper rational functions
is closed under the operations of addition and multiplication. We note that it is also
closed under multiplication by scalars, that is, if F(s) is a proper rational function and
a is a real constant, then aF (s) is also a proper rational function.

The calculations of Laplace transforms of elementary functions done in the previous
section, culminating in formulas (8) and (11), show that the Laplace transform is an
operator which takes a function f(t) in E and produces a function F (s) in Rpr(s). In
symbols, we have that L is a function

L : E −→ Rpr(s).

According to the theory of partial fraction decompositions, every proper rational function
is a sum of scalar multiples of the simple rational functions

1

(s + a)k
,

1

(s2 + as + b)k
and

s

(s2 + as + b)k

for appropriate choices of the constants a and b. Since

L
{

tk−1e−at

(k − 1)!

}
=

1

(s + a)k
, (3)

we see that the simple rational function 1/(s+a)k is in the image of the Laplace transform
operator L. It is also true that each of the other simple rational functions is in the
image of L. This fact will be verified in Section 2.5 after some additional techniques are
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developed. What this says, in conjunction with the linearity principle (Theorem 2.1.1), is
that the Laplace transform operator L : E −→ Rpr(s) is an onto function, i.e., the image
of L is all of Rpr(s) (that is, every F (s) ∈ Rpr(s) can be written as L{f(t)} for some
f(t) ∈ E). It is also true, although we will not verify it directly, that L : E −→ Rpr(s) is
a one-to-one function (that is, L{f(t)} = L{g(t)} =⇒ f(t) = g(t)). Therefore, L has
an inverse function L−1 : Rpr(s) −→ E , that we will refer to as the inverse Laplace
transform, determined by the standard property of an inverse function:

L−1 {F (s)} = f(t) ⇐⇒ L{f(t)} = F (s). (4)

Thus Equation (3) is equivalent to the statement

L−1

{
1

(s + a)k

}
=

1

(k − 1)!
tk−1e−at, (5)

while the formulas

L{cos bt} =
s

s2 + b2
and L

{
sin bt

b

}
=

1

s2 + b2

are equivalent to the inverse Laplace transform formulas

L−1

{
s

s2 + b2

}
= cos bt and L−1

{
1

s2 + b2

}
=

sin bt

b
. (6)

Moreover, the linearity property of L, namely

L{c1f(t) + c2g(t)} = c1L{f(t)}+ c2L{g(t)} ,

produces a corresponding linearity property for the inverse Laplace transform L−1:

L−1 {c1F (s) + c2G(s)} = c1L−1 {F (s)}+ c2L−1 {G(s)} .

Here, c1 and c2 are arbitrary constants.

We record these observations in the following fundamental result.

Theorem 2.2.3. The Laplace transform L : E −→ Rpr(s) is a one-to-one onto operator
with an inverse function L−1 : Rpr −→ E. Moreover, L−1 satisfies the linearity property

L−1 {c1F (s) + c2G(s)} = c1L−1 {F (s)}+ c2L−1 {G(s)} ,

where c1 and c2 are arbitrary constants.
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The set E of elementary functions will be referred to as the input space for the
Laplace transform and the set Rpr(s) of proper rational functions will be referred to as the
transform space. Thus, we think of the Laplace transform dynamically as transforming
a function f(t) from the input space E into a function F (s) in the transform space
Rpr(s). Similarly, we think of the inverse Laplace transform dynamically as transforming
a function F (s) in the transform space into a function f(t) in the input space. A pair of
functions f(t) ∈ E and F (s) ∈ Rpr(s) related by L{f(t)} = F (s) is called a transform
pair, and we will express this relationship by means of the symbol f(t) ←→ F (s).
Of course, we already have the convention that the Laplace transform of a function
f(t), named by a lower case letter, is indicated by the corresponding upper case letter
F (s). But the notation of transform pairs is particularly suited to functions indicated
by explicit formulas. Thus,

1 ←→ 1

s
, e3t ←→ 1

s− 3
, and sin t ←→ 1

s2 + 1

are examples of transform pairs.

In applications it is commonly necessary to be able to find f(t) given F (s). For
example, it is frequently easy to produce the Laplace transform Y (s) of a solution
of a differential equation. Then to solve the equation, it is necessary to find y(t) =
L−1 {Y (s)}. This particular application will be explored in Section 2.4 and in more
detail in later chapters.

One technique for finding f(t) given F (s) is to assemble a table of Laplace transform
pairs, such as we have done in Table C.2, and try to manipulate F (s) so that it is
possible to recognize it in the table. Since F (s) is a proper rational function, at least
in the cases considered in this chapter, the manipulation of F (s) will consist primarily
of the algebraic tool of partial fraction decomposition, which you have probably studied
previously in your calculus class. Partial fraction decompositions as needed for inverse
Laplace transform calculations will be considered in detail in Section 2.3. For now, we
will illustrate this technique with a few simple examples after first recalling the first
translation formula and expressing it in the language of inverse Laplace transforms.

In the language of transform pairs, the first translation formula (Equation (9) of
Section 2.1) can be expressed as follows:

Translation in transform space

eatf(t) ←→ F (s− a)
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Since L−1 {F (s)} = f(t), this formula states that

L−1 {F (s− a)} = eatf(t) = eatL−1 {F (s)} .

Multiplying both sides of this equation by e−at, we arrive at the following formula, which
we will refer to as the alternate first translation formula:

L−1 {F (s)} = e−atL−1 {F (s− a)} (7)

Here are some examples of the use of this formula.

Example 2.2.4. Compute L−1

{
2s + 3

(s + 1)2

}
.

I Solution. Let F (s) =
2s + 3

(s + 1)2
. The strategy is to try to choose a constant a so

that the translated function F (s− a) becomes recognizable among the functions whose
inverse Laplace transforms we have already identified in Equations (5) and (6). If we let
a = 1 (chosen to simplify the denominator) then

F (s− a) = F (s− 1) =
2(s− 1) + 3

((s− 1) + 1)2
=

2s + 1

s2
=

2

s
+

1

s2
.

Applying the alternate first translation formula and the fact that

L−1

{
1

sk

}
=

tk−1

(k − 1)!

(Equation (5)) we conclude

f(t) = L−1 {F (s)} = e−tL−1 {F (s− 1)}
= e−t

(
L−1

{
2

s

}
+ L−1

{
1

s2

})

= e−t (2 + t) .

J

Example 2.2.5. Compute L−1

{
1

s2 + 6s + 25

}
.
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I Solution. Start by completing the square in the denominator to get

L−1

{
1

s2 + 6s + 25

}
= L−1

{
1

(s + 3)2 + 16

}
.

The right hand side is in precisely the form of Equation (10) of Section 2.1, so we
conclude that

L−1

{
1

s2 + 6s + 25

}
=

e−3t sin 4t

4
.

J

Example 2.2.6. Compute L−1

{
3s + 2

s2 + 4s + 7

}
.

I Solution. Let F (s) =
3s + 2

s2 + 4s + 7
, and start by completing the square to get

L−1

{
3s + 2

s2 + 4s + 7

}
= L−1

{
3s + 2

(s + 2)2 + 3

}
.

Letting a = 2 gives

F (s− a) = F (s− 2) =
3(s− 2) + 2

((s− 2) + 2)2 + 3
=

3s− 4

s2 + 3
=

3s− 4

s2 + (
√

3)2
.

The alternate first translation formula and formulas (6) give

L−1

{
3s + 2

s2 + 4s + 7

}
= e−2tL−1

{
3s− 4

s2 + (
√

3)2

}

= e−2t

(
3L−1

{
s

s2 + (
√

3)2

}
− 4L−1

{
1

s2 + (
√

3)2

})

= e−2t

(
3 cos

√
3t− 4√

3
sin
√

3t

)
.

J

Example 2.2.7. Compute L−1

{
5s + 11

s2 + 6s− 7

}
.

I Solution. The difference between this example and the previous one is that the
denominator factors as s2+6s−7 = (s+7)(s−1). Using the technique of partial fraction
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decomposition that you learned in calculus (and which will be reviewed in detail in the
next section) we get

L−1

{
5s + 11

s2 + 6s− 7

}
= L−1

{
3

s + 7
+

2

s− 1

}

= 3L−1

{
1

s + 7

}
+ 2L−1

{
1

s− 1

}

= 3e−7t + 2et.

J

Exercises

1. Identify each of the following functions as proper rational (PR), rational but not proper
rational (R) , or not rational (NR).

(a)
s2 − 1

(s− 2)(s− 3)
(b)

2s− 1
(s− 2)(s− 3)

(c) s3 − s2 + 1

(d)
1

s− 2
+

s

(s + 1)(s2 + 1)
(e)

1
s− 2

· s

(s + 1)(s2 + 1)
(f)

2s + 4
s3/2 − s + 1

(g)
cos(s + 1)
sin(s2 + 1)

(h)
(

3s− 4
2s2 + s + 5

)2

(i)
2s

3s

In Exercises 2 through 20 compute L−1 {F (s)} for the given proper rational function F (s).

2.
−5
s

3.
3
s2
− 4

s3

4.
4

2s + 3

5.
3s

s2 + 2

6.
−2s

3s2 + 2

7.
2

s2 + 3

8.
3s + 2
3s2 + 2
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9.
1

s2 + 6s + 9

10.
2s− 5

s2 + 6s + 9

11.
2s− 5

(s + 3)3

12.
2s2 − 5s + 1

(s− 2)4

13.
s + 2

(s + 2)2 + 9

14.
s− 1

s2 − 2s + 10

15.
2s + 5

s2 + 6s + 18

16.
3s− 2

s2 + 4s + 6

17.
5s + 3

2s2 + 2s + 1

18.
s

s2 − 5s + 6

19.
5

s2 + 2s− 8

20.
2s + 6

s2 − 6s + 5

21. Verify each of the following inverse Laplace transform formulas:

(a) L−1

{
1

(s + a)2 + b2

}
=

e−at sin bt

b

(b) L−1

{
s

(s + a)2 + b2

}
=

e−at(b cos bt− a sin bt)
b

(c) L−1

{
1

(s + a)2 − b2

}
=

e−at sinh bt

b

(d) L−1

{
s

(s + a)2 − b2

}
=

e−at(b cosh bt− a sinh bt)
b
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2.3 Partial Fractions

The Laplace transform of any elementary function f(t) ∈ E is a proper rational function
F (s) = P (s)/Q(s). The problem of finding f(t) given F (s), that is, finding L−1 {F (s)}
is facilitated by writing F (s) as a sum of simpler proper rational functions, known as
the partial fractions of F (s). The process of writing a given proper rational function
F (s) as a sum of partial fractions is known as the partial fraction decomposition of
F (s). The partial fractions are chosen from the simple rational functions

1

(s− r)k
,

1

(s2 + bs + c)k
and

s

(s2 + bs + c)k
,

where r, b and c are real numbers and the quadratic s2 + bs + c has no real roots, i.e.,
s2+bs+c is irreducible over the reals. Since the roots of s2+bs+c are (−b±√b2 − 4c)/2,
the roots are not real precisely when b2 − 4c < 0.

Since F (s) is a proper rational function, it may be written as

F (s) =
P (s)

Q(s)
=

bmsm + bm−1s
n−1 + · · ·+ b1s + b0

ansn + an−1sn−1 + · · ·+ a1s + a0

, (1)

where n > m. We will always assume that the coefficient of the highest term in Q(s) is
1, so that

Q(s) = sn + an−1s
n−1 + · · ·+ a1s + a0.

(If this is not the case, then one has to factor out the leading coefficient an of the denom-
inator, Q(s) before starting with the partial fraction decomposition). The denominator
Q(s), which is a polynomial of degree n, will have a certain number of real roots, and a
certain number of roots α ∈ C (but α /∈ R) that appear in complex conjugate pairs α
and α. If α = β + iγ then

(s− α)(s− α) = s2 − 2βs + (β2 + γ2).

Thus complex conjugate pairs of roots can be combined to give irreducible quadratic
factors of Q(s). Hence Q(s) can be expressed as

Q(s) = (s− r1)
k1 · · · (s− rh)

kh(s2 + b1s + c1)
l1 · · · (s2 + bjs + cj)

lj , (2)

where r1, . . ., rh are h distinct real numbers, the j distinct real second order terms
s2 + b1s + c1, . . ., s2 + bjs + cj are irreducible, and k1 + · · ·+ kh + 2l1 + · · ·+ 2lj = n.

With these notational preliminaries out of the way, the partial fraction decomposition
of the proper rational function F (s) = P (s)/Q(s) is a sum of exactly n = deg(Q(s))
scalar multiples of simple rational functions determined from the denominator Q(s) by
the following two rules:
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PF1. If k is the power of a linear term s − r in the factorization of Q(s), then each of
the following k terms appear in the partial fraction decomposition of P (s)/Q(s):

1

s− r
,

1

(s− r)2
, · · · ,

1

(s− r)k

PF2. If l is the power of an irreducible quadratic term s2 + bs + c in the factorization
of Q(s) then each of the following 2l terms appear in the partial fraction decom-
position of P (s)/Q(s):

1

s2 + bs + c
,

1

(s2 + bs + c)2
, · · · ,

1

(s2 + bs + c)l

and
s

s2 + bs + c
,

s

(s2 + bs + c)2
, · · · ,

s

(s2 + bs + c)l

By the form of the partial fraction decomposition for P (s)/Q(s) we mean the ex-
pression of P (s)/Q(s) as a linear combination, with undetermined coefficients, of the
functions listed above corresponding to the roots (both real and complex) of the denom-
inator Q(s). Of course, one must find the coefficients, which generally involves solving
some system of linear equations. The solution of the linear equations can be greatly
simplified in certain commonly occurring special cases, which we explain in more detail
now.

Case 1. Distinct real roots.

If Q(s) = (s − r)Q1(s), where r is a real number, Q1(r) 6= 0 (so that r is a root of the
denominator Q(s) of multiplicity 1), and if deg P (s) < n, then rule PF1 states that the
term 1/(s − r) will appear in the partial fraction decomposition of F (s) = P (s)/Q(s),
but no higher power of 1/(s− r) will appear. Thus

F (s) =
P (s)

Q(s)
=

A

s− r
+ F1(s), (3)

where A is a constant to be determined, and F1(s) is a rational function representing
all the terms not involving a power of 1/(s− r). In particular, F1(s) is defined at s = r
and F1(r) 6= 0. Multiplying Equation (3) by Q(s) gives

P (s) = A
Q(s)

s− r
+ Q(s)F1(s).
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Since Q(r) = 0 we can rewrite this equation as

P (s) = A
Q(s)−Q(r)

s− r
+ Q(s)F1(s).

The first part of this expression is a difference quotient for computing the derivative of
Q(s), so taking the limit as s approaches r, gives P (r) = AQ′(r). Thus, we have shown
that the coefficient, in the partial fraction expansion, of a term 1/(s− r) corresponding
to a simple root of the denominator Q(s) is given by

A =
P (r)

Q′(r)
. (4)

In the case that all of the roots of Q(s) are distinct, so that

Q(s) = (s− r1) · · · (s− rn),

then the complete partial fraction decomposition of F (s) = P (s)/Q(s) has the form

P (s)

Q(s)
=

A1

s− r1

+ · · ·+ An

s− rn

, (5)

and the coefficients Ai are given by Equation (4) as

Ai =
P (ri)

Q′(ri)
where Q′(ri) =

∏

j 6=i

(ri − rj). (6)

The formula for Q′(ri) given in Equation (6), when written out without the summation
sign is:

Q′(ri) = (ri − r1) · · · (ri − ri−1)(ri − ri+1) · · · (ri − rn).

In words, this says that Q′(ri) is obtained from Q(s) by deleting the term (s− ri) from
Q(s) and then replacing s with ri. For example, if Q(s) = (s− 1)(s− 3)(s− 5)(s− 7),
then

Q′(3) = (3− 1)(3− 5)(3− 7) = 16.

Example 2.3.1. Find the partial fraction decomposition of

2s + 4

s2 − 2s− 3
.
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I Solution. Here Q(s) = s2 − 2s− 3 = (s− 3)(s + 1) has roots 3 and −1 and

P (3)

Q′(3)
=

10

4
=

5

2
and

P (−1)

Q′(−1)
=

2

−4
= −1

2
.

Thus
2s + 4

s2 − 2s− 3
=

5

2
· 1

s− 3
− 1

2
· 1

s + 1
.

J

Since L−1

{
1

s− r

}
= ert, the partial fraction expansion formula (5) immediately

gives the following result, known as the Heaviside expansion formula.

Theorem 2.3.2 (Heaviside Expansion Formula). If

Q(s) = (s− r1)(s− r2) · · · (s− rn),

where r1, . . ., rn are distinct real numbers, and if deg P (s) < n, then the inverse Laplace
transform of F (s) = P (s)/Q(s) is

L−1

{
P (s)

Q(s)

}
=

P (r1)

Q′(r1)
er1t + · · ·+ P (rn)

Q′(rn)
ernt. (7)

Example 2.3.3. Compute the inverse Laplace transform of

F (s) =
s

(s + 1)(s− 2)(s + 3)
.

I Solution. We observe that the denominator is the product of distinct linear terms,
so Theorem 2.3.2 applies and we obtain

L−1 {F (s} =
(−1)e−t

(−1− 2)(−1 + 3)
+

(2)e2t

(2 + 1)(2 + 3)
+

(−3)e−3t

(−3 + 1)(−3− 2)

=
e−t

6
+

2e2t

15
− 3e−3t

10

J

Example 2.3.4. Find the inverse Laplace transform of

F (s) =
s2 − 4s + 1

s3 − 9s
.
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I Solution. Write F (s) = P (s)/Q(s) and observe that Q(s) = s(s− 3)(s + 3) factors
into a product of distinct linear terms. Apply Theorem 2.3.2 to obtain

L−1 {F (s)} =
P (0)e0t

(3)(−3)
+

P (−3)e−3t

(−3)(−6)
+

P (3)e3t

(3)(6)

= −1

9
+

22e−3t

18
− 2e3t

18

J

Case 2. Real roots of multiplicity > 1.

If Q(s) = (s− r)kQ1(s) where Q1(r) 6= 0 (that is r is a root of the denominator Q(s) of
multiplicity exactly k) and deg P (s) < n = deg Q(s), then rule PF1 gives

F (s) =
P (s)

Q(s)
=

A1

s− r
+

A2

(s− r)2
+ · · ·+ Ak

(s− r)k
+ F1(s), (8)

where A1, . . ., Ak are constants to be determined and F1(s) is a rational function repre-
senting all the terms not involving a power of 1/(s−r). The constants can be determined
by solving a system of linear equations as was done in calculus, or one can proceed as
follows. Multiply Equation (8) by (s− r)k to clear the denominators of powers of s− r.
This gives

(s− r)kF (s) = A1(s− r)k−1 + A2(s− r)k−2 + · · ·+ Ak + (s− r)kF1(s). (9)

Since F1(r) 6= 0, if we let H(s) = (s − r)kF1(s) then it is a simple exercise using the
product rule for derivatives to conclude that H(j)(r) = 0 for 0 ≤ j ≤ k − 1. Letting
G(s) = (s− r)kF (s) and applying this observation to Equation (9), we conclude

Aj =
G(k−j)(r)

(k − j)!
. (10)

To see this, note that

d`

ds`
(s− r)m

∣∣∣∣
s=r

=





0 if 0 ≤ ` < m,

m! if ` = m

0 if ` > m,

and apply this observation to the (k − j)th derivative of (9) to arrive at (10).
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Remark 2.3.5. For polynomials, the calculation of the Taylor polynomial centered at r
is easily accomplished algebraically (without formally computing derivatives) by means
of the substitution s = (s − r) + r. Thus if P (s) = s2 + 4s − 3 and r = 2, the Taylor
polynomial centered about r = 2 is given by

P (s) = ((s− 2) + 2)2 + 4((s− 2) + 2)− 3 = (s− 2)2 + 8(s− 2) + 9.

Example 2.3.6. Find the partial fraction decomposition of
s2 + 4s− 3

(s− 2)3
.

I Solution. As observed above, the Taylor series for P (s) = s2 + 4s − 3 about r = 2
is given by

s2 + 4s− 3 = (s− 2)2 + 8(s− 2) + 9.

Dividing by (s− 2)3 gives

s2 + 4s− 3

(s− 2)3
=

1

s− 2
+ 8 · 1

(s− 2)2
+ 9 · 1

(s− 2)3
.

J

If Q(s) = (s − r1)
k1 · · · (s − rh)

kh is a polynomial of degree n = k1 + · · · + kh and
deg P (s) < n, then P (s)/Q(s) will be a sum of h parts, and each of these h parts will
have the form of Equation (8) with n replaced by k1, k2, . . . , kh. In this case one should
work directly with systems of linear equations to find the constants Aj, as illustrated by
the following example.

Example 2.3.7. Find the partial fraction decomposition of

F (s) =
s3 + s + 3

(s− 1)3(s + 2)
.

I Solution. The partial fraction expansion of F (s) can be written as

P (s)

Q(s)
=

s3 + s + 3

(s− 1)2(s + 2)
=

A1

s− 1
+

A2

(s− 1)2
+

A3

(s− 1)3
+

B

s + 2
.

If we multiply both sides of this equation by Q(s) = (s− 1)3(s + 2) we get

P (s) = s3 + s + 3 = A1(s− 1)2(s + 2) + A2(s− 1)(s + 2) + A3(s + 2) + B(s− 1)3.

If we set s = 1, we conclude that A3 = P (1)/3 = 5/3; if we set s = −2, we conclude that
B = P (−2)/(−27) = 1/27; and if we compare the coefficients of s3 on the left and right



2.3. PARTIAL FRACTIONS 101

of this equation, we see that A1 + B = 1, so A1 = 26/27. Thus we have determined all
of the coefficients except for A2. This can be determined by evaluating both sides of the
above equation at another value of s. Any value of s not already used will work, so we
may as well choose a simple one such as s = 0. This gives P (0) = 3 = 2A1−2A2+2A3−B.
Solving for A2 gives A2 = 10/9. Hence,

F (s) =
26

27
· 1

s− 1
+

10

9
· 1

(s− 1)2
+

5

3
· 1

(s− 1)3
+

1

27
· 1

s + 2
.

J

Example 2.3.8. Compute L−1 {F (s)} for the proper rational function

F (s) =
s3 + s + 3

(s− 1)3(s + 2)
.

I Solution. This is the function F (s) whose partial fraction expansion was computed
in the previous example as

F (s) =
26

27
· 1

s− 1
+

10

9
· 1

(s− 1)2
+

5

3
· 1

(s− 1)3
+

1

27
· 1

s + 2
.

Since

L−1

{
1

(s− r)k

}
=

1

(k − 1)!
tk−1ert,

we conclude that

L−1 {F (s)} =
26

27
et +

10

9
tet +

5

6
t2et +

1

27
e−2t.

J

Case 3. Irreducible quadratic denominators.

If Q(s) = (s2 + as + b)l, where s2 + as + b is an irreducible real second order term and
deg P (s) < 2l = n, then

P (s)

Q(s)
=

B1s + C1

s2 + as + b
+

B2s + C2

(s2 + as + b)2
+ · · ·+ Bls + Cl

(s2 + as + b)l
, (11)

where Bi, Ci are constants which can be determined by solving a system of linear equa-
tions as was done in calculus.
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If
Q(s) = (s− r1)

k1 · · · (s− rh)
kh(s2 + b1s + c1)

l1 · · · (s2 + bjs + cj)
lj ,

where r1, . . ., rh are h distinct real numbers, the j distinct real second order terms
s2 + b1s + c1, . . ., s2 + bjs + cj are irreducible, and k1 + · · · + kh + 2l1 + · · · + 2lj = n,
then P (s)/Q(s) will be a sum of i + j parts, and each of the first i parts will have the
form of Equation (8) with n replaced by k1, · · · , kh, and each of the last j parts will have
the form of Equation (11) with l replaced by l1, · · · , lj. In this case one should work
with systems of linear equations to find the constants Ar, Br, Cr, as illustrated by the
following example.

Example 2.3.9. (a) Find the partial fraction decomposition of

F (s) =
s + 3

(s− 1)2(s2 + 1)
.

I Solution. According to the above remarks,

s + 3

(s− 1)2(s2 + 1)
=

A1

s− 1
+

A2

(s− 1)2
+

B1s + C1

s2 + 1
.

If we multiply both sides of this equation by Q(s) = (s− 1)2(s2 + 1) we get

s + 3 = A1(s− 1)(s2 + 1) + A2(s
2 + 1) + (B1s + C1)(s− 1)2.

If we set s = 1, we conclude that A2 = 2; i.e.,

−2s2 + s + 1 = A1(s− 1)(s2 + 1) + (B1s + C1)(s− 1)2.

To compute the three unknowns A1, B1, C1 we select three numbers different from 1, for
example s = 0,−1, 2, and obtain the three equations

1 = −A1 + C1

−2 = −4A1 − 4B1 + 4C1

−5 = 5A1 + 2B1 + C1,

whose solutions are A1 = −3/2, B1 = 3/2, and C1 = −1/2. Hence,

s + 3

(s− 1)2(s2 + 1)
= −3

2
· 1

s− 1
+ 2 · 1

(s− 1)2
+

3

2
· s

s2 + 1
− 1

2
· 1

s2 + 1
.

J

(b) Find the partial fraction decomposition of

P (s)

Q(s)
=

4s2 − 16s

(s2 + 4)(s− 2)2
.
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I Solution. The form of the decomposition is

4s2 − 16s

(s2 + 4)(s− 2)2
=

Bs + C

s2 + 4
+

A1

s− 2
+

A2

(s− 2)2
.

Multiply both sides by the denominator Q(s) = (s2 + 4)(s− 2)2 to obtain

4s2 − 16s = (Bs + C)(s− 2)2 + A1(s
2 + 4)(s− 2) + A2(s

2 + 4).

Multiply the right side out and gather coefficients to get

4s2 − 16s = (B + A1)s
3 + (−4B + C − 2A1 + A2)s

2

+(4B − 4C + 4A1)s + (4C − 8A1 + 4A2).

Equate the coefficients to obtain the following system of equations:

B + A1 = 0
−4B + C − 2A1 + A2 = 4

4B − 4C + 4A1 = −16
4C − 8A1 + 4A2 = 0

This system of linear equations can be solved by the standard Gauss-Jordan elimination
technique. See Chapter 5 for details. The solution obtained is

B = −1, C = 4, A1 = 1, and A2 = −2,

which produces the partial fraction decomposition

4s2 − 16s

(s2 + 4)(s− 2)2
= − s

(s2 + 4)
+ 4 · 1

(s2 + 4)
+

1

s− 2
− 2 · 1

(s− 2)2
.

J

(c) What is the form of the partial fraction decomposition of

P (s)

Q(s)
=

3s2 + 2s− 1

(s2 + 2s + 2)2(s− 1)(s + 4)3
.

I Solution. The form of the partial fraction decomposition is

P (s)

Q(s)
=

B1s + C1

(s2 + 2s + 2)
+

B2s + C2

(s2 + 2s + 2)2
+

A

s− 1
+

D1

s + 4
+

D2

(s + 4)2
+

D3

(s + 4)3
.

We observe that the form of the partial fraction decomposition is completely independent
of the numerator P (s). By multiplying both sides by the common denominator Q(s),
and equating the coefficients one is led to a system of eight equations that determine
the eight coefficients A,B1, B2, C1, C2, D1, D2, D3. J
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Example 2.3.10. Compute the inverse Laplace transforms of the proper rational func-
tions

F (s) =
s + 3

(s− 1)2(s2 + 1)
and G(s) =

4s2 − 16s

(s2 + 4)(s− 2)2

from parts (a) and (b) of the previous example.

I Solution. Since

F (s) = −3

2
· 1

s− 1
+ 2 · 1

(s− 1)2
+

3

2
· s

s2 + 1
− 1

2
· 1

s2 + 1
,

we conclude that

L−1 {F (s)} = −3

2
et + 2tet +

3

2
cos t− 1

2
sin t,

and

G(s) = − s

(s2 + 4)
+ 4 · 1

(s2 + 4)
+

1

s− 2
− 2 · 1

(s− 2)2

implies that
L−1 {G(s)} = − cos 2t + 2 sin 2t + e2t − 2te2t.

J

Summary

By the algebraic technique of partial fraction decomposition, it is possible to write every
proper rational function F (s) as a linear combination of simple rational functions

1

(s− r)k
,

1

(s2 + bs + c)k
and

s

(s2 + bs + c)k
,

where r, b and c are real numbers and the quadratic s2 + bs + c is irreducible over the
reals. Thus we can find the inverse Laplace transform of any proper rational function
provided that we can find the inverse Laplace transform of the simple rational functions.
But we have already seen that

L−1

{
1

(s− r)k

}
=

1

(k − 1)!
tk−1ert,

while in Section 2.2 we saw how to combine completion of the square with the first
translation formula (Equation (7)) in order to compute the inverse Laplace transform of
the simple rational functions

1

(s2 + bs + c)k
and

s

(s2 + bs + c)k
,
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for the case k = 1. The general case for k > 1 will be considered in Section 2.5. For
now we will show how to use the techniques already developed to handle the case k = 2.
That is we will compute

L−1

{
1

(s2 + bs + c)2

}
and L−1

{
s

(s2 + bs + c)2

}
.

By completing the square and using the first translation formula, it is sufficient to
establish the following result.

Proposition 2.3.11. We have the following formulas:

L−1

{
s

(s2 + b2)2

}
(t) =

1

2b
t sin bt (12)

and L−1

{
1

(s2 + b2)2

}
(t) =

1

2b3
(sin bt− bt cos bt). (13)

Proof. Equations (12) of Section 2.1, namely

L{
teat cos bt

}
(s) =

(s− a)2 − b2

((s− a)2 + b2)2
and L{

teat sin bt
}

(s) =
2(s− a)b

((s− a)2 + b2)2
,

imply (by setting a = 0) that

L−1

{
s

(s2 + b2)2

}
=

1

2b
t sin bt and L−1

{
s2 − b2

(s2 + b2)2

}
= t cos bt.

The first formula is the first of the required two formulas. For the second formula, note
that

s2 − b2

(s2 + b2)2
=

s2 + b2

(s2 + b2)2
− 2b2

(s2 + b2)2
=

1

s2 + b2
− 2b2

(s2 + b2)2
.

Hence,
1

(s2 + b2)2
=

1

2b2

(
1

s2 + b2
− s2 − b2

(s2 + b2)2

)
,

so that

L−1

{
1

(s2 + b2)2

}
=

1

2b2

(
sin bt

b
− t cos bt

)
=

1

2b3
(sin bt− bt cos bt),

as required.
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Exercises

Use partial fraction decompositions to find the inverse Laplace transform of the given proper
rational function.

1.
1

(s + 2)(s− 5)

2.
5s + 9

(s− 1)(s + 3)

3.
8 + s

s2 − 2s− 15

4.
1

s2 − 3s + 2

5.
5s− 2

s2 + 2s− 35

6.
3s + 1
s2 + s

7.
2s + 11

s2 − 6s− 7

8.
2s2 + 7

(s− 1)(s− 2)(s− 3)

9.
s + 1
s2 − 3

10.
s2 + s + 1

(s− 1)(s2 + 3s− 10)

11.
7

(s + 4)4

12.
s

(s− 3)3

13.
s2 + s− 3
(s + 3)3

14.
5s2 − 3s + 10
(s + 1)(s + 2)2

15.
s2 − 6s + 7

(s2 − 4s− 5)2
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16.
2

(s + 1)2 + 16

17.
2s

(s + 1)2 + 16

18.
5

2s + 3

19.
s + 3

4s2 + 4s− 3

20.
3s + 2

(s− 2)2 + 3

21.
2 + 3s

s2 + 6s + 13

22.
5 + 2s

s2 + 4s + 29

23.
3s + 1

(s− 1)(s2 + 1)

24.
3s2 − s + 6

(s + 1)(s2 + 4)

25.
2s2 + 14

(s− 1)(s2 + 2s + 5)

26.
s3 + 3s2 − s + 3

(s2 + 4)2

2.4 Initial Value Problems

The Laplace transform is particularly well suited for solving certain types of differential
equations, namely the constant coefficient linear differential equations

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f(t), (1)

where a0, . . ., an are (real) constants, the function f(t) ∈ E is an elementary function,
and the initial values of the unknown function y(t) are also specified:

y(0) = y0, y′(0) = y1, . . . , y(n−1) = yn−1.



108 CHAPTER 2. THE LAPLACE TRANSFORM

Equation (1) with the initial values of the unknown function y(t) specified is known as
an initial value problem. The basic theory of this type of differential equation will be
discussed in Chapter 3. For now, we will only study how the Laplace transform leads
very quickly to a formula for y(t).

The Laplace transform method for solving Equation (1) is based on the linearity
property of the Laplace transform (Theorem 2.1.1) and the following formula which
expresses the Laplace transform of the derivative an elementary function f(t) as a simple
algebraic function of F (s) = L{f(t)}. Note that if f(t) ∈ E is an elementary function,
then so is f ′(t). You were asked to verify this fact in Exercise 25 of Section 2.1.

Theorem 2.4.1. Suppose f(t) ∈ E is an elementary function. Then f ′(t) ∈ E and

L{f ′(t)} (s) = sL{f(t)} (s)− f(0). (2)

The following box summarizes the theorem in terms of transform pairs:

First derivative of input functions

f ′(t) ←→ sF (s)− f(0)

Proof. It has already been observed above that f ′(t) ∈ E . The formula (2) is obtained
by applying integration by parts to the improper integral defining L{f ′(t)}, taking into
account the convention that g(t)|∞0 is a shorthand for limt→∞(g(t)− f(0)), provided the
limit exists. Applying integration by parts with u = e−st and dv = f ′(t) dt gives

L{f ′(t)} (s) =

∫ ∞

0

e−stf ′(t) dt

=
(
f(t)e−st

)∣∣∞
0
−

∫ ∞

0

(−s)e−stf(t) dt

= −f(0) +

∫ ∞

0

e−stf(t) dt

= sL{f(t)} (s)− f(0).

The transition from the second to the third line is a result of the fact that functions
f(t) ∈ E satisfy limt→∞ f(t)e−st = 0, for s large. (See the discussion of limits on Page
78.)
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To avoid the notation becoming too heavy-handed, we will frequently write L{f(t)}
rather than L{f(t)} (s). That is, the variable s may be suppressed when the meaning
is clear. With this convention, Equation (2) becomes

L{f ′(t)} = sL{f(t)} − f(0).

Example 2.4.2. Here are some simple examples of the validity of Equation (2).

1. If f(t) = 1, then f ′(t) = 0 so L{f ′(t)} = 0, and

sF (s)− f(0) = s
1

s
− 1 = 0 = L{f ′(t)} .

2. If f(t) = eat, then f ′(t) = aeat so L{f ′(t)} =
a

s− a
and

sF (s)− f(0) =
s

s− a
− 1 =

a

s− a
= L{f ′(t)} .

3. If f(t) = cos 3t then f ′(t) = −3 sin 3t so L{f ′(t)} = − 9

s2 + 9
and

sF (s)− f(0) = s
s

s2 + 9
− 1 = − 9

s2 + 9
= L{f ′(t)} .

Example 2.4.3. Solve the first order linear differential equation:

y′ − 3y = 1, y(0) = 1

I Solution. As is our convention, let Y (s) = L{y(t)}. First compute the Laplace
transform of each side of the equation. Using linearity of the Laplace transform (Theorem
2.1.1) and the differentiation formula (2) just verified, the left-hand side of the differential
equation gives

L{y′ − 3y} = L{y′} − 3L{y}
= sL{y} − 1− 3L{y}
= (s− 3)Y (s)− 1.

For the right-hand side we have

L{1} =
1

s
.

Equate these two expressions and solve for Y (s) to get

Y (s) =
1

s− 3

(
1 +

1

s

)
=

1

s− 3
+

1

s(s− 3)
.
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A partial fraction decomposition applied to
1

s(s− 3)
gives

Y (s) =
1

s− 3
+

1

3

1

s− 3
− 1

3

1

s
=

4

3

1

s− 3
− 1

3

1

s
.

Since y(t) = L−1 {Y (s)} we can recover y(t) from Y (s) by the techniques of Section 2.3
to obtain

y(t) =
4

3
L−1

{
1

s− 3

}
− 1

3
L−1

{
1

s

}
=

4

3
e3t − 1

3
.

J

Let’s consider another example.

Example 2.4.4. Solve the first order linear differential equation

y′ + y = sin t, y(0) = 0.

I Solution. Letting Y (s) = L{y(t)}, we equate the Laplace transform of each side of
the equation to obtain

(s + 1)Y (s) =
1

s2 + 1
.

Solving for Y (s) and decomposing Y (s) into partial fractions gives

Y (s) =
1

2

(
1

s + 1
− s

s2 + 1
+

1

s2 + 1

)
.

Inversion of the Laplace transform gives

y(t) = L−1 {Y (s)} =
1

2

(
e−t − cos t + sin t

)
.

J

If f(t) is an elementary function, i.e., f(t) ∈ E , then f ′(t) is also an elementary
function so we may apply Theorem 2.4.1 with f(t) replaced by f ′(t) (so that (f ′)′ = f ′′)
to get

L{f ′′(t)} = sL{f ′(t)} − f ′(0)

= s (sL{f(t)} − f(0))− f ′(0)

= s2L{f(t)} − sf(0)− f ′(0).

Thus we have arrived at the following formula for expressing the Laplace transform of
f ′′(t) in terms of L{f(t)} and the initial values f(0) and f ′(0).
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Corollary 2.4.5. Suppose f(t) ∈ E. Then

L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0). (3)

The following box summarizes this result in terms of transform pairs:

Second derivative of input functions

f ′′(t) ←→ s2F (s)− sf(0)− f ′(0)

The process used to determine the formula (3) for the Laplace transform of a second
derivative can be repeated to arrive at a formula for the Laplace transform of the nth

derivative of an elementary function f(t) ∈ E .

Theorem 2.4.6. Suppose that f(t) ∈ E is an elementary function, and let L{f(t)} =
F (s). Then

L{
f (n)(t)

}
= snF (s)− sn−1f(0)− sn−2f ′(0)− · · · − sf (n−2)(0)− f (n−1)(0). (4)

For n = 3 and n = 4, this formula becomes

L{f ′′′(t)} = s3F (s)− s2f(0)− sf ′(0)− f ′′(0), and

L{
f (4)(t)

}
= s4F (s)− s3f(0)− s2f ′(0)− sf ′′(0)− f ′′′(0).

If f(0) = f ′(0) = · · · = f (n−1) = 0 then Equation (4) has the particularly simple
form

L{f ′(t)} = snF (s).

In words, the operation of differentiating n-times on the space of elementary functions
with derivatives (up to order n − 1) vanishing at 0, corresponds, under the Laplace
transform, to the algebraic operation of multiplying by sn on the space Rpr(s) of proper
rational functions.

We will now give several examples of how Equation (4) is used to solve some types
of differential equations.

Example 2.4.7. Solve the initial value problem

y′′ − y = 0, y(0) = 0, y′(0) = 1.
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I Solution. As usual, let Y (s) = L{y(t)} and apply the Laplace transform to both
sides of the differential equation to obtain

s2Y (s)− 1− Y (s) = 0.

Now solve for Y (s) and decompose in partial fractions to get

Y (s) =
1

s2 − 1
=

1

2

1

s− 1
− 1

2

1

s + 1
.

Then applying the inverse Laplace transform to Y (s) gives

y(t) = L−1 {Y (s)} =
1

2
(et − e−t).

J

Example 2.4.8. Solve the initial value problem

y′′ + 4y′ + 4y = 2te−2t, y(0) = 1, y′(0) = −3. (5)

I Solution. Let Y (s) = L{y(t)} where, as usual, y(t) is the unknown solution of
Equation (5). Applying L to (5) gives the algebraic equation

s2Y (s)− s + 3 + 4(sY (s)− 1) + 4Y (s) =
2

(s + 2)2
,

which can be solved for Y (s) to give

Y (s) =
s + 1

(s + 2)2
+

2

(s + 2)4
. (6)

Using the techniques of Section 2.3, (see Remark 2.3.5 in particular), write s = (s+2)−2
in the numerator of the first part to get

Y (s) =
1

s + 2
− 1

(s + 2)2
+

2

(s + 2)4
.

Taking the inverse Laplace transform y(t) = L−1 {Y (s)} then gives

y(t) = e−2t − te−2t +
1

3
t2e−2t.

J
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It is worth pointing out in this last example that in solving for Y (s) we kept the part

of Y (s) that came from the initial values, namely
s + 1

(s + 2)2
, distinct from that determined

by the right-hand side of the equation, namely
2

(s + 2)4
. By not combining these into a

single proper rational function before computing the partial fraction decomposition, we
have simplified the computation of the partial fractions. This is a typical situation, and
one that you should be aware of when working on exercises.

Example 2.4.9. Solve the initial value problem

y′′ + β2y = cos ωt, y(0) = y′(0) = 0,

where we assume that β 6= 0 and ω 6= 0.

I Solution. Letting Y (s) = L{y(t)}, applying L to the equation, and solving alge-
braically for Y (s) gives

Y (s) =
s

(s2 + β2)(s2 + ω2)
. (7)

We will break our analysis into two cases: (1) β2 6= ω2 and (2) β2 = ω2.

Case 1: β2 6= ω2.

In this case we leave it as an exercise to verify that the partial fraction decomposition
of Y (s) is

Y (s) =
1

ω2 − β2

(
s

s2 + β2
− s

s2 + ω2

)
,

so that the solution y(t) = L−1 {Y (s)} is

y(t) =
cos βt− cos ωt

ω2 − β2
.

Case 2: β2 = ω2.

In this case
Y (s) =

s

(s2 + ω2)2
,

and formula (12) in Section 2.3 gives

y(t) =
1

2ω
t sin ωt.

J
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Example 2.4.10. Solve the initial value problem

y′′′ − y′′ + y′ − y = 10e2t, y(0) = y′(0) = y′′(0) = 0. (8)

I Solution. Let Y (s) = L{y(t)} where y(t) is the unknown solution to (8). Applying
the Laplace transform L to (8) gives

s3Y (s)− s2Y (s) + sY (s)− Y (s) =
10

s− 2

which can be solved for Y (s) to give

Y (s) =
10

(s3 − s2 + s− 1)(s− 2)
=

10

(s− 1)(s2 + 1)(s− 2)
.

Use the techniques of Section 2.3 to write Y (s) in terms of its partial fractions:

Y (s) =
−5

s− 1
+

2

s− 2
+

1 + 3s

s2 + 1
.

Taking the inverse Laplace transform y(t) = L−1 {Y (s)} gives

y(t) = −5et + 2e2t + sin t + 3 cos t.

J

We conclude this section by looking at what the Laplace transform tells us about
the solution of the second order linear constant coefficient differential equation

ay′′ + by′ + cy = f(t), y(0) = y0, y′(0) = y1, (9)

where f(t) ∈ E is an elementary function, and a, b, and c are real constants. Applying
the Laplace transform to Equation (9) (where Y (s) is the Laplace transform of the
unknown function y(t), as usual) gives

a(s2Y (s)− sy0 − y1) + b(sY (s)− y0) + cY (s) = F (s).

If we let P (s) = as2 + bs + c (P (s) is known as the characteristic polynomial of the
differential equation), then the above equation can be solved for Y (s) in the form

Y (s) =
(as + b)y0 + ay1

P (s)
+

F (s)

P (s)
= Y1(s) + Y2(s). (10)

Notice that Y1(s) depends only on P (s), which is determined by the left-hand side of
the differential equation, and the initial values y0 and y1, while Y2(s) depends only on
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P (s) and the function f(t) on the right-hand side of the equation. The function f(t) is
usually called the input function for the differential equation. Taking inverse Laplace
transforms we can write

y(t) = L−1 {Y (s)} = L−1 {Y1(s)}+ L−1 {Y2(s)} = y1(t) + y2(t).

The function y1(t) is the solution of (9) obtained by taking f(t) = 0, while y2(t) is the
solution obtained by specifying that the initial conditions be zero, i.e., y0 = y1 = 0.
Thus, y1(t) is referred to as the zero-input solution, while y2(t) is referred to as the
zero-state solution. The terminology comes from engineering applications. A review
of the examples above will show that the zero-state solution was computed in Examples
2.4.4, 2.4.9, and 2.4.10. You will be asked to compute further examples in the exercises,
and addtional consequences of Equation (10) will be developed in Chapter 3.

Exercises

Use the Laplace transform to solve each of the following differential equations.

1. y′ + 6y = e3x, y(0) = 1

2. y′ − 4y = 0, y(0) = 2

3. y′ − 4y = 3, y(0) = 2

4. y′ − 4y = t, y(0) = 2

5. y′ + 9y = 81t2, y(0) = −2

6. y′ − 3y = cos t, y(0) = 0

7. y′ + 2y = te−2t, y(0) = 0

8. y′ − 3y = 50 sin t, y(0) = 1

9. y′′ + 4y = 8, y(0) = 2, y′(0) = 1

10. y′′ − 3y′ + 2y = 4, y(0) = 2, y′(0) = 3

11. y′′ − 3y′ + 2y = et, y(0) = −3, y′(0) = 0

12. y′′ + 2y′ − 3y = sin 2t, y(0) = 0, y′(0) = 0

13. y′′ + 6y′ + 9y = 50 sin t, y(0) = 0, y′(0) = 2

14. y′′ + 25y = 0, y(0) = 1, y′(0) = −1
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15. y′′ + 8y′ + 16y = 0, y(0) = 1
2 , y′(0) = 2

16. y′′ − 4y′ + 4y = 4e2t, y(0) = −1, y′(0) = −4

17. y′′ + y′ + y = 0, y(0) = 0, y′(0) = 1

18. y′′′ − y′′ = t, y(0) = 0, y′(0) = 1, y′′(0) = 0

19. y′′′ − y′′ + y′ − y = t, y(0) = 0, y′(0) = 0, y′′(0) = 0

20. y(4) − y = 0, y(0) = 1, y′(0) = 0, y′′(0) = 0, y′′′(0) = 0

21. y′′′ − y′ = 6− 3t2, y(0) = 1, y′(0) = 1, y′′(0) = 1

For each of the following differential equations, find the zero-state solution. Recall that the
zero-state solution is the solution with all initial conditions equal to zero.

22. y′′ + 4y′13y = 0

23. y′′ + 4y′ + 3y = 6

24. y′′ − y = cos 3t

25. y′′ + y = 4t sin t

2.5 Convolution

The Laplace transform L : E → Rpr(s) provides a one-to-one linear correspondence
between the input space E of elementary functions and the transform space Rpr(s) of
proper rational functions. In the previous section we saw how an important operation
on the functions in the input space E , namely differentiation, corresponds to a natural
algebraic operation on the transform space Rpr(s). Specifically, the formula is Theorem
2.4.1 which states that

L{f ′(t)} = sF (s)− f(0). (1)

Our goal in this section is to study another operational identity of this type. Specifically,
we will be concentrating on the question of what is the effect on the input space E
of ordinary multiplication of functions in the transform space Rpr(s). Thus we are
interested in the following question: Given functions F (s) and G(s) in Rpr(s) and their
inverse Laplace transforms f(t) and g(t) in E , what is the elementary function h(t)
such that h(t) corresponds to H(s) = F (s)G(s) under the Laplace transform? More
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precisely, how is h(t) related to f(t) and g(t)? In other words, how do we fill in the
following question mark?

? ←→ F (s)G(s)

You might guess that h(t) = f(t)g(t). That is, you would be guessing that multiplication
in the input space corresponds to multiplication in the transform space. This guess is
wrong as you can quickly see by looking at almost any example. For a concrete example,

let F (s) =
1

s
and G(s) =

1

s2
so that f(t) = 1 and g(t) = t while H(s) = F (s)G(s) =

1

s3
,

so that h(t) = t2/2. Thus h(t) 6= f(t)g(t).

Let’s continue with this example. Again suppose that F (s) =
1

s
so that f(t) = 1,

but assume now that G(s) =
n!

sn+1
so that g(t) = tn. Now determine which function

h(t) has F (s)G(s) as its Laplace transform:

h(t) = L−1 {F (s)G(s)} = L−1

{
n!

sn+2

}
=

n!

(n + 1)!
tn+1 =

1

n + 1
tn+1.

What is the relationship between f(t), g(t), and h(t)? One thing that we can observe is
that h(t) is an integral of g(t):

h(t) =
1

n + 1
tn+1 =

∫ t

0

τn dτ =

∫ t

0

g(τ) dτ.

Let’s try another example. Again let F (s) =
1

s
so f(t) = 1, but now let G(s) =

s

s2 + 1
which implies that g(t) = cos t. Then

h(t) = L−1 {F (s)G(s)} = L−1

{
1

s

s

s2 + 1

}
= L−1

{
1

s2 + 1

}
= sin t,

and again we can observe is that h(t) is an integral of g(t):

h(t) = sin t =

∫ t

0

cos τ dτ =

∫ t

0

g(τ) dτ.

What these examples suggest is that multiplication of G(s) by
1

s
= L{1} in transform

space corresponds to integration of g(t) in the input space E. In fact, it is easy to see
that this observation is legitimate by a calculation with the differentiation formula (1).
Suppose that G(s) ∈ Rpr(s) is arbitrary and let h(t) =

∫ t

0
g(τ) dτ . Then h′(t) = g(t)

and h(0) = 0 so Equation (1) gives

G(s) = L{g(t)} = L{h′(t)} = sH(s)− h(0) = sH(s),
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so that (in the language of Laplace transform pairs),

∫ t

0

g(τ) dτ ←→ H(s) =
1

s
G(s).

We will refer to this formula as division by s in transform space:

Division by s in transform space∫ t

0

f(τ) dτ ←→ F (s)

s

We have thus determined the effect on the input space E of multiplying on the trans-
form space by the Laplace transform of the function 1. Namely, the effect is integration.
If we replace the function 1 by an arbitrary function f(t) ∈ E , then the effect on E of
multiplication by F (s) is more complicated, but it can still be described by means of
an integral operation. To describe this operation precisely, suppose that f(t) and g(t)
are elementary functions. The convolution product or convolution of f(t) and g(t),
is a new elementary function denoted by the symbol f ∗ g, and defined by the integral
formula

(f ∗ g)(t) =

∫ t

0

f(τ)g(t− τ) dτ. (2)

What this formula means is that f ∗ g is the name of a new function constructed from
f(t) and g(t) and the value of f ∗ g at the arbitrary point t is denoted by (f ∗ g)(t) and
it is computed by means of the integral formula (2). Then the result we want is that the
convolution product of f(t) and g(t) on the input space E corresponds to the ordinary
multiplication of F (s) and G(s) on the transform space Rpr(s). That is the content of
the following theorem, the proof of which we will postpone until Chapter 4.

Theorem 2.5.1 (The Convolution Theorem). Let f(t), g(t) ∈ E . Then

L{(f ∗ g)(t)} = L{f(t)}L {g(t)} . (3)

In terms of inverse Laplace transforms, this is equivalent to the following statement. If
F (s) and G(s) are in transform space then

L−1 {F (s)G(s)} = L−1 {F (s)} ∗ L−1 {G(s)} . (4)

The following box summarizes the theorem in terms of transform pairs:
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Convolution of input functions

(f ∗ g)(t) ←→ F (s)G(s)

An important special case of Equation (2) that is worth pointing out explicitly is

(f ∗ 1)(t) =

∫ t

0

f(τ) dτ. (5)

The convolution product f ∗ g behaves in many ways like an ordinary product:

f ∗ g = g ∗ f (commutative property)
(f ∗ g) ∗ h = f ∗ (g ∗ h) (associative property)
f ∗ (g + h) = f ∗ g + f ∗ h (distributive property)

f ∗ 0 = 0 ∗ f = 0

Indeed, these properties of convolution are easily verified from the definition (2). There
is one significant difference, however. In general f ∗ 1 6= f . In fact, Equation (5) shows
that t ∗ 1 = t2/2 6= t. In other words, convolution by the constant function 1 does not
behave like a multiplicative identity.

Example 2.5.2. Compute the convolution product eat ∗ ebt where a 6= b.

I Solution. Use the defining equation (2) to get

eat ∗ ebt =

∫ t

0

eaτeb(t−τ) dτ = ebt

∫ t

0

e(a−b)τ dτ =
eat − ebt

a− b
.

Observe that

L
{

eat − ebt

a− b

}
=

1

a− b

(
1

s− a
− 1

s− b

)
=

1

(s− a)(s− b)
= L{

eat
}L{

ebt
}

,

so this calculation is in agreement with what is expected from Theorem 2.5.1. J

Example 2.5.3. Compute the convolution product eat ∗ eat.
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I Solution. Computing from the definition:

eat ∗ eat =

∫ t

0

eaτea(t−τ) dτ = eat

∫ τ

0

dτ = teat.

As with the previous example, note that the calculation

L{
teat

}
=

1

(s− a)2
= L{

eat
}L{

eat
}

agrees with the expectation of Theorem 2.5.1. J

Remark 2.5.4. Since

lim
a→b

eat − ebt

a− b
=

d

da
eat = teat,

the previous two examples show that

lim
a→b

eat ∗ ebt = teat = eat ∗ eat,

so that the convolution product is, in some sense, a continuous operation.

The convolution theorem is particularly useful in computing the inverse Laplace
transform of a product.

Example 2.5.5. Compute the inverse Laplace transform of
s

(s− 1)(s2 + 9)
.

I Solution. The inverse Laplace transforms of
s

s2 + 9
and

1

s− 1
are cos 3t and et,

respectively. The convolution theorem now gives

L−1

{
s

(s− 1)(s2 + 9)

}
= cos 3t ∗ et

=

∫ t

0

cos 3τ et−τ dτ

= et

∫ t

0

cos 3τ e−τ dτ

=
et

10

(−e−τ cos 3τ + 3e−τ sin 3τ
)∣∣t

0

=
1

10
(− cos 3t + 3 sin 3t + et)

J
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In the Table of Section C.3 a list is given of convolutions of some common functions.
You may want to familiarize yourself with this table so as to know when you will be able
to use it. The example above appears in the table (a = 1 and b = 3). Verify the answer.

Example 2.5.6. Compute the convolution product tm ∗ tn where m, n ≥ 0.

I Solution. Start by computing

L{tm ∗ tn} = L{tm}L {tn} =
m!

sm+1

n!

sn+1
=

m! n!

sm+n+2
.

Now take the inverse Laplace transform to conclude

tm ∗ tn = L−1 {L {tm ∗ tn}} = L−1

{
m! n!

sm+n+2

}
=

m! n!

(m + n + 1)!
tm+n+1.

Thus

tm ∗ tn =
m! n!

(m + n + 1)!
tm+n+1. (6)

As special cases of this formula note that

t2 ∗ t3 =
1

60
t6 and t ∗ t4 =

1

30
t6.

J

Example 2.5.7. Find the inverse Laplace transform of
1

s(s2 + 1)
.

I Solution. This could be done using partial fractions, but instead we will do the
calculation using the division by s in transform space formula:

L−1

{
1

s(s2 + 1)

}
=

∫ t

0

sin τ dτ = − cos t + 1.

J

Example 2.5.8. Consider the initial value problem

y′′ + a2y = f(t), y(0) = 0, y′(0) = 0, (7)

where f(t) ∈ E is an arbitrary elementary function. If we apply the Laplace transform
L to this equation we obtain

(s2 + a2)Y (s) = F (s),
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so that

Y (s) =
1

s2 + a2
F (s).

Since

L−1

{
1

(s2 + a2)

}
=

1

a
sin at,

the convolution theorem expresses y(t) as a convolution product

y(t) =
1

a
sin at ∗ f(t).

This allows for the expression of y(t) as an integral

y(t) =
1

a

∫ t

0

f(τ) sin a(t− τ) dτ.

This integral equation can be thought of dynamically as starting from an arbitrary input
function f(t) and producing the output function y(t) determined by the differential
equation (7). Schematically,

f(t) 7−→ y(t).

Moreover, although we arrived at this equation via the Laplace transform, it was never
actually necessary to compute F (s).

In the next example, we revisit a simple rational function whose inverse Laplace
transform was computed by the techniques of Section 2.3 (see Equation (13) of that
section).

Example 2.5.9. Compute the inverse Laplace transform of
1

(s2 + a2)2
.

I Solution. The inverse Laplace transform of 1/(s2 + a2) is (1/a) sin at. By the con-
volution theorem

L−1

{
1

(s2 + a2)2

}
=

1

a2
sin at ∗ sin at.

=
1

a2

∫ t

0

sin aτ sin a(t− τ) dτ

=
1

a2

∫ t

0

sin aτ(sin at cos aτ − sin aτ cos at) dτ

=
1

a2
sin at

∫ t

0

sin aτ cos aτ dτ − cos at

∫ t

0

sin2 aτ dτ

=
1

a2

(
sin at

sin2 at

2a
− cos at

at− sin at cos at

2a

)

=
1

2a3
(sin at− at cos at).
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J

Now, one should see how to handle 1/(s2 + a2)3 and even higher powers: repeated
applications of convolution. Let f ∗k denote the convolution of f with itself k times. In
other words

f ∗k = f ∗ f ∗ · · · ∗ f, k times.

Then it is easy to see that

L−1

(
1

(s2 + a2)n

)
=

1

an
sin∗n at

and L−1

(
s

(s2 + a2)n

)
=

1

an−1
cos at ∗ sin∗(n−1) at.

There are explicit formulas for these convolutions. Although they are very compli-
cated, for completeness of this text they are given below. The proofs are long and not
included.

Proposition 2.5.10. For the simple rational functions we have:

L−1

{
1

(s2 + a2)n+1

}
=

2 sin at

(2a)2n+1




[n
2
]∑

l=0

(−1)l

(
2n− 2l

n

)
(2at)2l

(2l)!




− 2 cos at

(2a)2n+1




[n−1
2

]∑

l=0

(−1)l

(
2n− 2l − 1

n

)
(2at)2l+1

(2l + 1)!




L−1

{
s

(s2 + a2)n+1

}
=

sin at

(2a)2n




[n−1
2

]∑

l=0

(−1)l

(
2n− 2l − 2

n− 1

)
2l + 1

n

(2at)2l+1

(2l + 1)!




+
cos at

(2a)2n




[n
2
]∑

l=1

(−1)l

(
2n− 2l − 1

n− 1

)
2l

n

(2at)2l

(2l)!




Remark 2.5.11. Recall that any proper rational function
P (s)

Q(s)
in the transform space

Rpr(s) can be decomposed into a sum of partial fractions, and each partial fraction is a
scalar multiple of one of the three simple rational functions:

1

(s + r)k
,

1

(s2 + bs + c)k
and

s

(s2 + bs + c)k
,
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where r, b, c are some real numbers and b2−4c < 0, so that the quadratics are irreducible
over R. Since the inverse Laplace transform of the first of these functions is given by

L−1

{
1

(s + r)k
l

}
=

1

(k − 1)!
tk−1e−rt,

it follows that the inverse Laplace transform of any proper rational function can be
computed if one can handle the second and third types of simple rational functions
listed above. For these types of simple rational functions, one must complete the square
of the irreducible quadratic in the denominator and write them in the form

1

((s−B)2 + C2)k
and

s

((s−B)2 + C2)k
.

Then use the translation principle (Equation (7) in Section 2.2) and the above Propo-
sition to compute the inverse Laplace transform. Thus all such rational functions have,
in principle, computable inverse Laplace transforms.

Exercises

Compute the convolution product of the following functions.

1. t ∗ t

2. t ∗ t3

3. 3 ∗ sin t

4. (3t + 1) ∗ e4t

5. sin 2t ∗ e3t

6. (2t + 1) ∗ cos 2t

7. t2 ∗ e−6t

8. cos t ∗ cos 2t

9. e2t ∗ e−4t

10. t ∗ tn

11. eat ∗ sin bt

12. eat ∗ cos bt
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13. sin at ∗ sin bt

14. sin at ∗ cos bt

15. cos at ∗ cos bt

Compute the Laplace transform of each of the following functions.

16. f(t) =
∫ t
0 (t− τ) cos 2τ dτ

I Solution. The key is to recognize the integral defining f(t) as the convolution integral
of two functions. Thus f(t) = (cos 2t) ∗ t so that

F (s) = L{(cos 2t) ∗ t} = L{cos 2t}L {t} =
s

s2 + 4
1
s2

=
1

s(s2 + 4)
.

J

17. f(t) =
∫ t
0 (t− τ)2 sin 2τ dτ

18. f(t) =
∫ t
0 (t− τ)3e−3τ dτ

19. f(t) =
∫ t
0 τ3e−3(t−τ) dτ

20. f(t) =
∫ t
0 cos 5τ e4(t−τ) dτ

21. f(t) =
∫ t
0 sin 2τ cos(t− τ) dτ

22. f(t) =
∫ t
0 sin 2τ sin 2(t− τ) dτ

In each of the following exercises compute the inverse Laplace transform of the given
function by use of the convolution theorem.

23.
1

(s− 2)(s + 4)

24.
1

s2 − 6s + 5

25.
1

(s2 + 1)2

26.
s

(s2 + 1)2

27.
1

(s + 6)s3
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28.
2

(s− 3)(s2 + 4)

29.
s

(s− 4)(s2 + 1)

30.
1

(s− a)(s− b)
a 6= b

31.
1

s2(s2 + a2)

32.
G(s)
s + 2

33. G(s)
s

s2 + 2

Write the zero-state solution of each of the following differential equations in terms of a
convolution integral involving the input function f(t). You may wish to review Example 2.5.8
before proceeding.

34. y′′ + 3y = f(t)

35. y′′ + 4y′ + 4y = f(t)

36. y′′ + 2y′ + 5y = f(t)

37. y′′ + 5y′ + 6y = f(t)



Chapter 3

SECOND ORDER LINEAR
DIFFERENTIAL EQUATIONS

The class of linear second order differential equations is of fundamental importance in
the sciences. They arise naturally in describing mechanical and electrical systems, wave
oscillations, and a variety of other problems. We introduced a few simple examples of
second order differential equations in our discussion of the Laplace transform. In this
chapter we give a more systematic presentation.

Before we get to the definitions and main theorems we illustrate how a second order
differential equation arises from modelling a spring-body-dashpot system. This model
may arise in a simplified version of a suspension system on a vehicle or a washing
machine. Consider the three main objects in Figure 3.1: the spring, the body, and the
dashpot (shock absorber). Our goal is to determine the motion of the body in such a

Figure 3.1: Spring-Body-Dashpot

system. Various forces come into play. These include the force of gravity, the restoring

127
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Figure 3.2: Spring-Body Equilibrium and Displacement

force of the spring, the damping force of the dashpot, and perhaps an external force.
Let’s examine these forces and how they are related. First, assume that the body has
mass m. The force of gravity, FG, acts on the body by the familiar formula

FG = mg, (1)

where g is the acceleration due to gravity. Our measurements will be positive in the
downward direction so FG is positive. When a spring is suspended with no mass attached
the end of the spring will lie at a reference point (u = 0). Now, when a body is attached
and allowed to come to equilibrium (i.e., no movement) it will stretch the spring a certain
distance, u0, say. This distance is called the displacement and is illustrated in Figure
3.2. The displacement is positive when the spring is stretched and negative when the
spring is contracted. The force exerted by the spring to balance the force due to gravity
is called the restoring force. It depends on the displacement and is denoted by FR(u0).
This balance gives us the equation

FR(u0) + FG = 0. (2)

Hooke’s law says that the restoring force of many springs is proportional to the displace-
ment, as long as the displacement is not too large. We will assume this. Thus, if u is
the displacement we have

FR(u) = −ku, (3)

where k is a positive constant. When the displacement is positive (downward) the
restoring force pulls the body upward hence the negative sign. Combining Equations
(1), (2), and (3) gives us a formula for k,

k =
mg

u0

.
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In any practical situation there will be some kind of resistance to the motion of the body.
In a suspension system there are shock absorbers. If our spring system were under water
the viscosity of the water would dampen the motion (no pun intended) to a much greater
extent than in air. In our system this resistance is represented by a dashpot and the
force exerted by the dashpot is called the damping force, FD. It depends on a lot of
factors but an important factor is the velocity. To see that this is reasonable compare
the difference in the forces against your head when you dive into a swimming pool off
a 3 meter board and when you dive from the side of the pool. The greater the velocity
when you enter the pool the greater your deceleration. We will assume that the damping
force is proportional to the velocity. We thus have

FD = −µv,

where v = u′ is velocity and µ is a positive constant known as the damping constant.
The damping force acts in a direction opposite the velocity, hence the negative sign. We
will let F (t) denote an external force acting on the body. For example, this could be
the varying forces acting on a suspension system due to driving over a bumpy road. If
a = u′′ is acceleration then Newton’s second law of motion says that the total force of
a body, given by mass times acceleration, is the sum of the forces acting on that body.
We thus have

Total Force = FG + FR + FD + External Force,

which implies the equation

mu′′ = mg − ku− µu′ + F (t).

Recall from Equation 2 that mg = −ku0. Substituting and combining terms gives

mu′′ + µu′ + k(u− u0) = F (t).

If y = u − u0 then y measures the displacement of the body from the spring-body
equilibrium point, u0. In this new variable we obtain

my′′ + µy′ + ky = F (t).

This is an example of a second order linear differential equation and the solutions that
can be obtained vary dramatically depending on the constants m, k, and µ, and, of
course, F (t). Picture in your mind what happens in the following three situations where
the external force is zero. In the first case, suppose the damping constant is 0. Then
there is no friction. In this idealized system when the body is pulled from equilibrium
and released it will oscillate up and down endlessly. In the second case, suppose the
damping constant is very large. (Think of a vehicle with stiff shock absorbers.) When
the body is pushed down and released it returns to rest without any oscillations. In the
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third case, suppose the damping constant is small, yet nonzero. Then when the body
is pushed down and released it may oscillate several times but with decreasing heights
until it comes to equilibrium. (In this case it’s time to replace your shock absorbers.)
A general discussion of the kinds of solutions one obtains is found in Section 3.7 where
you will find graphs that represent the three situations described above. We will return
to some specific examples of the spring-body-dashpot system in the last section, Section
3.8, where applications are considered.

For the next several sections we will study the mathematics of such second order
differential equations. We can say a lot about the nature of the solution set and provide
techniques for solving them.

3.1 Definitions and Conventions

Generally, a second order differential equation is an equation that involves a func-
tion, y say, its first derivative y′, and its second derivative y′′. Such an equation written
in standard form looks like

y′′ = F (t, y, y′), (1)

and a solution is a function, y(t), with at least two derivatives and satisfying (1). In
other words,

y′′(t) = F (t, y(t), y′(t)),

for all t in some interval I. A special case is the linear second order differential equation.
They are the only type we will consider in this chapter.

A linear second order differential equation is an equation of the form

y′′ + a(t)y′ + b(t)y = f(t), (2)

where a, b, and f are functions defined on some interval I ⊆ R. The function f is called
the forcing function. When f = 0, we call Equation (2) homogeneous, otherwise, it
is called nonhomogeneous. If a(t) and b(t) are constant functions, then (2) is said to
be constant coefficient. Note that a constant coefficient equation need not have the
forcing function f a constant.

Example 3.1.1. Consider the following list of second order differential equations.

1. y′′ + y′ + y = t
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2. y′′ + y′ + ty = 1

3. y′′ − 4y = 0

4. y′′ − 4y = sin 2t

5. t2y′′ + ty′ + (t2 − r)y = 0

6. 3y′′ + 2y′ − 5y = 0

7. y′′ − y′y=0

Equations (1) and (4) are constant coefficient nonhomogeneous, Equation (2) is non-
homogeneous and is not constant coefficient, Equations (3) and (6) are homogeneous
and constant coefficient, Equation (5) is homogeneous, but not constant coefficient, and
Equation (7) is not even linear, so none of the adjectives homogeneous, nonhomogeneous,
or constant coefficient apply.

The structure and nature of the set of solutions of linear differential equations is best
understood in terms of linear operators. The left hand side of Equation (2) is made
up of a combination of differentiation and multiplication by a function. Let D denote
the derivative operator: D(y) = y′. If Cn(I) denotes the set of functions that have a
continuous nth derivative on the interval I then D : C1(I) → C0(I). Note that we are
using the convention that a 0th derivative of g is just g itself, so that C0(I) is the set
of continuous functions on the interval I. In general , D : C(n)(I) → C(n−1)(I). In
a similar way D2 will denote the second derivative operator. Thus D2(y) = y′′ and
D2 : C2(I) → C0(I). Let

L = D2 + aD + b, (3)

where a and b are the same functions given in Equation (2). Thus L(y) = y′′ + a(t)y′ +
b(t)y and Equation (2) can be rewritten L(y) = f . We think of L as taking a function
y ∈ C2(I) and producing a continuous function L(y) ∈ C0(I).

Example 3.1.2. If L = D2 + 4tD + 1 then

• L(et) = (et)′′ + 4t(et)′ + 1(et) = (2 + 4t)et

• L(sin t) = − sin t + 4t cos t + sin t = 4t cos t

• L(t2) = 2 + 4t(2t) + (t2) = 9t2 + 2

• L(t + 2) = 0 + 4t(1) + (t + 2) = 5t + 2

The following proposition justifies calling L a linear differential operator (second
order) and explains why Equation (2) is called a linear differential equation.
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Proposition 3.1.3. The operator L is linear. In other words, if f1 and f2 are in C2(I)
and c1 and c2 are in R then

L(c1f1 + c2f2) = c1L(f1) + c2L(f2).

Proof. This follows from the fact that D and multiplication by a function are linear.

The following theorem now gives the structure of the solution set to Equation (2).

Theorem 3.1.4. Let L be a linear differential operator and f a function. Let Sf
L be

the solution set to the equation L(y) = f and S0
L the solution set to L(y) = 0. Suppose

ϕp ∈ Sf
L. Then Sf

L = ϕp + S0
L. Furthermore, S0

L is a subspace. In other words, it is
closed under addition and scalar multiplication.

Sf
L = ϕp + S0

L

Proof. Suppose ϕp is a fixed solution to Ly = f and ϕh ∈ S0
L. Then L(ϕp + ϕh) =

f +0 = f implies ϕp +ϕh ∈ Sf
L by linearity of L (Proposition 3.1.3). On the other hand,

if ϕ is some other solution to Ly = f then again by linearity L(ϕ − ϕp) = f − f = 0.
Thus ϕ− ϕp ∈ S0

L and there is a function ϕh ∈ S0
L such that ϕ = ϕp + ϕh. This implies

Sf
L = ϕp + S0

L. Now suppose ϕ1 and ϕ2 are two homogeneous solutions and a, b ∈ R.
Then linearity implies L(aϕ1 + bϕ2) = aL(ϕ1) + bL(ϕ2) = 0 + 0 = 0. This implies S0

L is
closed under addition and scalar multiplication.

Theorem 3.1.4 gives us a strategy for solving Equation (2): solve the homogeneous
case first and then add on a particular solution.

Example 3.1.5. Determine the solution set to

y′′ − y = t.

I Solution. In this example, the differential operator is L = D2−1 and one is looking
for solutions to L(ϕ(t)) = t. It is easy to see that ϕ(t) = −t is one such solution. Less
obvious is the fact that the homogeneous equation

y′′ − y = 0

has solutions y = et and y = e−t, but this could be determined, for example, by the
Laplace transform techniques of Section 2.2. Since S0

L is a subspace the functions y =
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c1e
t + c2e

−t are also solutions. In fact, we will show that all solutions to y′′ − y = 0 are
of this form. Theorem 3.1.4 now implies that the solution set to y′′ − y = t is

St
L = −t + S0

L.

=
{−t + c1e

t + c2e
−t : c1, c2 ∈ R

}

J

The function ϕ is called a particular solution and S0
L is referred to as the homo-

geneous solution set. Of course, we will not leave it to guesswork to determine these.
We will systematically deal with these questions, at least in the case of constant coeffi-
cient second order linear differential equations, in the next few sections. Nevertheless,
we can already see from the above example that linearity is a very powerful property,
which Theorem 3.1.4 exploits to describe the nature of the solution set for linear second
order differential equations.

We can associate some initial conditions to Equation (2) of the form

y(t0) = y0 y′(t0) = y1,

where t0 ∈ I. Suppose in the above example that we included the initial conditions
y(0) = 2 and y′(0) = 0. Then these conditions determine the constant c1 and c2 as
follows:

2 = y(0) = 0 + c1 + c2

0 = y′(0) = 0 + c1 − c2

This leads to a linear system of equations which, in this case, is very easy to solve. We
obtain c1 = 1 and c2 = 1. The solution to the initial value problem then is

y = −t + et + e−t.

This example illustrates the nature of what happens in general. The groundwork for
this is laid next.

The Uniqueness and Existence Theorem

The following theorem is the fundamental theorem in this chapter. It guarantees that
Equation (2) always has solutions if certain continuity conditions are assumed. Its proof,
however, is beyond the scope of this book.
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Theorem 3.1.6 (Uniqueness and Existence). Suppose a, b, and f are continuous
functions on an interval I. Let t0 ∈ I. Then the initial value problem

y′′ + a(t)y′ + b(t)y = f(t), y(t0) = y0, y′(t0) = y1,

has a unique solution ϕ(t), which is defined for all t ∈ I.

Theorem 3.1.6 does not tell us how to find any solution. We must develop procedures
for this. Let’s explain in more detail what this theorem does say. Under the conditions
stated the Uniqueness and Existence theorem says that there always is a solution ϕ to
the given initial value problem. The solution ϕ is at least twice differentiable on I and
there is no other solution. In the preceding example we found y = ϕ(t) = −t + et + e−t

a solution to y′′ − y = t with initial conditions y(0) = 2 and y′(0) = 0. Notice, in
this case, that ϕ is, in fact, infinitely differentiable. The uniqueness part of Theorem
3.1.6 implies that there are no other solutions. In other words, there are no potentially
hidden solutions, so that if we can find enough solutions to take care of all possible initial
values, then Theorem 3.1.6 provides the theoretical underpinnings to know that we have
found all possible solutions, and need look no further. Compare this theorem with the
discussion in Section 1.5 where we saw examples (in the nonlinear case) of initial value
problems which had infinitely many distinct solutions.

Let’s consider another example.

Example 3.1.7. Find a solution to the following initial value problem:

y′′ + y = t, y(0) = 1, y′(0) = 0.

I Solution. We ask the student to verify the following assertions:

• ϕp(t) = t is a solution to the differential equation

• sin t and cos t are homogeneous solutions.

Now ϕ(t) = t+a sin t+b cos t is a solution for each a, b ∈ R. The initial conditions imply

1 = y(0) = b

0 = y′(0) = 1 + a.

Thus a = −1 and b = 1. Therefore, ϕ(t) = t − sin t + cos t is a solution to the initial
value problem. Theorem 3.1.6 implies there are no other solutions. J
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Recall from Theorem 3.1.4 that once a particular solution is found the general solu-
tion is determined by the homogeneous case. Theorem 3.1.6 has much to say about the
homogeneous case to which we turn our attention in the next section.

Exercises

For each of the following differential equations, determine if it is linear (yes/no). For
each of those which is linear, further determine if the equation is homogeneous (homoge-
neous/nonhomogeneous) and constant coefficient (yes/no). Do not solve the equations.

1. y′′ + y′y = 0

2. y′′ + y′ + y = 0

3. y′′ + y′ + y = t2

4. y′′ + ty′ + (1 + t2)y2 = 0

5. 3y′′ + 2y′ + y = e2

6. 3y′′ + 2y′ + y = et

7. y′′ +
√

y′ + y = t

8. y′′ + y′ + y =
√

t

9. y′′ − 2y = ty

10. y′′ + 2y + t sin y = 0

11. y′′ + 2y′ + (sin t)y = 0

12. t2y′′ + ty′ + (t2 − 5)y = 0

For each of the following linear differential operators L compute L(1), L(t), L(e−t), and
L(cos 2t). That is, evaluate L(y) for each of the given input functions.

13. L(y) = y′′ + y

Solution:: L(1) = 1′′ + 1 = 1; L(t) = t′′ + t = t; L(e−t) = (e−t)′′ + e−t = 2e−t; and
L(cos 2t) = (cos 2t)′′ + cos 2t = −4 cos 2t + cos 2t = −3 cos 2t.
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14. L(y) = ty′′ + y

15. L(y) = 2y′′ + y′ − 3y

16. L = D2 + 6D + 5

17. L = D2 − 4

18. L = t2D2 + tD − 1

19. If L = aD2 + bD + c where a, b, c are real numbers, then show that L(ert) = (ar2 +
br + c)ert. That is, the effect of applying the operator L to the exponential function ert

is to multiply ert by the number ar2 + br + c.

20. The differential equation t2y′′ + ty′ − y = t
1
2 , t > 0 has a solution of the form ϕp(t) =

Ct
1
2 . Find C.

21. The differential equation y′′ + 3y′ + 2y = t has a solution of the form ϕp(t) = C1 + C2t.
Find C1 and C2.

22. Does the differential equation y′′ + 3y′ + 2y = e−t have a solution of the form ϕp(t) =
Ce−t? If so find C.

23. Does the differential equation y′′ + 3y′ + 2y = e−t have a solution of the form ϕp(t) =
Cte−t? If so find C.

24. Let L(y) = y′′ + y.

(a) Check that ϕ(t) = t2 − 2 is one solution to the differential equation L(y) = t2.

(b) Check that y1(t) = cos t and y2(t) = sin t are two solutions to the differential
equation L(y) = 0.

(c) Using the results of Parts (a) and (b), find a solution to each of the following initial
value problems.

i. y′′ + y = t2, y(0) = 1, y′(0) = 0.

ii. y′′ + y = t2, y(0) = 0, y′(0) = 1.

iii. y′′ + y = t2, y(0) = −1, y′(0) = 3.

iv. y′′ + y = t2, y(0) = a, y′(0) = b, where a, b ∈ R.

Solution: Parts (a) and (b) are done by computing y′′+y where y(t) = t2−2, y(t) = cos t,
or y(t) = sin t. Then by Theorem 5.1.3, every function of the form y(t) = t2−2+c1 cos t+
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c2 sin t is a solution to y′′ + y = t2, where c1 and c2 are constants. If we want a solution
to L(y) = t2 with y(0) = a and y′(0) = b, then we need to solve for c1 and c2:

a = y(0) = −2 + c1

b = y′(0) = c2

These equations give c1 = a + 2, c2 = b. Particular choices of a and b give the answers
for i, ii, and iii.

25. Let L(y) = y′′ − 5y′ + 6y.

(a) Check that ϕ(t) =
1
2
et is one solution to the differential equation L(y) = et.

(b) Check that y1(t) = e2t and y2(t) = e3t are two solutions to the differential equation
L(y) = 0.

(c) Using the results of Parts (a) and (b), find a solution to each of the following initial
value problems.

i. y′′ − 5y′ + 6y = et, y(0) = 1, y′(0) = 0.
ii. y′′ − 5y′ + 6y = et, y(0) = 0, y′(0) = 1.
iii. y′′ − 5y′ + 6y = et, y(0) = −1, y′(0) = 3.
iv. y′′ − 5y′ + 6y = et, y(0) = a, y′(0) = b, where a, b ∈ R.

26. Let L(y) = t2y′′ − 4ty′ + 6y.

(a) Check that ϕ(t) =
1
6
t5 is one solution to the differential equation L(y) = t5.

(b) Check that y1(t) = t2 and y2(t) = t3 are two solutions to the differential equation
L(y) = 0.

(c) Using the results of Parts (a) and (b), find a solution to each of the following initial
value problems.

i. t2y′′ − 4ty′ + 6y = t5, y(1) = 1, y′(1) = 0.
ii. t2y′′ − 4ty′ + 6y = t5, y(1) = 0, y′(1) = 1.
iii. t2y′′ − 4ty′ + 6y = t5, y(1) = −1, y′(1) = 3.
iv. t2y′′ − 4ty′ + 6y = t5, y(1) = a, y′(1) = b, where a, b ∈ R.

For each of the following differential equations, find the largest interval on which a unique
solution of the initial value problem

a0(t)y′′ + a1(t)y′ + a3(t)y = f(t), y(t0) = y1, y′(t0) = y1

is guaranteed by Theorem 5.2.1. Note that your interval may depend on the choice of
t0.
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27. t2y′′ + 3ty′ − y = t4

Solution: Write the equation in the standard form provided by Theorem 5.2.1:

y′′ +
3
t
y′ − 1

t2
y = t2.

Then a(t) =
3
t
, b(t) = − 1

t2
, and f(t) = t2. These three functions are all continuous on

the intervals (0, ∞) and (−∞, 0). Thus, Theorem 5.2.1 shows that if t0 ∈ (0, ∞) then
the unique solution is also defined on the interval (0, ∞), and if t0 ∈ (−∞, 0), then the
unique solution is defined on (−∞, 0).

28. y′′ − 2y′ − 2y =
1 + t2

1− t2

29. (sin t)y′′ + y = cos t

30. (1 + t2)y′′ − ty′ + t2y = cos t

31. y′′ +
√

ty′ −√t− 3y = 0

32. t(t2 − 4)y′′ + y = et

33. The functions y1(t) = t2 and y2(t) = t3 are two distinct solutions of the initial value
problem

t2y′′ − 4ty′ + 6y = 0, y(0) = 0, y′(0) = 0.

Why doesn’t this violate the uniqueness part of Theorem 5.2.1?

34. Let ϕ(t) be a solution of the differential equation

y′′ + a(t)y′ + b(t)y = 0.

We assume that a(t) and b(t) are continuous functions on an interval I, so that Theorem
5.2.1 implies that ϕ is defined on I. Show that if the graph of ϕ(t) is tangent to the
t-axis at some point t0 of I, then ϕ(t) = 0 for all t ∈ I. Hint: If the graph of ϕ(t) is
tangent to the t-axis at (t0, 0), what does this say about ϕ(t0) and ϕ′(t0)?

35. More generally, let ϕ1(t) and ϕ2(t) be two solutions of the differential equation

y′′ + a(t)y′ + b(t)y = f(t),

where, as usual we assume that a(t), b(t), and f(t) are continuous functions on an
interval I, so that Theorem 5.2.1 implies that ϕ1 and ϕ2 are defined on I. Show that if
the graphs of ϕ1(t) and ϕ2(t) are tangent at some point t0 of I, then ϕ1(t) = ϕ2(t) for
all t ∈ I.
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3.2 The Homogeneous Case

In this section we are mainly concerned with the homogeneous case:

L(y) = y′′ + a(t)y′ + b(t)y = 0 (1)

The main result, Theorem 3.3.1 given below, shows that we will in principle be able
to find two functions ϕ1 and ϕ2 such that all solutions to Equation (1) are of the form
c1ϕ1 + c2ϕ2, for some constants c1 and c2.

Linear Independence

Two functions ϕ1 and ϕ2 defined on some interval I are said to be linearly independent
if the equation

c1ϕ1 + c2ϕ2 = 0 (2)

implies that c1 and c2 are both 0. Otherwise, we call ϕ1 and ϕ2 linearly dependent.

One must be careful about the meaning of this definition. We do not solve Equation
(2). Rather, we are given that this equation is valid for all t ∈ I. With this information
the focus is on what this says about the constants c1 and c2: are they necessarily both
zero or not.

Let’s consider two examples.

Example 3.2.1. First, let ϕ1(t) = t and ϕ2(t) = t2 be defined on I = R. If the equation

c1t + c2t
2 = 0,

is valid for all t ∈ R, then this implies, in particular, that

c1 + c2 = 0 (let t = 1)

−c1 + c2 = 0 (let t = −1)

Now this system of linear equations is easy to solve. We obtain c1 = 0 and c2 = 0. Thus
t and t2 are linearly independent.

Example 3.2.2. In this second example let ϕ1(t) = t and ϕ2(t) = −2t defined on
I = R. Then there are many sets of constants c1 and c2 such that c1t+ c2(−2t) = 0. For
example, we could choose c1 = 2 and c2 = 1. So the equation c1t+ c2(−2t) = 0 does not
necessarily mean that c1 and c2 are zero. Hence t and −2t are not independent. They
are linearly dependent.
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Remark 3.2.3. Notice that ϕ1 and ϕ2 are linearly dependent precisely when one func-
tion is a scalar multiple of the other, i.e., ϕ1 = αϕ2 or ϕ2 = βϕ1 for α ∈ R or β ∈ R. In
Example 3.2.1, ϕ2 6= cϕ1 while in Example 3.2.2, ϕ2 = −2ϕ1. Furthermore, given two
linearly independent functions neither of them can be zero.

The main theorem for the homogeneous case

Theorem 3.2.4. Let L = D2 + aD + b, where a, b are continuous functions on an
interval I. Let S0

L be the solution set to L(y) = 0. Then

1. There are two linearly independent solutions in S0
L.

2. If ϕ1, ϕ2 ∈ S0
L are independent then any ϕ ∈ S0

L can be written ϕ = c1ϕ1 + c2ϕ2,
for some c1, c2 ∈ R.

Proof. Let t0 ∈ I. By Theorem 3.1.6, there are functions, ψ1 and ψ2, that are solutions
to the initial value problems L(y) = 0, with initial conditions y(t0) = 1, y′(t0) = 0 and
y(t0) = 0, y′(t0) = 1, respectively. Suppose c1ψ1 + c2ψ2 = 0. Then

c1ψ1(t0) + c2ψ2(t0) = 0.

Since ψ1(t0) = 1 and ψ2(t0) = 0 it follows that c1 = 0. Similarly we have,

c1ψ
′
1(t0) + c2ψ

′
2(t0) = 0.

Since ψ′1(t0) = 0 and ψ′2(t0) = 1 it follows that c2 = 0. Therefore ψ1 and ψ2 are linearly
independent. This proves (1).

Suppose ϕ ∈ S0
L. Let r = ϕ(t0) and s = ϕ′(t0). Then rψ1 + sψ2 ∈ S0

L and

rψ1(t0) + sψ2(t0) = ϕ(t0)

and rψ′1(t0) + sψ′2(t0) = ϕ′(t0)

This means the rψ1 + sψ2 and ϕ satisfy the same initial conditions. By the uniqueness
part of Theorem 3.1.6 they are equal. Thus every solution is a linear combination of ψ1

and ψ2.



3.2. THE HOMOGENEOUS CASE 141

Now suppose ϕ1 and ϕ2 are any two linearly independent solutions in S0
L and suppose

ϕ ∈ S0
L. From the argument above we can write

ϕ1 = aψ1 + bψ2

ϕ2 = cψ1 + dψ2,

which in matrix form can be written
[
ϕ1

ϕ2

]
=

[
a b
c d

] [
ψ1

ψ2

]
.

We multiply both sides of this matrix equation by the adjoint

[
d −b
−c a

]
to obtain

[
d −b
−c a

] [
ϕ1

ϕ2

]
=

[
ad− bc 0

0 ad− bc

] [
ψ1

ψ2

]
= (ad− bc)

[
ψ1

ψ2

]
.

Suppose ad− bc = 0. Then

dϕ1 − bϕ2 = 0

and − cϕ1 + aϕ2 = 0.

But since ϕ1 and ϕ2 are independent this implies that a, b, c, and d are zero which in turn
implies that ϕ1 and ϕ2 are both zero. But this cannot be. We conclude that ad−bc 6= 0.
We can now write ψ1 and ψ2 each as a linear combination of ϕ1 and ϕ2. Specifically,

[
ψ1

ψ2

]
=

1

ad− bc

[
d −b
−c a

] [
ϕ1

ϕ2

]
.

Since ϕ is a linear combination of ψ1 and ψ2 it follows the ϕ is a linear combination of
ϕ1 and ϕ2.

Remark 3.2.5. The matrix

[
a b
c d

]
that appears in the proof above appears in other

contexts as well. For ϕ1 and ϕ2 in S0
L we define the Wronskian matrix by

W (ϕ1, ϕ2)(t) =

[
ϕ1(t) ϕ2(t)
ϕ′1(t) ϕ′2(t)

]

and the Wronskian by
w(ϕ1, ϕ2)(t) = det W (ϕ1, ϕ2).

The relations in the proof

ϕ1 = aψ1 + bψ2

ϕ2 = cψ1 + dψ2
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when evaluated at t0 imply that
[
a b
c d

]
=

[
ϕ1(t0) ϕ′1(t0)
ϕ1(t0) ϕ′2(t0)

]
= W (ϕ1, ϕ2)

t(t0).

Since it was shown that ad− bc 6= 0 we have shown the following proposition.

Proposition 3.2.6. Suppose ϕ1 and ϕ2 are linearly independent solutions in S0
L. Then

w(ϕ1, ϕ2) 6= 0.

On the other hand, given any two differentiable functions, ϕ1 and ϕ2, (not necessarily
in S0

L) whose Wronskian is a nonzero function then it is easy to see that ϕ1 and ϕ2 are
independent. For suppose, t0 is chosen so that w(ϕ1, ϕ2)(t0) 6= 0 and c1ϕ1 + c2ϕ2 = 0.
Then c1ϕ

′
1 + c2ϕ

′
2 = 0 and we have

[
0
0

]
=

[
c1ϕ1(t0) + c2ϕ2(t0)
c1ϕ

′
1(t0) + c2ϕ

′
2(t0)

]
= W (ϕ1, ϕ2)

[
c1

c2

]
.

Simple matrix algebra1 gives c1 = 0 and c2 = 0. Hence ϕ1 and ϕ2 are linearly indepen-
dent.

Although one could check independence in this way it is simpler and more to the
point to use the observation given in Remark 3.2.3.

Remark 3.2.7. Let’s now summarize what Theorems 3.1.4, 3.1.6 and 3.2.4 tell us. In
order to solve L(y) = f (satisfying the continuity hypotheses) we first need to find a
particular solution ϕp, which exists by the Uniqueness and Existence Theorem 3.1.6.
Next, Theorem 3.2.4 says that if ϕ1 and ϕ2 are any two linearly independent solutions of
the associated homogeneous equation L(y) = 0, then all of the solutions of the associated
homogeneous equation are of the form c1ϕ1 + c2ϕ2. Theorem 3.1.4 now tells us that all
solutions to L(y) = f are of the form ϕp + c1ϕ1 + c2ϕ2 for some choice of the constants
c1 and c2. Furthermore, any set of initial conditions uniquely determine the constants
c1 and c2.

A set {ϕ1, ϕ2} of linearly independent solutions to the homogeneous equation L(y) =
0 is called a fundamental set for the second order linear differential operator L.

In the following sections we will develop methods for finding a fundamental set for L
and a particular solution to the differential equation L(y) = f . For now, let’s illustrate
the main theorems with a couple of examples.

1c.f. Chapter 5 for a discussion of matrices
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Example 3.2.8. Let us reconsider the differential equation y′′ − y = −t. In this case
L = D2 − I and the forcing function is f(t) = −t. A particular solution is ϕp(t) = t.
Two homogeneous solutions are ϕ1(t) = et and ϕ2(t) = e−t. They are independent since
et and e−t are not multiples of each other. Thus {et, e−t} forms a fundamental set for
L(y) = 0. By the above remark

Sf
L =

{
t + c1e

t + c2e
−t : c1, c2 ∈ R

}
.

Example 3.2.9. Consider the differential equation t2y′′ + ty′ + y = 2t. In this case we

divide by t2 to rewrite the equation in standard form as y′′ +
1

t
y′ +

1

t2
y =

2

t
and observe

that the coefficients are continuous on the interval (0,∞). Here L = D2 +
1

t
D +

1

t2
and

the forcing function is f(t) =
1

t2
. We leave the following verifications as an exercise:

1. A particular solution is ϕp(t) = t.

2. Two independent solutions of the homogeneous equation L(y) = 0 are ϕ1(t) =
cos(ln t) and ϕ2(t) = sin(ln t).

The set {cos(ln t), sin(ln t)} is thus a fundamental set for L(y) = 0. By the above remark
the solution set to L(y) = f is given by

Sf
L = {t + c1 cos(ln t) + c2 sin(ln t) : c1, c2 ∈ R} .

Exercises

Determine if each of the following pairs of functions are linearly independent or linearly
dependent.

1. ϕ1(t) = 2t, ϕ2(t) = 5t

2. ϕ1(t) = t2, ϕ2(t) = t5

3. ϕ1(t) = e2t, ϕ2(t) = e5t

4. ϕ1(t) = e2t+1, ϕ2(t) = e2t−3
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5. ϕ1(t) = ln(2t), ϕ2(t) = ln(5t)

6. ϕ1(t) = ln t2, ϕ2(t) = ln t5

7. ϕ1(t) = sin 2t, ϕ2(t) = sin t cos t

8. ϕ1(t) = cosh t, ϕ2(t) = 3et(1 + e−2t)

9. (a) Verify that ϕ(t) = t3 and ϕ2(t) = |t3| are linearly independent on (−∞, ∞).

(b) Show that the Wronskian, w(ϕ1, ϕ2)(t) = 0 for all t ∈ R.

(c) Explain why Parts (a) and (b) do not contradict Theorem 3.2.6.

(d) Verify that ϕ1(t) and ϕ2(t) are solutions to the linear differential equation

t2y′′ − 2ty′ = 0, , y(0) = 0, y′(0) = 0.

(e) Explain why Parts (a), (b), and (d) do not contradict Theorem 3.1.6.

3.3 Constant Coefficient Differential Operators

A constant coefficient second order linear differential operator has the form
L = aD2 + bD + c, where a, b, c ∈ R and a 6= 0. Throughout this section L will be of
this form and we will determine explicitly the solution set of the homogeneous equation
L(y) = ay′′ + by′ + cy = 0. From Theorem 3.2.4 it is enough to find two linearly
independent solutions.

Dividing this equation by a gives an equivalent equation in standard form. Since the
coefficients b/a and c/a are constant and hence continuous on all of R any solution ϕ
will exist as a function on all of R. Therefore ϕ(0) and ϕ′(0) are defined. Let’s then
consider the Laplace transform of the equation:

ay′′ + by′ + c = 0, y(0) = y0, y′(0) = y1. (1)

Recall our convention: Y = L(y). We obtain

as2Y (s)− asy0 − ay1 + bsY (s)− by0 + cY (s) = 0.

Solving for Y gives

Y (s) =
ay0s + (by0 + ay1)

as2 + bs + c
. (2)
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The numerator of Y (s) is a linear term and all possible linear terms are obtained by
varying the initial conditions y0 and y1.

The polynomial p(s) = as2 + bs + c which appears in the denominator of Y (s) is
called the characteristic polynomial for L. The characteristic polynomial also arises
as the multiplier of the exponential est when the differential operator L is applied to est.
That is,

L(est) = p(s)est.

This equality is easily verified by direct substitution of est into L. (See Exercise 19,
Page 136.)

The partial fraction decomposition of Y (s) is completely determined by the way p(s)
factors. Our experience with the Laplace transform tells us there are three possibilities
to consider:

1. p(s) has two distinct real roots

2. p(s) has a repeated root

3. p(s) has a pair of conjugate complex roots.

p(s) has two distinct real roots

Suppose p(s) = a(s− r1)(s− r2), where r1, r2 ∈ R and r1 6= r2. Then the partial fraction
decomposition of Y (s) has the form

Y (s) =
A

s− r1

+
B

s− r2

.

( The constant a can be absorbed into the constants A and B ) The inverse Laplace
transform is a linear combination of er1t and er2t. Since they are not multiples of each
other they are independent. The equations L(er1t) = p(r1)e

r1t = 0 and L(er2t) =
p(r2)e

r2t = 0 imply that {er1t, er2t} form a fundamental set to L(y) = 0 by Theorem
3.2.4.

p has a repeated root

Here, we are supposing that p(s) = a(s− r)2. In this case the partial fraction decompo-
sition of Y (s) has the form

Y (s) =
A

s− r
+

B

(s− r)2
.



146 CHAPTER 3. SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

The inverse Laplace transform is a linear combination of ert and tert, which are inde-
pendent. It is easy to check that both are solutions to Ly = 0 and hence {ert, tert} is a
fundamental set.

p has complex conjugate roots

In this case p(s) does not factor over R. Rather if the complex roots of p(s) are r = α±iβ
with β 6= 0, then p(s) can be rewritten in the form p(s) = a(s− (α+ iβ))(s− (α− iβ)) =
a(s− α)2 + β2. In this case the partial fraction decomposition of Y (s) is of the form

Y (s) =
As + B

(s− α)2 + β2
.

The inverse Laplace transform is a linear combination of the functions eαt sin βt and
eαt cos βt. It is easy to see they are independent and solutions to Ly = 0. It follows from
Theorem 3.2.4 that eαt sin βt and eαt cos βt form a fundamental set of solutions for the
equation L(y) = 0.

We now summarize our results as one theorem, which will be followed by several
examples.

Theorem 3.3.1. Suppose L = aD2 + bD + c is a constant coefficient second order
differential operator. Let p(s) = as2 + bs + c be the characteristic polynomial.

1. If r1 and r2 are two distinct real roots of p(s) then

{
er1t, er2t

}

is a fundamental set for S0
L.

2. If r is a double root of p(s) then

{
ert, tert

}

is a fundamental set for S0
L.

3. If α± iβ are the complex conjugate roots of p(s) then

{
eαt cos βt, eαt sin βt

}

is a fundamental set for S0
L.

Let’s now consider some examples.
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Example 3.3.2. Suppose L = 2D2 + 3D + 1. The characteristic polynomial is p(s) =
2s2 + 3s + 1 = (2s + 1)(s + 1). The roots are thus −1 and −1/2. By Theorem 3.3.1,

e−
1
2
t and e−t form a fundamental set for L(y) = 0.

Example 3.3.3. Suppose L = D2 +−4D + 4. The characteristic polynomial is p(s) =
s2 − 4s + 4 = (s− 2)2. Thus 2 is a double root. By Theorem 3.3.1, e2t and te2t form a
fundamental set for L(y) = 0.

Example 3.3.4. Suppose L = D2 + 2D + 3. The characteristic polynomial is p(s) =
s2 + 2s + 3 = (s + 1)2 + 2. The roots are thus −1± i

√
2. By Theorem 3.3.1, e−t cos

√
2t

and e−t sin
√

2t form a fundamental set for L(y) = 0.

It is worth emphasizing that once we have Theorem 3.3.1 we can write down the
complete solution set of the homogeneous linear second order constant coefficient dif-
ferential equation L(y) = 0 directly from the knowledge of the algebraic roots of the
characteristic polynomial p(s). Thus, the Laplace transform has been used as a tool
for deriving Theorem 3.3.1, and in the situations to which it applies, the theorem can
be used directly, without going through the intermediate steps of calculating a Laplace
transform and then an inverse Laplace transform. Of course, there are many situations
where Theorem 3.3.1 does not apply, e.g., to nonhomogeneous equations, and for these
additional techniques will be needed.

Exercises

Determine a fundamental set for each of the following differential equations. Use Exam-
ples 3.3.2 - 3.3.4 as guides.

1. y′′ + y′ − 2y = 0

2. y′′ − 16y = 0

3. y′′ + 3y′ = 0

4. 2y′′ − 5y′ − 3y = 0

5. y′′ − 2y = 0

6. y′′ − 2y′ − y = 0

7. y′′ − 6y′ + 9y = 0

8. y′′ + 4y′ + 4y = 0
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9. y′′ = 0

10. 4y′′ − 12y′ + 9y = 0

11. y′′ + y = 0

12. 5y′′ + y = 0

13. y′′ − 4y′ + 13y = 0

14. y′′ + 2y′ + 2y = 0

15. y′′ − 8y′ + 17y = 0

16. y′′ + y′ + y = 0

Find the solution to the following initial value problems.

17. y′′ − y′ − 6y = 0, y(0) = 2, y′(0) = 1

18. y′′ − 2y′ + y = 0, y(0) = 0, y′(0) = 1

19. y′′ + 4y′ + 3y = 0, y(0) = 3, y′(0) = 1

20. y′′ + 4y = 0, y(π) = 2, y′(π) = −2

21. y′′ − 7y = 0, y(0) = 0, y′(0) = 14

22. y′′ + 2y′ + 2y = 0, y(0) = 1, y′(0) = −1

Find a second order linear homogeneous differential equation with constant real coef-
ficients that has the given function as a solution, or explain why there is not such an
equation.

23. et + 2e−3t

24. 3e−2t − 5e−7t

25. te−2t

26. sin 5t

27. e2t sin 3t

28.
2t

et

29.
et

2t
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Verify that every solution to the following differential equations satisfies the limit con-
dition

lim
t→∞ y(t) = 0.

30. y′′ + 5y′ + 6y = 0

31. y′′ + y′ + y = 0

32. y′′ + 2y′ + 10y = 0

33. Verify that some solutions of the differential equation

y′′ − y′ − 6y = 0

satisfy limt→∞ y(t) = 0, while others satisfy limt→∞ y(t) = ±∞.

3.4 The Cauchy-Euler Equations

When the coefficients of a second order linear differential operator are variable the cor-
responding equation can become very difficult to solve. Indeed, equations that might
appear ‘simple’ may have no solution expressible in terms of common functions. New
functions in fact frequently appear as solutions to differential equations which can not
be expressed in terms of other known functions. For example the equation

t2y′′ + ty′ + (t2 − r)y = 0

where r ∈ R is an important differential equation that occurs in physical problems. The
solutions cannot be expressed in terms of the standard elementary functions, i.e., poly-
nomials, exponential, logarithm, and trig functions, but there nevertheless are solutions
on I = (0, ∞) by the Uniqueness and Existence theorem. These solutions, known as
Bessel functions, have been thoroughly studied and one can find information about them
in standard mathematical handbooks. We will not be studying this differential equation
in this course, but there is a similar looking class of variable coefficient linear differential
equations, known as Cauchy-Euler equations, for which the solutions are easy to obtain
by techniques similar to those we have already learned for constant coefficient equations.
We will consider these equations now.

A Cauchy-Euler equation is a second order linear differential equation of the
following form:
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at2y′′ + bty′ + cy = 0, (1)

where a, b and c are real constants and a 6= 0. When put in standard form we obtain:

y′′ +
b

at
y′ +

c

at2
y = 0.

The functions
b

at
and

c

at2
are continuous everywhere except at 0. Thus by the Uniqueness

and Existence Theorem 3.1.6 solutions exist in either of the intervals (−∞, 0) or (0,∞).
Of course, a solution need not, and in general, will not exist on the entire real line R.
To work in a specific interval we will assume t > 0. Let L = at2D2 + btD + c.

Laplace transform methods do not work in any simple fashion here. The change
in variable x = ln t will transform Equation (1) into a constant coefficient differential
equation. To see this observe that

dy

dt
=

dy

dx

dx

dt
=

dy

dx
· 1

t

so that

t
dy

dt
=

dy

dx
. (2)

Similarly,

d2y

dt2
=

d

dt

dy

dt
=

d

dt
(
1

t

dy

dx
)

=
−1

t2
dy

dx
+

1

t

d

dt

dy

dx

=
−1

t2
dy

dx
+

1

t2
d2y

dx

so that

t2
d2y

dt2
=

d2y

dx2
− dy

dx
. (3)

Substituting Equations (2) and (3) into Equation (1) gives

a(
d2y

dx2
− dy

dx
) + b

dy

dx
+ cy = 0

or, equivalently, the linear constant coefficient equation,

a
d2y

dx
+ (b− a)

dy

dx
+ cy = 0. (4)

Let q(s) = as2 + (b − a)s + c be the characteristic polynomial. This polynomial is
known as the indicial polynomial of the operator L. As discussed in the previous
section the way q(s) factors determines the solutions to Equation (4) and thus the
solutions to Equation (1). We consider the three possibilities.
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q has distinct real roots

Suppose r1 and r2 are distinct roots to the indicial polynomial q(s). Then er1x and er2x

are solutions to Equation (4). Solutions to Equation (1) are obtained by the substitution
x = ln t: we have er1x = er1 ln t = tr1 and similarly er2x = tr2 . Since tr1 is not a multiple
of tr2 they are independent. By the main Theorem 3.2.4, {tr1 , tr2} is a fundamental set
for L(y) = 0.

3.4.1 q has a double root

Suppose r is a double root of q. Then erx and terx are independent solutions to Equation
(4). The substitution x = ln t then gives tr and tr ln t as independent solutions to
Equation (1). By Theorem 3.2.4 {tr, tr ln t} is a fundamental set for L(y) = 0.

3.4.2 q has conjugate complex roots

Suppose q has complex roots α ± iβ, where β 6= 0. Then eαx cos βx and eαx sin βx are
independent solutions to Equation (4). The substitution x = ln t then gives tα cos(β ln t)
and tα sin(β ln t) as independent solutions to Equation (1).

We now summarize the above results into one theorem.

Theorem 3.4.1. Let L = at2D2 + btD + c, where a, b, c ∈ R and a 6= 0. Let q(s) =
as2 + (b− a)s + c be the indicial polynomial.

1. If r1 and r2 are distinct real roots of q(s) then

{tr1 , tr2}
is a fundamental set for L(y) = 0.

2. If r is a double root of q(s) then

{tr, tr ln t}
is a fundamental set for L(y) = 0.

3. If α± iβ are complex conjugate roots of q(s), β 6= 0 then

{tα sin(β ln t), tα cos(β ln t)}
is a fundamental set for L(y) = 0.
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Example 3.4.2. Consider the equation t2y′′ − 2y = 0. The indicial polynomial is
s2 − s − 2 = (s − 2)(s + 1) and it has 2 and −1 as roots. Theorem 3.4.1 implies that
{t2, t−1} is a fundamental set for this Cauchy-Euler equation.

Example 3.4.3. The indicial polynomial for the Cauchy-Euler equation 4t2y′′ + 8ty′ +

y = 0 is 4s2 + 4s + 1 = (2s + 1)2. Theorem 3.4.1 implies that
{

t−
1
2 , t−

1
2 ln t

}
is a

fundamental set.

Example 3.4.4. Consider the equation t2y′′ + ty′ + y = 0. The indicial polynomial is
s2 + 1 which has ±i as complex roots. Theorem 3.4.1 implies that {cos ln t, sin ln t} is a
fundamental set. This justifies item 2 in Example 3.2.9.

Exercises

Find the general solution of each of the following homogeneous Cauchy-Euler equations
on the interval (0, ∞).

1. t2y′′ + 2ty′ − 2y = 0

2. 2t2y′′ − 5ty′ + 3y = 0

3. t2y′′ + ty′ − 2y = 0

4. 4t2y′′ + y = 0

5. t2y′′ + 7ty′ + 9y = 0

6. t2y′′ + ty′ − 4y = 0

7. t2y′′ + ty′ + 4y = 0

8. t2y′′ − ty′ + 13y = 0

Solve each of the following initial value problems.

9. t2y′′ + 2ty′ − 2y = 0, y(1) = 0, y′(1) = 1

10. 4t2y′′ + y = 0, y(1) = 2, y′(1) = 0
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11. t2y′′ + ty′ + 4y = 0, y(1) = −3, y′(1) = 4

12. t2y′′ − 4ty′ + 6y = 0, y(0) = 1, y′(0) = −1

3.5 Undetermined Coefficients

In this section and the next we consider the nonhomogeneous differential equation

Ly = f, (1)

where f is a nonzero function. The general theory developed in Sections 3.1 and 3.2,
specifically Theorems 3.1.4 and 3.2.4, gives the strategy for solving Equation (1): First,
we find the solution set, S0

L, to the associated homogeneous equation Ly = 0. Second,
we find a particular solution ϕp to Equation (1). Then the general solution takes the
form

ϕp + ϕh,

where ϕh ∈ S0
L. Previous sections have addressed the question of finding the solution

set to a linear second order differential equation in some special circumstances. Thus
our efforts now turn to finding a particular solution to Equation (1).

In this section we will describe a method, known as the method of undetermined
coefficients, for finding a particular solution to

ay′′ + by′ + cy = f(t) (2)

in the case where f ∈ E is an elementary function and a, b, and c are real numbers with
a 6= 0. The general case will be considered in the next section.

Recall from Chapter 2 that an elementary function is a sum of constant multiples of
the following types of simple elementary functions:

tkeαt, tkeαt cos βt, tkeαt sin βt,

where α and β are real numbers and k = 0, 1, 2, . . .. As we shall see any solution to
Equation (2) is again an elementary function and therefore any particular solution ϕp

can be expressed in the following way

ϕp = C1ϕ1 + · · ·+ Cnϕn, (3)
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where each ϕi, i = 1, . . . n, is a simple elementary function. If each of the ϕi’s is
not a solution to the associated homogeneous equation ay′′ + by′ + cy = 0 we will
call Equation (3) the form of the particular solution. The method of undetermined
coefficients allows one to determine the simple elementary functions that appear as terms
in Equation (3). The coefficients of these term are then determined by substitution into
Equation (2).

Let’s consider the necessary details. Let y(t) be the unique solution of Equation
(2) subject to the initial conditions y(0) = y0 and y′(0) = y1, and, as usual, we let
Y (s) = L(y(t)). Applying the Laplace transform to both sides of Equation (2) gives

a(s2Y − sy1 − y1) + b(sY − y0) + cY = F (s) =
R(s)

Q(s)
,

and solving for Y we obtain

Y =
y0(as + b) + ay1

p(s)
+

R(s)

p(s)Q(s)
, (4)

which we write as Y1(s) + Y2(s), where Y1(s) is the first term and Y2(s) is the second
term. Since Y is a proper rational function y is an elementary function. The first term
in Equation (4), Y1(s), has inverse Laplace transform that is part of the solution to
the associated homogeneous equation ay′′ + by′ + cy = 0. Since our focus is on finding
the form of a particular solution we can ignore this contribution and concentrate on
the second term Y2(s). The form of the partial fraction decomposition (see Page 96) of
Y2(s) is completely determined by the factorization of the denominator p(s)Q(s). The
inverse Laplace transform of Y2 is thus a sum of simple elementary functions. Some of
these simple elementary functions may be included in ϕh and therefore ignored. It is the
remaining terms that lead to the form of the particular solution. The way to proceed
should become clear once we have illustrated the method with some simple examples.

Example 3.5.1. Find a particular solution ϕp(t) to y′′ + 4y′ − 5y = 3e−t.

I Solution. In this example, f(t) = 3e−t so that F (s) =
3

s + 1
=

R(s)

Q(s)
and p(s) =

s2 + 4s − 5 = (s + 5)(s − 1); hence p(s)Q(s) = (s + 5)(s − 1)(s + 1). Since this is the
denominator of Y (s) we conclude that

Y (s) =
A

s + 5
+

B

s− 1
+

C

s + 1
,

and hence
y(t) = Ae−5t + Bet + Ce−t.
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The first two terms are included in ϕh(t) so we conclude that ϕp(t) = Ce−t where C is
a constant, which can be determined by substitution into the original equation:

ϕ′′p(t) + 4ϕ′p(t)− 5ϕp(t) = Ce−t − 4Ce−t − 5Ce−t

= −8Ce−t

= 3e−t.

Thus, we must have −8C = 3 so that C = −3/8 and ϕp(t) = (−3/8)e−t. The general
solution to y′′ + 4y′ − 5y = 3e−t is then

y(t) = Ae−5t + Bet − 3

8
e−t,

where A and B are arbitrary real constants. J

Example 3.5.2. Find a particular solution ϕp(t) to y′′ + 4y′ − 5y = 3te−t.

I Solution. The only difference between this and the previous example is that now

f(t) = 3te−t so that F (s) =
3

(s + 1)2
=

R(s)

Q(s)
. Hence p(s)Q(s) = (s + 5)(s− 1)(s + 1)2

which gives a partial fraction expansion for Y (s) of the form

Y (s) =
A

s + 5
+

B

s− 1
+

C1

s + 1
+

C2

(s + 1)2
,

which then implies that

y(t) = Ae−5t + Bet + C1e
−t + C2te

−t.

As above, the first two terms are included in ϕh(t) so we conclude that ϕp(t) = C1e
−t +

C2te
−t where C1 and C2 are constants, which can be determined by substitution into

the original equation, as follows. First compute the derivatives of ϕp(t):

ϕp(t) = C1e
−t + C2te

−t

ϕ′p(t) = (−C1 + C2)e
−t − C2te

−t

ϕ′′p(t) = (C1 − 2C2)e
−t + C2te

−t.

Now substitute these into the original equation:

ϕ′′p(t) + 4ϕ′p(t)− 5ϕp(t) = (−8C1 + 2C2)e
−t − 8C2te

−t

= 3te−t.
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Setting t = 0 gives the equation −8C1 + 2C2 = 0, while comparing the coefficients of
te−t gives an equation −8C2 = 3. Hence the coefficients C1 and C2 satisfy the system of
equations

−8C1 + 2C2 = 0

−8C2 = 3.

Therefore, C2 = −3/8 and C1 = C2/4 = −3/32, and we conclude that a particular
solution ϕp(t) to y′′ + 4y′ − 5y = 3te−t is given by

ϕp(t) = − 3

32
e−t − 3

8
te−t

and then general solution is

y(t) = ϕh(t) + ϕp(t) = Ae−5t + Bet − 3

32
e−t − 3

8
te−t,

where A and B are arbitrary constants. J

Example 3.5.3. Find a particular solution ϕp(t) to y′′ − 4y′ − 5y = 3e−t.

I Solution. In this example, as in the first example, f(t) = 3e−t so that F (s) =
3

s + 1
=

R(s)

Q(s)
. But p(s) = s2− 4s− 5 = (s− 5)(s+1); hence p(s)Q(s) = (s− 5)(s+1)2.

Since this is the denominator of Y (s) we conclude that

Y (s) =
A

s− 5
+

B

s + 1
+

C

(s + 1)2
,

and hence
y(t) = Ae5t + Be−t + Cte−t.

The first two terms are included in ϕh(t) so we conclude that ϕp(t) = Cte−t where C is
a constant, which can be determined by substitution into the original equation:

ϕ′′p(t)− 4ϕ′p(t)− 5ϕp(t) = C(−2 + t)e−t − 4C(1− t)e−t − 5Cte−t

= −6Ce−t

= 3e−t.

Thus, we must have −6C = 3 so that C = −1/2 and ϕp(t) = (−1/2)te−t. The general
solution to y′′ − 4y′ − 5y = 3e−t is then

y(t) = Ae−5t + Bet − 1

2
te−t,

where A and B are arbitrary real constants. J
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Example 3.5.4. Find a particular solution ϕp(t) to y′′ + 2y′ + y = 3e−t.

I Solution. Also in this example, f(t) = 3e−t so that F (s) =
3

s + 1
=

R(s)

Q(s)
. But

p(s) = s2 + 2s + 1 = (s + 1)2; hence p(s)Q(s) = (s + 1)3. Since this is the denominator
of Y (s) we conclude that

Y (s) =
A1

s + 1
+

A2

(s + 1)2
+

A3

(s + 1)3
,

and hence

y(t) = A1e
−t + A2te

−t + (A3/2)t2e−t.

As in the previous examples, the first two terms are included in ϕh(t) so we conclude
that ϕp(t) = Ct2e−t where C is a constant, which, as earlier, can be determined by
substitution into the original equation:

ϕ′′p(t) + 2ϕ′p(t) + ϕp(t) = C(2− 4t + t2)e−t + 2C(2t− t2)e−t + Ct2e−t

= 2Ce−t

= 3e−t.

Thus, C = 3/2 and ϕp(t) = (3/2)t2e−t. The general solution to y′′ + 2y′ + y = 3e−t is
then

y(t) = A1e
−t + A2te

−t +
3

2
t2e−t,

where A1 and A2 are arbitrary real constants. J

Example 3.5.5. Find a particular solution ϕp(t) to y′′ + 2y′ + 5y = 3 sin 2t.

I Solution. In this example, f(t) = 3 sin 2t so that F (s) =
6

s2 + 4
=

R(s)

Q(s)
, while

p(s) = s2 + 2s + 5 = (s + 1)2 + 4; hence p(s)Q(s) = ((s + 1)2 + 4)(s2 + 4). Since this is
the denominator of Y (s) we conclude that

Y (s) =
A1s + B1

(s + 1)2 + 4
+

A2s + B2

s2 + 4
,

and hence (using Formulas 6) and 7) of Table C.2)

y(t) = Ã1e
−t cos 2t + B̃1e

−t sin 2t + A2 cos 2t + (B2/2) sin 2t.
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As in the previous examples, the first two terms are included in ϕh(t) so we conclude
that ϕp(t) = C1 cos 2t + C2 sin 2t where C1 and C2 are constants to be determined by
substitution into the original equation:

ϕ′′p(t) + 2ϕ′p(t) + 5ϕp(t) = (−4C1 + 4C2 + 5C1) cos 2t + (−4C2 − 4C1 + 5C2) sin 2t

= (C1 + 4C2) cos 2t + (−4C1 + C2) sin 2t

= 3 sin 2t.

Thus, C1 and C2 satisfy the system of linear equations:

C1 + 4C2 = 0

−4C1 + C2 = 3.

Solving these equations for C1 and C2 gives

C1 = −12

17
, C2 =

3

17
,

which implies that a particular solution ϕp(t) to y′′ + 2y′ + 5y = 3 sin 2t is

ϕp(t) = −12

17
cos 2t +

3

17
sin 2t,

and the general solution is then

y(t) = A1e
−t cos 2t + A2e

−t sin 2t− 12

17
cos 2t +

3

17
sin 2t,

where A1 and A2 are arbitrary real constants. J

Example 3.5.6. Find a particular solution ϕp(t) to y′′ + 4y = 3 sin 2t.

I Solution. As in the previous example, f(t) = 3 sin 2t so that F (s) =
6

s2 + 4
=

R(s)

Q(s)
,

but now p(s) = s2 +4; hence p(s)Q(s) = (s2 +4)2. Since this is the denominator of Y (s)
we conclude that

Y (s) =
A1s + B1

s2 + 4
+

A2s + B2

(s2 + 4)2
,

and hence (using Formulas from the Table of Convolutions)

y(t) = Ã1 cos 2t + B̃1 sin 2t + C1t cos 2t + C2t sin 2t.

As in the previous examples, the first two terms are included in ϕh(t) so we conclude
that ϕp(t) = C1t cos 2t + C2t sin 2t where C1 and C2 are constants to be determined by
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Table 3.1: Form of a particular solution ϕp(t)

p(s) f(t) Q(s) form of ϕp(t)
(s + 5)(s− 1) 3e−t s + 1 Ce−t

(s + 5)(s− 1) 3te−t (s + 1)2 (C1 + C2t)e
−t

(s− 5)(s + 1) 3e−t s + 1 Cte−t

(s + 1)2 3e−t s + 1 Ct2e−t

(s + 1)2 + 4 3 sin 2t s2 + 4 C1 cos 2t + C2 sin 2t
s2 + 4 3 sin 2t s2 + 4 C1t cos 2t + C2t sin 2t

substitution into the original equation (the details of the substitution are left to the
reader):

ϕ′′p(t) + 4ϕp(t) = 4C2 cos 2t− 4C1 sin 2t

= 3 sin 2t.

Solving for C1 and C2 gives

C1 = −3

4
, C2 = 0,

which implies that a particular solution ϕp(t) to y′′ + 4y = 3 sin 2t is

ϕp(t) = −3

4
t cos 2t,

and the general solution is then

y(t) = A1 cos 2t + A2 sin 2t− 3

4
cos 2t,

where A1 and A2 are arbitrary real constants. J

We now summarize the calculations of the previous examples in Table 3.1. In this
table, we are tabulating the form of a particular solution ϕp(t) of the differential equation

ay′′ + by′ + cy = f(t)

as it relates to the characteristic polynomial p(s) = as2 + bs + c, the forcing function
f(t), and the denominator Q(s) of the Laplace transform F (s) = R(s)/Q(s) of f(t).

Notice that so long as p(s) and Q(s) do not have a common root (as in rows 1, 2,
and 5 of Table 3.1), then the form of ϕp(t) is exactly similar to that of f(t), while if
p(s) and Q(s) have a common root (either real or complex), then the form of ϕp(t) is
adjusted by multiplying by either t (if the common root is a simple root of p(s), as in
rows 3 and 6 of the table) or t2 (if the common root is a double root of p(s), as in row
4 of the table). These observations are formalized in the following theorem.
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Theorem 3.5.7 (Undetermined Coefficients). Let p(s) = as2 + bs + c be the char-
acteristic polynomial of the nonhomogeneous constant coefficient differential equation

ay′′ + by′ + cy = f(t).

The form of a particular solution ϕp(t) of this equation is determined by f(t) and
p(s) in the following cases.

1. f(t) = (A0 + A1t + · · ·+ Akt
k)eαt.

(a) If p(α) 6= 0, then the form of ϕp(t) is

ϕp(t) = (C0 + C1t + · · ·+ Ckt
k)eαt.

(b) If p(s) = a(s− α)(s− r) with r 6= α, i.e., α is a simple root of p(s), then the
form of ϕp(t) is

ϕp(t) = t(C0 + C1t + · · ·+ Ckt
k)eαt.

(c) If p(s) = a(s− α)2, i.e., α is a double root of p(s), then the form of ϕp(t) is

ϕp(t) = t2(C0 + C1t + · · ·+ Ckt
k)eαt.

2. f(t) = (A0 + A1t + · · ·+ Akt
k)eαt cos βt + (A′

0 + A′
1t + · · ·+ A′

kt
k)eαt sin βt.

(a) If p(α + iβ) 6= 0 then the form of ϕp(t) is

ϕp(t) = (C0 + C1t + · · ·+ Ckt
k)eαt cos βt + (C ′

0 + C ′
1t + · · ·+ C ′

kt
k)eαt sin βt.

(b) If p(α + iβ) = 0 then the form of ϕp(t) is

ϕp(t) = t(C0 + C1t + · · ·+ Ckt
k)eαt cos βt + t(C ′

0 + C ′
1t + · · ·+ C ′

kt
k)eαt sin βt.

The form of ϕp(t) means that C1, C2, . . ., Ck, and C ′
1, C ′

2, . . ., C ′
k are initially undeter-

mined coefficients which are computed by substitution into the differential equation.

Example 3.5.8. Determine the form of a particular solution ϕp(t) for each of the
following differential equations. Do not solve for the resulting constants.

1. y′′ − 5y′ + 7y = 4e3t

I Solution. This is Case (1) with α = 3. Since p(s) = s2 − 5s + 7 and p(3) =
1 6= 0, ϕp(t) = Ce3t. J
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2. y′′ − 5y′ + 7y = 2t− t3

I Solution. This is Case (1) with α = 0. Since p(0) = 7 6= 0, it follows that

ϕp(t) = C0 + C1t + C2t
2 + C3t

3.

J

3. y′′ − 5y′ = 2t− t3

I Solution. This is again Case (1) with α = 0. Since p(0) = 0, it follows that

ϕp(t) = C0t + C1t
2 + C2t

3 + C3t
4.

J

4. y′′ + y′ − 6y = 2et − e2t

I Solution. Since p(s) = (s − 2)(s + 3), we have that 2 is a simple root of
p(s). Hence, using both parts (a) and (b) of Case (1), it follows that ϕp(t) =
C1e

t + C2te
2t. J

5. y′′ + 4y = 5e−3t sin 2t

I Solution. Since α+ iβ = −3+2i is not a root of p(s) = s2 +4, Case (2) shows

ϕp(t) = C1e
−3t sin 2t + C2e

−3t cos 2t.

J

6. y′′ + 6y′ + 13y = 5e−3t sin 2t

I Solution. Since α+ iβ = −3+2i is a root of p(s) = s2 +6s+13 = (s+3)2 +4,
Case (2) shows

ϕp(t) = C1te
−3t sin 2t + C2te

−3t cos 2t.

J
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Exercises

Find the general solution of each of the following differential equations.

1. y′′ + 3y′ + 2y = 4

2. y′′ + 3y′ + 2y = 12et

3. y′′ + 3y′ + 2y = sin t

4. y′′ + 3y′ + 2y = cos t

5. y′′ + 3y′ + 2y = 8 + 6et + 2 sin t

6. y′′ − 3y′ − 4y = 6et

7. y′′ − 3y′ − 4y = 5e4t

8. y′′ − 4y′ + 3y = 20 cos t

9. y′′ − 4y′ + 3y = 2 cos t + 4 sin t

10. y′′ − 4y = 8e2t − 12

11. y′′ − 3y′ + 2y = 2t3 − 9t2 + 6t

12. y′′ − 3y′ + 2y = 2t2 + 1

13. y′′ + 4y = 5et − 4t

14. y′′ + 4y = 5et − 4t2

15. y′′ + y′ + y = t2

16. y′′ − 2y′ − 8y = 9tet + 10e−t

17. y′′ − 3y′ = 2e2t sin t

18. y′′ + y′ = t2 + 2t

19. y′′ + y′ = t + sin 2t

20. y′′ + y = cos t

21. y′′ + y = 4t sin t

22. y′′ − 3y′ − 4y = 16t− 50 cos 2t

23. y′′ + 4y′ + 3y = 15e2t + e−t

24. y′′ − y′ − 2y = 6t + 6e−t
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25. y′′ + y = sin2 t Hint: sin2 t = 1
2 − 1

2 cos 2t

26. y′′ − 4y′ + 4y = e2t

Solve each of the following initial value problems.

27. y′′ − 5y′ − 6y = e3t, y(0) = 2, y′(0) = 1.

28. y′′ + 2y′ + 5y = 8e−t, y(0) = 0, y′(0) = 8.

29. y′′ + y = 10e2t, y(0) = 0, y′(0) = 0.

30. y′′ − 4y = 2− 8t, y(0) = 0, y′(0) = 5.

31. y′′ − y′ − 2y = 5 sin t, y(0) = 1, y′(0) = −1.

32. y′′ + 9y = 8 cos t, y(π/2) = −1, y′(π/2) = 1.

33. y′′ − 5y′ + 6y = et(2t− 3), y(0) = 1, y′(0) = 3.

34. y′′ − 3y′ + 2y = e−t, y(0) = 1, y′(0) = −1.

3.6 Variation of Parameters

Let L = D2 + aD + b, where a and b are continuous functions on an interval I. In
this section we address the issue of finding a particular solution to a nonhomogeneous
linear differential equation L(y) = f , where f is continuous on I. It is a pleasant and
remarkable feature of linear differential equations that the homogeneous solutions can be
used decisively to find a particular solution. The procedure we use is called variation
of parameters.

Suppose {ϕ1, ϕ2} is a fundamental set for L(y) = 0. We know then that all solutions
of the homogeneous equation L(y) = 0 are of the form c1ϕ1 + c2ϕ2. To find a particular
solution ϕp to L(y) = f the method of variation of parameters makes two assumptions.
First, the parameters c1 and c2 are allowed to vary. We thus replace the constants c1

and c2 by functions u1(t) and u2(t), and assumes that the particular solution ϕp, takes
the form

ϕp(t) = u1(t)ϕ1(t) + u2(t)ϕ2(t). (1)

The second assumption is

u′1(t)ϕ1(t) + u′2(t)ϕ2(t) = 0. (2)



164 CHAPTER 3. SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

What’s remarkable is that these two assumptions consistently lead to explicit formulas
for u1(t) and u2(t) and hence a formula for ϕp.

To simplify notation in the calculations that follow we will drop the ‘t’ in expression
like u1(t), etc. Before substituting ϕp into L(y) = f we first calculate ϕ′p and ϕ′′p.

ϕ′p = u′1ϕ1 + u1ϕ
′
1 + u′2ϕ2 + u2ϕ

′
2

= u1ϕ
′
1 + u2ϕ

′
2

(by second assumption).

Now for the second derivative

ϕ′′p = u′1ϕ
′
1 + u1ϕ

′′
1 + u′2ϕ

′
2 + u2ϕ

′′
2.

We now substitute ϕp into L(y).

L(ϕp) = ϕ′′p + aϕ′p + bϕp

= u′1ϕ
′
1 + u1ϕ

′′
1 + u′2ϕ

′
2 + u2ϕ

′′
2

+a(u1ϕ
′
1 + u2ϕ

′
2) + b(u1ϕ1 + u2ϕ2)

= u′1ϕ
′
1 + u′2ϕ

′
2 + u1(ϕ

′′
1 + aϕ′1 + bϕ1) + u2(ϕ

′′
2 + aϕ′2 + bϕ2)

= u′1ϕ
′
1 + u′2ϕ

′
2

(because ϕ1 and ϕ2 are homogeneous solutions)

The second assumption and the equation L(ϕp) = f now lead to the following system:

u′1ϕ1 + u′2ϕ2 = 0

u′1ϕ
′
1 + u′2ϕ

′
2 = f

which can be rewritten in matrix form as[
ϕ1 ϕ2

ϕ′1 ϕ′2

] [
u′1
u′2

]
=

[
0
f

]
. (3)

The left most matrix in Equation (3) is none other than the Wronskian matrix, W (ϕ1, ϕ2),
which has a nonzero determinant because {ϕ1, ϕ2} is a fundamental set (cf Theorem 3.2.4
and Proposition 3.2.6). By Cramer’s rule, we can solve for u′1 and u′2. We obtain

u′1 =
−ϕ2f

w(ϕ1, ϕ2)

u′2 =
ϕ1f

w(ϕ1, ϕ2)
.
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We now obtain an explicit formula for a particular solution:

ϕp(t) = u1ϕ1 + u2ϕ2

=
( ∫ −ϕ2f

w(ϕ1, ϕ2)

)
ϕ1 +

( ∫
ϕ1f

w(ϕ1, ϕ2)

)
ϕ2. (4)

The following theorem consolidates these results with Theorems 3.1.4 and 3.2.4.

Theorem 3.6.1. Let L = D2 + aD + b, where a and b are continuous on an interval
I. Suppose {ϕ1, ϕ2} is a fundamental set of solutions for L(y) = 0. If f is continuous
on I then a particular solution, ϕp, to L(y) = f is given by the formula

ϕp =
( ∫ −ϕ2f

w(ϕ1, ϕ2)

)
ϕ1 +

( ∫
ϕ1f

w(ϕ1, ϕ2)

)
ϕ2.

Furthermore, the solution set Sf
L to L(y) = f becomes

Sf
L = {ϕp + c1ϕ1 + c2ϕ2 : c1, c2 ∈ R} .

Remark 3.6.2. Equation (4), which gives an explicit formula for a particular solution,
is too complicated to memorize and we do not recommend students to do this. Rather
the point of variation of parameters is the method that leads to Equation (4) and our
recommended starting point is Equation (3). You will see such matrix equations as we
proceed in the text.

We will illustrate the method of variation of parameters with two examples.

Example 3.6.3. Consider the linear differential equation

y′′ − y = −t.

We considered this equation earlier and noticed that ϕp = t was a solution. We will use
variation of parameters to derive this. Let L = D2 − 1. The characteristic polynomial
is

p(s) = s2 − 1 = (s + 1)(s− 1),

which has −1 and 1 as roots. By Theorem 3.3.1 {e−t, et} is a fundamental set. The
matrix equation [

e−t et

−e−t et

] [
u′1
u′2

]
=

[
0
t

]

leads to the system
e−tu′1 + etu′2 = 0
−e−tu′1 + etu′2 = t.
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Adding these equations together gives 2etu′2 = t and hence

u′2 =
t

2
e−t.

Subtracting the bottom equation from the top gives 2e−tu′1 = −t and hence

u′1 = − t

2
et.

Integration by parts then gives

u1 =
1

2
(tet − et)

and

u2 =
1

2
(te−t + e−t).

We now substitute u1 and u2 into Equation (1) and obtain

ϕp(t) =
1

2
(tet − et)e−t +

1

2
(te−t + e−t)et = t.

Theorem 3.1.4 implies

Sf
L =

{
t + c1e

−t + c2e
t : u1, c2 ∈ R

}
.

Example 3.6.4. Let’s consider the following equation:

t2y′′ − 2y = t2 ln t.

In standard form this becomes

y′′ − 2

t2
y = ln t.

The associated homogeneous equation is y′′ − 2
t2

y = 0 and is a Cauchy-Euler equation.
The indicial polynomial is q(s) = s2 − s − 2 = (s − 2)(s + 1), which has 2 and −1 as
roots. Thus {t−1, t2} is a fundamental set to the homogeneous equation y′′ − 2

t2
y = 0,

by Theorem 3.4.1. The matrix equation
[

t−1 t2

−t−2 2t

] [
u′1
u′2

]
=

[
0

ln t

]

leads to the system
t−1u′1 + t2u′2 = 0
−t−2u′1 + 2tu′2 = ln t.

Multiplying the bottom equation by t and then adding the equations together gives
3t2u′2 = t ln t and hence

u′2 =
1

3t
ln t.
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Substituting u′2 into the first equation and solving for u′1 gives

u′1 = −t2

3
ln t.

Integration by parts leads to

u1 = −1

3
(
t3

3
ln t− t3

9
)

and a simple substitution leads to

u2 =
1

6
(ln t)2.

We substitute u1 and u2 into Equation (1) to get

ϕp(t) = −1

3
(
t3

3
ln t− t3

9
)t−1 +

1

6
(ln t)2t2 =

t2

54
(9(ln t)2 − 6 ln t + 2).

It follows from Theorem 3.1.4 that the solution set is
{

t2

54
(9(ln t)2 − 6 ln t + 2) + c1t

−1 + c2t
2 : c1, c2 ∈ R

}
.

Exercises

Solve the following differential equations. Examples 3.6.3 and 3.6.4 will be helpful guides.

1. y′′ + y = tan t

2. y′′ + y = sin t

3. y′′ − 4y = e2t

4. y′′ − 2y′ + y =
et

t

5. y′′ − 3y′ + 2y = e3t

6. y′′ − 2y′ + 5y = et

7. y′′ + y = sec t

8. y′′ + 3y′ = e−3t
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9. t2y′′ − 2ty′ + 2y = t4

10. The differential equation ty′′ − y′ = 3t2 − 1 has homogeneous solutions ϕ1(t) = 1 and
ϕ2(t) = t2. Find the general solution.

11. Show that the constants of integration in the formula for ϕp in Theorem 3.6.1 can be
chosen so that a particular solution can be written in the form:

ϕp =
∫ t

0

∣∣∣∣
[
ϕ1(x) ϕ2(x)
ϕ1(t) ϕ2(t)

]∣∣∣∣
∣∣∣∣
[
ϕ1(x) ϕ2(x)
ϕ′2(x) ϕ′2(x)

]∣∣∣∣
f(x)dx

For each problem below use the result of problem 11 to obtain a particular solution to
the given differential equation in the form given. Solve the differential equation using
the Laplace transform method and compare.

12. y′′ + a2y = f(t) yp(t) = 1
af(t) ∗ sin at

13. y′′ − a2y = f(t) yp(t) = 1
af(t) ∗ sinh at

14. y′′ − 2ay′ + a2y = f(t) yp(t) = 1
af(t) ∗ te−at

15. y′′ − (a + b)y′ + aby = f(t), a 6= b yp(t) = 1
b−af(t) ∗ (ebt − eat)

3.7 Harmonic Motion

A number of important applications of differential equations involve the type of equation
studied in the previous sections. Two distinct types of physical problems which both
employ the same mathematical model are problems involving the spring-body-dashpot
systems, as discussed in the introduction to this chapter, and certain electric circuits.
Both of these types of systems are modeled by means of a differential equation

ay′′ + by′ + cy = f(t) (1)

where y(t) represents displacement from equilibrium in a mass spring system or y(t)
represents the charge (or current) in an electric circuit, while a, b, and c are positive real
constants, and f(t) is a forcing function (or applied voltage in the case of an electric
circuit). We will leave the analysis of the physical significance of the constants a, b,
c to some applications that appear in the next section and more advanced courses in
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science and engineering. We shall instead concentrate on the mathematical problem of
extracting information about the solutions of Equation (1). For your information, we will
simply record what each of the terms in Equation (1) means in the two manifestations
mentioned, namely, a spring system, and an electric circuit.

Table 3.2: Constants in Applied Problems

Equation Part Spring System Electric Circuit

y Displacement Charge Q
y′ Velocity Current I
a Mass Inductance L
b Damping Constant Resistance R
c Spring Constant (Capacity)−1 1/C

f(t) Applied Force Applied Voltage E(t)

We will break our analysis of Equation (1) into several parts: free motion (f(t) ≡ 0)
and forced motion (f(t) 6≡ 0) and each of these is divided into undamped (b = 0) and
damped (b 6= 0) motion.

Undamped Free Motion

In this case Equation (1) becomes

ay′′ + cy = 0, (2)

with a > 0 and c > 0. The characteristic polynomial of this equation is p(s) = as2 + c

which has roots ±iβ where β :=

√
c

a
, and hence Equation (2) has the general solution

y = c1 cos βt + c2 sin βt. (3)

Using the trigonometric identity cos(θ − ϕ) = cos θ cos ϕ + sin θ sin ϕ, Equation (3) can
be rewritten as

y = A cos(βt− δ) (4)

where A =
√

c2
1 + c2

2 and δ is obtained from the pair of equations c1 = A cos δ and

c2 = A sin δ, i.e., tan δ =
c2

c1

. Therefore, the graph of y(t) satisfying Equation (2) is a

pure cosine function with frequency β and with period

T =
2π

β
= 2π

√
a

c
.
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The numbers A and δ are commonly referred to as the amplitude and phase angle of
the system. From Equation (4) we see that C is the maximum possible value of the

function y(t), and that |y(t)| = A precisely when t =
δ + nπ

β
where n ∈ Z. This motion

is illustrated in Figure 3.3.

0 5 10 15

−2

−1

0

1

2

Figure 3.3: Undamped harmonic motion: Graph of y(t) = 2 cos(.5t− 1)

Example 3.7.1. The initial value problem

y′′ + 3y = 0, y(0) = −3, y′(0) = 3

is easily seen to have the solution y = −3 cos
√

3t +
√

3 sin
√

3t which can be rewritten

in the form of Equation (4) by computing the amplitude A =
√

(−3)2 + (
√

3)2 = 2
√

3

and for the phase angle δ, we have tan δ =

√
3

−3
= − 1√

3
. Hence δ = −π

6
, and thus

y = 2
√

3 cos
(√

3t +
π

6

)
.

Damped Free Motion

In this case we include the damping term by′ by assuming that b > 0, which will, in
fact, be the case in applications since the coefficient b represents the presence of friction
(or resistance in an electrical circuit), and friction can never be completely eliminated.
Thus we want solutions to the equation

ay′′ + by′ + cy = 0 (5)



3.7. HARMONIC MOTION 171

where we assume that a > 0, b > 0, and c > 0. In this case the characteristic polynomial
p(s) = as2 + bs + c has roots r1 and r2 given by the quadratic formula

r1, r2 =
−b±√b2 − 4ac

2a
(6)

and the nature of the solutions of Equation (5) are determined by the discriminant
D = b2 − 4ac of the characteristic polynomial p(s).

I. D > 0. In this case the two roots r1 and r2 in Equation (6) are distinct real roots
so the general solution of Equation (5) is

y = c1e
r1t + c2e

r2t. (7)

Moreover, note that both r1 and r2 are negative real numbers.

II. D = 0. In this case the characteristic polynomial p(s) has only one root, namely

r = − b

2a
, and this root is negative since a and b are positive. Then the general

solution of Equation (5) is

y = c1e
rt + c2te

rt = (c1 + c2t)e
rt. (8)

III. D < 0. In this case the roots of the characteristic polynomial p(s) are a pair

of conjugate complex numbers α ± iβ where α = − b

2a
< 0 and β =

√−D

2a
=√

4ac− b2

2a
. Then the general solution of Equation (5) is

y = eαt (c1 cos βt + c2 sin βt) . (9)

Notice that in all three cases, no matter what the constants c1 and c2, it will follow
that

lim
t→∞

y(t) = 0.

Thus the motion y(t) dies out as t increases. In case I, we say the motion is overdamped,
in case II, the motion is said to be critically damped, and in case III, the motion is said
to be underdamped. In the case of overdamped and critically damped motion, one can
show (see Exercise 5.7.6) that y(t) = 0 for at most one value of t. The graphs of these
cases are illustrated in Figure 3.4.

In the case of underdamped motion, Equation (4) shows that Equation (9) can be
rewritten in the form

y = Aeαt cos (βt− δ) (10)
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Figure 3.4: Overdamped and critically damped harmonic motion

where, as earlier, A =
√

c2
1 + c2

2 and tan δ =
c2

c1

. The graph is illustrated in Figure 3.5.

Notice that y appears to be a cosine curve in which the amplitude decreases with time,

and as in the case of undamped motion, one sees that y(t) = 0 for t =
δ + (2n+1)π

2

β
where

n ∈ Z.
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Figure 3.5: Underdamped harmonic motion: Graph of y(t) = 2e−0.1t cos(1.5t− 1).
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Undamped Forced Motion

Undamped forced motion refers to a system governed by a differential equation

ay′′ + cy = f(t),

where f(t) is a nonzero forcing function. We will only consider the special case where
the forcing function is given by f(t) = F0 cos ωt where F0 is a nonzero constant. Thus
we are interested in describing the solutions of the differential equation

ay′′ + cy = F0 cos ωt (11)

where, as usual, a > 0 and c > 0. From Equation (3) we know that a general solution

to ay′′ + cy = 0 is yh = c1 cos βt + c2 sin βt where β =

√
c

a
, so if we can find a single

solution ϕp(t) to Equation (11), then Theorem 3.1.4 shows that the entire solution set
is given by

S = {ϕp(t) + c1 cos βt + c2 sin βt : c1, c2 ∈ R} .

To find ϕp(t) we shall solve Equation (11) subject to the initial conditions y(0) = 0,
y′(0) = 0. As usual, if Y = L(y)(s), then we apply the Laplace transform to Equation
(11) and solve for Y (s) to get

Y (s) =
1

as2 + c

F0s

s2 + ω2
=

F0

aβ

β

s2 + β2

s

s2 + ω2
. (12)

Then the convolution theorem (Theorem 2.5.1) shows that

y(t) = L−1(Y (s)) =
F0

aβ
sin βt ∗ cos ωt. (13)

The following convolution formula comes from Table C.3:

sin βt ∗ cos ωt =





β

β2 − ω2
(cos ωt− cos βt) if β 6= ω

1

2
t sin ωt if β = ω.

(14)

Combining Equations (13) and (14) gives

y(t) =





F0

a(β2 − ω2)
(cos ωt− cos βt) if β 6= ω

F0

2aω
t sin ωt if β = ω.

(15)
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We will first consider the case β 6= ω in Equation (15). Notice that, in this case, the

solution y(t) is the sum of two cosine functions with equal amplitude (=
F0

a(β2 − ω2)
),

but different frequencies β and ω. Recall the trigonometric identity

cos(θ − ϕ)− cos(θ + ϕ) = 2 sin θ sin ϕ.

If we set θ − ϕ = ωt and θ + ϕ = βt and solve for θ =
(β + ω)t

2
and ϕ =

(β − ω)t

2
, we

see that we can rewrite the first part of Equation (15) in the form

y(t) =
2F0

a(β2 − ω2)
sin

(β − ω)t

2
sin

(β + ω)t

2
. (16)

One may think of the function y(t) as a sine function, namely sin
(β + ω)t

2
(with fre-

quency
β + ω

2
) which is multiplied by another function, namely

2F0

a(β2 − ω2)
sin

(β − ω)t

2
which functions as a time varying amplitude function. The interesting case is when β
is close to ω so that β + ω is close to 2ω and β − ω is close to 0. In this situation,
one sine function changes very rapidly, while the other, which represents the change in
amplitude, changes very slowly. See Figure 3.6. This type of phenomenon, known as
beats, can be heard when one tries to tune a piano. When the frequency of vibration of
the string is close to that of the tuning fork, one hears a pulsating beat which disappears
when the two frequencies coincide.

0 5 10 15 20 25

−2

−1

0

1

2

Figure 3.6: Beats: Graph of y(t) = 2 sin(.25t) sin 2t.

In the case β = ω in Equation (15), the solution

y(t) =
F0

2aω
t sin ωt
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is unbounded as t → ∞ and thus cannot represent the actual situation present in a
physical system. Nevertheless it is useful as an idealized representation of what happens
to a vibrating system if a force is applied to a vibrating system at a frequency ω close to
that of the natural frequency β of the system. The resulting amplification of vibration
can become large enough to destroy a mechanical or electrical system. The phenomenon
of natural and applied frequencies being equal is known as resonance. This phenomenon
can be used in a positive way to tune a radio to a particular frequency.

Damped Forced Motion

As in the previous section we will only consider forcing functions of the form f(t) =
F0 cos ωt where F0 is a constant. Thus we are interested in analyzing the solutions of
the equation

ay′′ + by′ + cy = F0 cos ωt (17)

where a, b, c and F0 are positive constants. It is a straightforward (albeit tedious)
calculation to check that the function

ϕp(t) =
F0

(c− ω2a)2 + b2ω2

(
(c− ω2a) cos ωt + bω sin ωt

)

is a solution of Equation (17). Using Equation (4), this can be rewritten as

ϕp(t) =
F0√

(c− ω2a)2 + b2ω2
cos(ωt− δ) (18)

where tan δ =
bω

c− ω2a
. Combining this with Equation (9), the general solution to

Equation (17) is

y(t) = eαt(c1 cos βt + c2 sin βt) +
F0√

(c− ω2a)2 + b2ω2
cos(ωt− δ) (19)

where α = − b

2a
< 0. Notice that this implies that limt→∞(y(t)−ϕp(t)) = 0, which says

that every general solution of Equation (17) converges asymptotically to the particular
solution ϕp(t). For this reason, the solution ϕp(t) is usually referred to as the steady
state solution to the equation, while the solution y(t) = eαt(c1 cos βt + c2 sin βt) of the
associated homogeneous equation is referred to as a transient solution.
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Exercises

Write the solution of each of the following initial value problems in the form y(t) =
A cos(βt− δ). See Example 5.7.1 for the method.

1. y′′ + 25y = 0, y(0) = −2, y′(0) = 10

2. y′′ + 4y = 0, y(0) = 3, y′(0) = −8

3.
1
2
y′′ + 8y = 0, y(0) = 1, y′(0) = 2

4. y′′ + y = 0, y(0) = −1, y′(0) = −√3

For each of the following differential equations, determine if the equation is underdamped,
critically damped, or overdamped.

5. y′′ + y′ + y = 0

6. y′′ + 2y′ + y = 0

7. y′′ + 3y′ + y = 0

8. 2y′′ + 5y′ + y = 0

9. 5y′′ + 2y′ + y = 0

10. 4y′′ + 4y′ + y = 0

Write each of the following functions in the form y(t) = Aeαt cos(βt− δ).

11. y(t) = e−t(cos 2t− sin 2t)

12. y(t) = e−2t(sin t +
√

3 cos t)

13. y(t) = e−0.2t(4 cos 5t− 3 sin 5t)

14. For each of the functions in the previous exercise, find the smallest t > 0 with y(t) = 0.

15. Suppose that y(t) is the solution to the initial value problem ay′′ + cy = 0, y(0) = y0,
y′(0) = y1 and we will assume that a > 0, c > 0 so that the equation is that of undamped
harmonic motion. Verify that the amplitude of the motion is

A =

√
y2
0 +

ay2
1

c
.
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16. Let ay′′ + by′ + cy = 0 be an equation of damped harmonic motion. If the motion is
critically damped or overdamped, verify that any solution y(t) can have y(t) = 0 for at
most one value of t. Hint: Look carefully at Equations (5.7.7) and (5.7.8).

Express each of the following functions in the form A sinαt sinβt.

17. cos 9t− cos 7t

18. cos 9t− cos 10t

3.8 Applications

In this section we return to the spring-body-dashpot system we considered in the in-
troduction. We will look as some numerical examples and study them in the light of
the previous section. It may be helpful to review the introduction for concepts and
terminology. In each of the examples given below it will be assumed that springs obey
Hooke’s law and the damping force is proportional to velocity.

Units of Measurement

There are two systems of measurements that are commonly used in examples like these:
The English and Metric systems. The following table summarizes the units.

System Time Distance Mass Force

Metric seconds (s) meters (m) kilograms (kg) Newtons (N)
English seconds (s) feet (ft) slugs (sl) pounds (lbs)

The next table summarizes quantities derived from these units.

Quantity Formula

velocity (v) distance / time
acceleration (a) distance / time2

force (F) mass · acceleration
spring constant (k) force / distance
damping constant (µ) force · time / distance
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In the metric system one Newton of force (N) will accelerate a one kilogram mass
(kg) one m/s2. In the English system a one pound force (lb) will accelerate a one slug
mass (sl) one ft/s2. To compute the mass of a body in the English system one must
divide the weight by the acceleration due to gravity, which is g = 32 ft/sec2 near the
earths surface. Thus a body weighing 64 lbs is 2 slugs. To compute the gravitational
force in the metric system one must multiply the mass by the acceleration due to gravity,
which is g = 9.8 m/sec2. Thus a 5 kg mass exerts a gravitational force of 47.5 N.

Examples of Spring-Body-Dashpot Systems

In the examples below keep the following formulas in mind:

Gravitational force FG = mg where g is acceleration due to gravity
Restoring force FR = −ku0 where k is the spring constant

and u0 is spring displacement
Damping force FD = −µv where µ is the damping constant

and v = y′ is velocity
External force F

The initial value problem for the spring-body-dashpot problem is

my′′ + µy′ + ky = F (t), y(t0) = y0, y′(t0) = y1

where y0 is the initial position of the body and y1 is initial velocity.

Example 3.8.1. Suppose a spring is stretched 8 inches from its natural length when a
body weighing 4 lbs is attached. What is the spring constant?

I Solution. Recall that the restoring force of the spring balances the gravitational
force. Thus −k( 8

12
) + 4 = 0. This gives k = 6. The units are lb/ft. J

Example 3.8.2. Suppose a body with mass 2 kg stretches a spring 30 centimeters from
its natural length. Find the spring constant.

I Solution. The force due to gravity is FG = 2 · 9.8 = 19.6N . We now have −k( 30
100

) +
19.6 = 0. This gives k = 19.6

.3
= 65.3. The units are N/m. J

Example 3.8.3. Suppose a 6 lb body stretches a spring 2 inches in a frictionless system.
Suppose that the body is pulled 3 inches below the spring-body equilibrium and released.
Find the motion of the body and provide a graph.
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I Solution. First let’s compute the spring constant. We have −k 2
12

+ 6 = 0 so k = 36
(lb/ft). A frictionless system means that the damping constant is zero. (Of course,
this is idealized.) No external force is mentioned so it is zero. Thus the motion is
undamped and free. If y measures the displacement from spring-body equilibrium then
y(0) = 3

12
= 1

4
. The body being released implies that the initial velocity is zero. Thus

y′(0) = 0. The mass of the body is 6/32 slugs. The initial value problem thus becomes

6

32
y′′ + 36y = 0, y(0) =

1

4
, y′(0) = 0.

A short calculation gives:

y(t) =
1

4
cos(8

√
3t).

Figure 3.7 gives the graph. J
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Figure 3.7: Undamped harmonic motion: Graph of y(t) = .25 cos(8
√

3t)

Example 3.8.4. A spring is stretched 49 cm when a 1 kg mass is attached. The body is
pulled to 20 cm below its spring-body equilibrium and pushed downward with an initial
velocity of 50 cm/sec. There are no external forces. Find the motion of the body when
the damping constant is a) 4 N/m. Determine the maximum displacement. b) 12 N/m
. In each case provide graphs that represent the motion.

I Solution. a) The equation to calculate the spring constant is 1(9.8) − k 49
100

which
implies that k = 20. With µ = 4 we have

y′′ + 4y′ + 20y = 0 y(0) = .2, y′(0) = .5.

The solution is

y = e−2t(
1

5
cos 4t +

9

40
sin 4t).

This represents underdamped harmonic motion whose graph is given in Figure 3.8. The
maximum displacement occurs when the derivative is first zero, i.e. t = 0.095. The
corresponding displacement is 0.223 meters. J
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Figure 3.8: Underdamped free motion: Graph of y(t) = e−2t(1
5
cos 4t + 9

40
sin 4t).

I Solution. b) In this case the initial value problem is

y′′ + 12y′ + 20y = 0 y(0) = .2, y′(0) = .5

and the solution is

y(t) =
−9

80
e−10t +

5

16
e−2t.

The graph is given in Figure 3.9. This represents overdamped free motion. The maximal
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Figure 3.9: Overdamped free motion: Graph of y(t) = −9
80

e−10t + 5
16

e−2t.

displacement of 0.216 meters occurs at t = 0.0735 seconds. J

Exercises

In each of these exercises it is assumed that there is no external force.
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An 8-lb weight stretches a spring 1 ft. A 16-lb weight is then attached to the spring, and
it comes to rest at the body-spring equilibrium. It is put into motion from equilibrium
at a downward velocity of 2 ft/sec.

1. Assume there is no resistance. Determine the motion of the body. What is the maximum
displacement?

2. Assume that the damping constant is k = 2 lbs/ft. Determine the motion of the body.
What is the maximum displacement?

3. Assume that the damping constant is k = 4 lbs/ft. Determine the motion of the body.
What is the maximum displacement?

4. Assume that the damping constant is k = 5 lbs/ft. Determine the motion of the body.
What is the maximum displacement?
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Chapter 4

DISCONTINUOUS FUNCTIONS
AND THE LAPLACE
TRANSFORM

For many applications the set of elementary functions, as defined in Chapter 2, or even
the set of continuous functions is not sufficiently large to deal with some of the com-
mon applications we encounter. Consider two examples. Imagine a mixing problem
(see Example 1.1.9 in Section 1.1 and the discussion that follows for a review of mixing
problems) where there are two sources of incoming salt solutions with different concen-
trations. Initially, the first source may be flowing for several minutes. Then the second
source is turned on at the same time the first source is turned off. The graph of the
input function may well be represented by Figure 4.1. The most immediate observation

0

y

t

Figure 4.1: A discontinuous input function

183



184 CHAPTER 4. LAPLACE TRANSFORM II

is that the input function is discontinuous. Nevertheless, the Laplace transform methods
we will develop will easily handle this situation, leading to a formula for the amount
of the salt in the tank as a function of time. As a second example, consider a sudden
force that is applied to a spring-mass-dashpot system (see Section 3.8 for a discussion
of spring-mass-dashpot systems). To model this we imagine that a large force is applied
over a small interval. As the interval gets smaller the force gets larger so that the total
force always remains a constant. By a limiting process we obtain an instantaneous input
called an impulse function. This idea is graphed in Figure 4.2. Such impulse functions

Figure 4.2: An impulse function

have predicable effects on the system. Again the Laplace transform methods we develop
here will lead us to the motion of the body without much difficulty.

These two examples illustrate the need to extend the Laplace transform beyond the
set of elementary functions that we discussed in Chapter 2. We will do this in two
stages. First we will identify a suitably larger class of functions, the Heaviside class,
that includes discontinuous functions and then extend the Laplace transform method
to this larger class. Second, we will consider the Dirac delta function, which models
the impulse function we discussed above. Even though it is called a function the Dirac
delta function is actually not a function at all. Nevertheless, its Laplace transform can
be defined and the Laplace transform method can be extended to differential equations
that involve impulse functions.
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4.1 Calculus of Discontinuous Functions

Our focus in the next few sections is a study of first and second order linear constant
coefficient differential equations with possibly discontinuous input or forcing function f :

y′ + ay = f(t)
y′′ + ay′ + by = f(t)

Allowing f to have some discontinuities introduces some technical difficulties as to
what we mean by a solution to such a differential equation. To get an idea of these
difficulties and motivate some of the definitions that follow we consider two elementary
examples.

First, consider the simple differential equation

y′ = f(t),

where

f(t) =

{
0 if 0 ≤ t < 1

1 if 1 ≤ t < ∞.

Simply stated what we are seeking is a function y whose derivative is the discontin-
uous function f . If y is a solution then y must also be a solution when restricted to any
subinterval. In particular, let’s restrict to the subintervals (0, 1) and (1,∞), where f is
continuous separately. On the interval (0, 1) we obtain y(t) = c1, where c1 is a constant
and on the interval (1,∞) the solution is y(t) = t + c2, where c2 is a constant. Piecing
these solutions together gives

y =

{
c1 if 0 < t < 1

t + c2 if 1 < t < ∞.

Notice that this family has two arbitrary parameters, c1 and c2 and unless c1 and c2

are chosen just right y will not extend to a continuous function. In applications, like
the mixing problem introduced in the introduction, it is reasonable to seek a continuous
solution. Thus suppose an initial condition is given, y(0) = 1, say, and suppose we wish
to find a continuous solution. Since limt→0+ y(t) = c1, continuity and the initial condition
forces c1 = 1 and therefore y(t) = 1 on the interval [0, 1). Now since limt→1− y(t) = 1,
continuity forces that we define y(1)=1. Repeating this argument we have limt→1+ y(t) =
1 + c2 and this forces c2 = 0. Therefore y(t) = t on the interval (1,∞). Putting
these pieces together gives a continuous solution whose graph is given in Figure 4.3.
Nevertheless, no matter how we choose the constants c1 and c2 the ”solution” y is never
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Figure 4.3: A continuous solution to y′ = f(t).

differentiable at the point t = 1. Therefore the best that we can expect for a solution to
y′ = f(t) is a continuous function y which is differentiable at all points except t = 1.

As a second example consider the differential equation

y′ = f(t),

where

f(t) =

{
1

(1−t)2
if 0 ≤ t < 1

1 if 1 ≤ t < ∞.

We approach this problem as we did above and obtain that a solution must have the
form

y(t) =

{
1

1−t
+ c1 if 0 < t < 1

t + c2 if 1 < t < ∞,

where c1 and c2 are arbitrary constants. The graph of this function for c1 = 1 and
c2 = 1 is given in Figure 4.4. For us this situation is very undesirable in that no matter
how we choose the constants, the solution y will always be discontinuous at t = 1. The
asymptotic behavior at t = 1 for the solution results in the fact that f has a vertical
asymptote at t = 1.

These examples illustrate the need to be selective in the kinds of discontinuities we
allow. In particular, we will require that if f does have a discontinuity it must be a
jump discontinuity. The function f in our first example has a jump discontinuity at
t = 1 while in the second example the discontinuity at t = 1 is a result of a vertical
asymptote. We also must relax our definition of what we mean by a solution to allow
solutions y that have some points where the derivative may not exist. We will be more
precise about this later.
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Figure 4.4: Always a discontinuous solution

Jump Discontinuities

We say f has a jump discontinuity at a point a if

f(a+) 6= f(a−)

where f(a+) = limt→a+ f(t) and f(a−) = limt→a− f(t). In other words, the left hand
limit and the right hand limit at a exist but are not equal. Examples of such functions
are typically given piecewise, that is, a different formula is used to define f on different
subintervals of the domain. For example, consider

f(t) =





t2 if 0 ≤ t < 1,

1− t if 1 ≤ t < 2,

1 if 2 ≤ t ≤ 3

whose graph is given in Figure 4.5. We see that f is defined on the interval [0, 3]
and has a jump discontinuity at a = 1 and a = 2: f(1−) = 1 6= f(1+) = 0 and
f(2−) = −1 6= f(2+) = 1. On the other hand, the function

g(t) =

{
t if 0 ≤ t < 1,

1
t−1

if 1 ≤ t ≤ 2,

whose graph is given in Figure 4.6, is defined on the interval [0, 2] and has a discontinuity
at a = 1. However, this is not a jump discontinuity because limt→1+ g(t) does not exist.
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Figure 4.5: A piecewise continuous function

1 2
t

Figure 4.6: A discontinuous function but not a jump discontinuity

For our purposes we will say that a function f is piecewise continuous on an
interval [α, β] if f is continuous except for possibly finitely many jump discontinuities.
If an interval is not specified it will be understood that f is defined on [0,∞) and f is
continuous on all subintervals of the form [0, N ] except for possibly finitely many jump
discontinuities. For convenience it will not be required that f be defined at the jump
discontinuities. Suppose a1, . . . , an are the locations of the jump discontinuities in the
interval [0, N ] and assume ai < ai+1, for each i. On the interval (ai, ai+1) we can extend
f to a continuous function on the closed interval [ai, ai+1]. Since a continuous function
on a closed interval is bounded and there are only finitely many jump discontinuities we
have the following proposition.

Proposition 4.1.1. If f is a piecewise continuous function on [0, N ] then f is bounded.
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Integration of Piecewise Continuous Functions

Suppose f is a piecewise continuous function on the interval [0, N ] and the jump discon-
tinuities are located at a1, . . . , ak. We may assume ai < ai+1 and we will let a0 = 0 and
ak+1 = N . In this case the definite integral of f on [0, N ] exists and

∫ N

0

f(t) dt =

∫ a1

a0

f(t) dt +

∫ a2

a1

f(t) dt + · · ·+
∫ ak+1

ak

f(t) dt.

On each interval of the form (ai, ai+1) f is continuous and therefore an antiderivative
Fi exists. Since f is bounded so is Fi and thus may be extended to the closed interval
[ai, ai+1]. When necessary we will denote the extended values of Fi at ai by Fi(a

+
i ) and

at ai+1 by Fi(a
−
i+1). We then have

∫ ai+1

ai

f(t) dt = Fi(a
+
i )− Fi(a

−
i+1).

Example 4.1.2. Find
∫ 5

−1
f(t) dt, if

f(t) =





t if − 1 ≤ t < 1

2 if t = 1
1
t

if 1 ≤ t < 3

2 if 3 ≤ t < 5

I Solution. The function f is piecewise continuous and
∫ 5

−1

f(t) dt =

∫ 1

−1

t dt +

∫ 3

1

1

t
dt +

∫ 5

3

2 dt

= 0 + ln 3 + 4 = 4 + ln 3.

We note that the value of f at t = 1 played no role in the computation of the integral. J
Example 4.1.3. Find

∫ t

0
f(u) du for the piecewise function f given by

f(t) =





t2 if 0 ≤ t < 1,

1− t if 1 ≤ t < 2,

1 if 2 ≤ t < ∞.

I Solution. The function f is given piecewise on the intervals [0, 1), [1, 2) and [2,∞).
We will therefore consider three cases. If t ∈ [0, 1) then

∫ t

0

f(u) du =

∫ t

0

u2 du =
t3

3
.
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It t ∈ [1, 2) then
∫ t

0

f(u) du =

∫ 1

0

f(u) du +

∫ t

1

f(u) du

=
1

3
+

∫ t

1

(1− u) du

=
1

3
+

(
t− t2

2
− 1

2

)
= −t2

2
+ t− 1

6
.

Finally, if t ≥ 2 then
∫ t

0

f(u) du =

∫ 2

0

f(u) du +

∫ t

2

f(u) du

= −1

6
+

∫ t

2

1 du = t− 13

6

Piecing these functions together gives

∫ t

0

f(u) du =





t3

3
if 0 ≤ t < 1

− t2

2
+ t− 1

6
if 1 ≤ t < 2

t− 13
6

if 2 ≤ t < ∞.

It is continuous as can be observed in the graph given in Figure 4.7 J
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Figure 4.7: The graph of the integral of the discontinuous function in Example 4.1.3

The discussion above leads to the following proposition.

Proposition 4.1.4. If f is a piecewise continuous function on an interval [α, β] and
a, t ∈ [α, β] then the integral

∫ t

a
f(u) du exists and is a continuous function in the variable

t.
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Proof. The integral exists as discussed above. Let F (t) =
∫ t

a
f(u) du. Since f is piecewise

continuous on [α, β] it is bounded by Proposition 4.1.1. We may then suppose |f(t)| ≤ B,
for some B > 0. Let ε > 0. Then

|F (t + ε)− F (t)| ≤
∫ t+ε

t

|f(u)| du ≤
∫ t+ε

t

B du = Bε.

Therefore limε→0 F (t+ε) = F (t) and hence F (t+) = F (t). In a similar way F (t−) = F (t).
This establishes the continuity of F .

Differentiation of Piecewise Continuous Functions

In the applications, we will consider (continuous) functions that are differentiable on
intervals [0, N) except at finitely many points. In this case we will use the symbol f ′ to
denote the derivative of f though it may not be defined at some points. For example,
consider

f(t) =

{
0 if 0 ≤ t < 1

t− 1 if 1 ≤ t < ∞.

This function is continuous on [0,∞) and differentiable at all points except t = 1. A
simple calculation gives

f ′(t) =

{
0 if 0 < t < 1

1 if 1 < t < ∞.

Notice that f ′ is not defined at t = 1.

Differential Equations and Piecewise Continuous Functions

We are now in a position to consider some examples of constant coefficient linear dif-
ferential equations with piecewise continuous forcing functions. Let f(t) be a piecewise
continuous function. We say that a function y is a solution to y′+ay = f(t) if y is con-
tinuous and satisfies the differential equation except at the location of the discontinuities
of the input function.
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Example 4.1.5. Find a continuous solution to

y′ + 2y = f(t) =





1 if 0 ≤ t < 1

t− 1 if 1 ≤ t < 3

0 if 3 ≤ t < ∞,

y(0) = 1. (1)

I Solution. We will apply the method that we discussed at the beginning of this
section. That is, we will consider the differential equation on the subintervals where f is
continuous and then piece the solution together. In each case the techniques discussed
in Section 1.3 apply. The first subinterval is (0, 1), where f(t) = 1. Multiplying both
sides of y′ + 2y = 1 by the integrating factor, e2t, leads to (e2ty)′ = e2t. Integrating and
solving for y gives y = 1

2
+ ce−2t. The initial condition y(0) = 1 implies that c = 1

2
and

therefore

y =
1

2
+

1

2
e−2t, 0 ≤ t < 1.

We let y(1) = y(1−) = 1
2
+ 1

2
e−2. This value becomes the initial condition for y′+2y = t−1

on the interval [1, 3). Following a similar procedure leads to

y =
t− 1

2
− 1

4
+

3

4
e−2(t−1) +

1

2
e−2t, 1 ≤ t < 3.

We define y(3) = y(3−) = 3
4

+ 3
4
e−4 + 1

2
e−6. This value becomes the initial condition for

y′ + 2y = 0 on the interval [3,∞). Its solution there is the function

y =
3

4
e−2(t−3) +

3

4
e−2(t−1) +

1

2
e−2t.

Putting these pieces together gives the solution

y(t) =





1
2

+ 1
2
e−2t if 0 ≤ t < 1

t−1
2
− 1

4
+ 3

4
e−2(t−1) + 1

2
e−2t if 1 ≤ t < 3

3
4
e−2(t−3) + 3

4
e−2(t−1) + 1

2
e−2t if 3 ≤ t < ∞.

By making the initial value on each subinterval the left hand limit of the solution on the
previous interval we guarantee continuity. The graph of this solution is shown in Figure
4.8. The discontinuity of the derivative of y at t = 1 and t = 3 is evident by the kinks
at those points. J

The method we used here insures that the solution we obtain is continuous and the
initial condition at t = 0 determines the subsequent initial conditions at the points of
discontinuity of f . We also note that the initial condition at t = 0, the left hand endpoint
of the domain, was chosen only for convenience; we could have taken the initial value
at any point t0 ≥ 0 and pieced together a continuous function on both sides of t0. That
this can be done in general is stated in the following theorem.
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Figure 4.8: The graph of the solution to Example 4.1.5

Theorem 4.1.6. Suppose f is a piecewise continuous function on an interval [α, β] and
t0 ∈ [α, β]. There is a unique continuous function y which satisfies

y′ + ay = f(t), y(t0) = y0.

Recall that this means that y′ will not exist at the points of discontinuity of f .

Proof. We follow the method illustrated in the example above to construct a continuous
solution. To prove uniqueness suppose y1 and y2 are two continuous solutions. If y =
y1 − y2 then y(t0) = 0 and y is a continuous solution to

y′ + ay = 0.

On the interval containing t0 on which f is continuous, y = 0 by the uniqueness and
existence theorem. The initial value at the endpoint of adjacent intervals is thus 0.
Continuing in this way we see that y is identically 0 on [α, β] and hence y1 = y2.

We now consider a second order constant coefficient differential equation with a
piecewise continuous forcing function. Our method is similar to the one above, however,
we demand more out of our solution. If f(t) be a piecewise continuous function then
we say a function y is a solution to y′′ + ay′ + by = f(t) if y is continuous, has a
continuous derivative, and satisfies the differential equation except at the discontinuities
of the forcing function f .

Example 4.1.7. Find a solution y to

y′′ + y = f(t) =

{
t if 0 ≤ t < 2π

2 if 2π ≤ t ≤ 4π,
y(0) = 0 y′(0) = 1.
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I Solution. We begin by considering the differential equation y′′ + y = t on the in-
terval [0, 2π). The homogenous solution is yh(t) = a cos t + b sin t and the method
of undetermined coefficients or variation of parameters leads to a particular solution
yp(t) = t − 1. The general solution is y = t − 1 + a cos t + b sin t and incorporating the
initial conditions leads to y = t − 1 + cos t on the interval [0, 2π). We calculate that
y′ = 1− sin t. In order to piece together a solution that is continuous at t = 2π we must
have y(2π) = y(2π−) = 2π. In order for the derivative y′ to be continuous at t = 2π we
must have y′(2π) = y′(2π−) = 1. We use these values for the initial conditions on the
interval [2π, 4π]. The general solution to y′′+y = 2 is y = 2+a cos t+ b sin t. The initial
conditions imply a = 2π − 2 and b = 1 and thus y = 2 + (2π − 2) cos t + sin t. Piecing
these two solutions together gives

y(t) =

{
t− 1 + cos t if 0 ≤ t < 2π

2 + (2π − 2) cos t + sin t if 2π ≤ t ≤ 4π.

Its derivative is

y′(t) =

{
1− sin t if 0 ≤ t < 2π

−(2π − 2) sin t + cos t if 2π ≤ t ≤ 4π.

Figure 4.9 gives (a) the graph of the solution and (b) the graph of its derivative. The
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Figure 4.9: The solution (a) and its derivative (b) to Example 4.1.7

solution is differentiable on the interval [0, 4π] and the derivative is continuous on [0, 4π).
However, the kink in the derivative at t = 2π indicates that the second derivative is not
continuous. J

In direct analogy to the first order case we considered above we are lead to the
following theorem. The proof is omitted.

Theorem 4.1.8. Suppose f is a piecewise continuous function on an interval [α, β] and
t0 ∈ [α, β]. There is a unique continuous function y which satisfies

y′′ + ay′ + by = f(t), y(t0) = y0, y′(t0) = y1.
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Furthermore, y is differentiable and y′ is continuous.

Piecing together solutions in the way that we described above is at best tedious. As
we proceed we will extend the Laplace transform to a class of functions that includes
piecewise continuous function. The Laplace transform method extends as well and will
provide an alternate method for solving differential equations like the ones above. It is
one of the hallmarks of the Laplace transform.

Exercises

Match the following functions that are given piecewise with their graphs and determine
where jump discontinuities occur.

1. f(t) =





1 if 0 ≤ t < 4
−1 if 4 ≤ t < 5
0 if 5 ≤ t < ∞.

2. f(t) =





t if 0 ≤ t < 1
2− t if 1 ≤ t < 2
1 if 2 ≤ t < ∞.

3. f(t) =

{
t if 0 ≤ t < 1
2− t if 1 ≤ t < ∞.

4. f(t) =





t if 0 ≤ t < 1
t− 1 if 1 ≤ t < 2
t− 2 if 2 ≤ t < 3
... .

5. f(t) =

{
1 if 2n ≤ t < 2n + 1
0 if 2n + 1 ≤ t < 2n + 2.

6. f(t) =





t2 if 0 ≤ t < 2
4 if 2 ≤ t < 3
7− t if 3 ≤ t < ∞.
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7. f(t) =





1− t if 0 ≤ t < 2
3− t if 2 ≤ t < 4
5− t if 4 ≤ t < 6
... .

8. f(t) =





1 if 0 ≤ t < 2
3− t if 2 ≤ t < 3
2(t− 3) if 3 ≤ t < 4
2 if 4 ≤ t < ∞.

Graphs for problems 1 through 8
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In problems 9 through 12 calculate the indicated integral.

9.
∫ 5
0 f(t) dt, where f(t) =





t2 − 4 if 0 ≤ t < 2
0 if 2 ≤ t < 3
−t + 3 if 3 ≤ t < 5.

10.
∫ 2
0 f(u) du, where f(u) =

{
2− u if 0 ≤ u < 1
u3 if 1 ≤ u < 2.

11.
∫ 2π
0 |sin(x)| dx.

12.
∫ 3
0 f(w) dw where f(w) =





w if 0 ≤ w < 1
1
w if 1 ≤ w < 2
1
2 if 2 ≤ w < ∞.

In problems 13 through 16 find the indicated integral. (See problems 1 through 9 for
the appropriate formula.)

13.
∫ 5
2 f(t) dt, where the graph of f is:

0

1

2

2 4 6 8
t

14.
∫ 8
0 f(t) dt, where the graph of f is:

–1

0

1

2 4 6 8
t

15.
∫ 6
0 f(u) du, where the graph of f is:

0

0.5

1

2 4 6 8
t

16.
∫ 7
0 f(t) dt, where the graph of f is:
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0

2

4

2 4 6 8
t

17. Of the following four piecewise defined functions determine which ones (A) satisfy the
differential equation

y′ + 4y = f(t) =

{
4 if 0 ≤ t < 2
8t if 2 ≤ t < ∞,

except at the point of discontinuity of f , (B) are continuous, and (C) are continuous
solutions to the differential equation with initial condition y(0) = 2. Do not solve the
differential equation.

(a) y(t) =

{
1 if 0 ≤ t < 2
2t− 1

2 − 5
2e−4(t−2) if 2 ≤ t < ∞

(b) y(t) =

{
1 + e−4t if 0 ≤ t < 2
2t− 1

2 − 5
2e−4(t−2) + e−4t if 2 ≤ t < ∞

(c) y(t) =

{
1 + e−4t if 0 ≤ t < 2
2t− 1

2 − 5e−4(t−2)

2 if 2 ≤ t < ∞

(d) y(t) =

{
2e−4t if 0 ≤ t < 2
2t− 1

2 − 5
2e−4(t−2) + e−4t if 2 ≤ t < ∞

18. Of the following four piecewise defined functions determine which ones (A) satisfy the
differential equation

y′′ − 3y′ = 2y = f(t) =

{
et if 0 ≤ t < 1
e2t if 1 ≤ t < ∞,

except at the point of discontinuity of f , (B) are continuous, and (C) have continuous
derivatives, and (D) are continuous solutions to the differential equation with initial
conditions y(0) = 0 and y′(0) = 0 and have continuous derivatives. Do not solve the
differential equation.

(a) y(t) =

{
−tet − et + e2t if 0 ≤ t < 1
te2t − 2et if 1 ≤ t < ∞

(b) y(t) =

{
−tet − et + e2t if 0 ≤ t < 1
te2t − 3et − 1

2e2t if 1 ≤ t < ∞
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(c) y(t) =

{
−tet − et + e2t if 0 ≤ t < 1
te2t + et+1 − et − e2t − e2t−1 if 1 ≤ t < ∞

(d) y(t) =

{
−tet + et − e2t if 0 ≤ t < 1
te2t + et+1 + et − e2t−1 − 3e2t if 1 ≤ t < ∞

Solve the following differential equations.

19. y′ + 3y =

{
t if 0 ≤ t < 1
1 if 1 ≤ t < ∞,

y(0) = 0.

20. y′ − y =





0 if 0 ≤ t < 1
t− 1 if 1 ≤ t < 2
3− t if 2 ≤ t < 3
0 if 3 ≤ t < ∞,

y(0) = 0.

21. y′ + y =

{
sin t if 0 ≤ t < π

0 if π ≤ t < ∞ y(π) = −1.

22. y′′ − y =

{
t if 0 ≤ t < 1
0 if 1 ≤ t < ∞,

y(0) = 0, y′(0) = 1.

23. y′′ − 4y′ + 4y =

{
0 if 0 ≤ t < 2
4 if 2 ≤ t < ∞ y(0) = 1, y′(0) = 0

24. Suppose f is a piecewise continuous function on an interval [α, β]. Let a ∈ [α, β] and
define y(t) = y0 +

∫ t
a f(u) du. Show that y is a continuous solution to

y′ = f(t) y(a) = y0.

25. Suppose f is a piecewise continuous function on an interval [α, β]. Let a ∈ [α, β] and
define y(t) = y0 + e−at

∫ t
a eauf(u) du. Show that y is a continuous solution to

y′ + ay = f(t) y(a) = y0.

26. Let f(t) =

{
sin(1/t) if t 6= 0
0 if t = 0.

(a) Show that f is bounded.

(b) Show that f is not continuous at t = 0.

(c) Show that f is not piecewise continuous.
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4.2 The Heaviside class H

In this section we will extend the definition of the Laplace transform beyond the set of
elementary functions E to include piecewise continuous functions. The Laplace transform
method will extend as well and provide a rather simple means of dealing with the
differential equations we saw in Section 4.1.

Since the Laplace transform

L{f} (s) =

∫ ∞

0

e−stf(t) dt

is defined by means of an improper integral, we must be careful about the issue of
convergence. Recall that this definition means we compute

∫ N

0
e−stf(t) dt and then take

the limit as N goes to infinity. To insure convergence we must take into consideration
the kinds of functions we feed into it. There are two main reasons why such improper
integrals may fail to exist. First, if the distribution of the discontinuities of f is ‘too
bad’ then even the finite integral

∫ N

0
e−stf(t) dt may fail to exist. Second, if the finite

integral exists the limit as N goes to ∞ may not. This has to do with how fast f grows.
These two issues will be handled separately by (1) identifying the particular type of
discontinuities allowed and (2) restricting the type of growth that f is allowed. What
will result is a class of functions large enough to handle most of the applications one is
likely to encounter.

The first issue is handled for us by restricting to the piecewise continuous functions
defined in section 4.1. If f is a piecewise continuous function (on [0,∞)) then so is
t 7→ e−stf(t). By Proposition 4.1.4 the integral

∫ N

0

e−stf(t) dt

exists and is a continuous function in the variable N . Now to insure convergence as N
goes to ∞ we must place a further requirement on f .

Functions of Exponential Type

We now want to put further restrictions on f to assure that limN→∞
∫ N

0
e−stf(t) dt exists.

As we indicated this can be achieved by making sure that f doesn’t grow too fast.
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A function y = f(t) is said to be of exponential type if

|f(t)| ≤ Keat

for all t ≥ M , where M , K, and a are positive real constants. The idea here is that
functions of exponential type should not grow faster than a multiple of an exponential
function Keat. Visually, we require the graph of |f | to lie below such an exponential
function from some point on, t ≥ M , as illustrated in Figure 4.10.

M
_ f_

Figure 4.10: The exponential function Keat eventually overtakes |f | for t ≥ M .

We note here that in the case where f is also piecewise continuous then f is bounded
on [0,M ] and one can find a constant K ′ such that

|f(t)| ≤ K ′eat

for all t > 0.

The Heaviside class is the setH of all piecewise continuous functions of exponential
type. One can show it is closed under addition and scalar multiplication. (see Exercise
??) It is to this class of functions that we extend the Laplace transform. The set of
elementary functions E that we introduced in Chapter 2 are all examples of functions in
the Heaviside class. Recall that f is an elementary function if f is a sum of functions of
the form ctneat sin(bt) and ctneat cos(bt), where a, b, c are constants and n is a nonnegative
integer. Such functions are continuous. Since sin and cos are bounded by 1 and tn ≤
ent it follows that |ctneat sin bt| ≤ ce(a+n)t and likewise |ctneat cos bt| ≤ ce(a+n)t. Thus
elementary functions are of exponential type, i.e., E ⊂ H. Although the Heaviside class
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is much bigger than the set of elementary functions there are many important functions
which are not in H. An example is f(t) = et2 . For if b is any positive constant, then

et2

ebt
= et2−bt = e(t− b

2
)2− b2

4

and therefore,

lim
t→∞

et2

ebt
= ∞.

This implies that f(t) = et2 grows faster than any exponential function and thus is not
of exponential type.

Existence of the Laplace transform

Recall that for an elementary function the Laplace transform exists and has the further
property that lims→∞ F (s) = 0. These two properties extend to all functions in the
Heaviside class.

Theorem 4.2.1. For f ∈ H the Laplace transform exists and

lim
s→∞

F (s) = 0.

Proof. The finite integral
∫ N

0
e−stf(t) dt exists because f is piecewise continuous on

[0, N ]. Since f is also of exponential type there are constants K and a such that |f(t)| ≤
Keat for all t ≥ 0. Thus, for all s > a,

∫ ∞

0

|e−stf(t)| dt ≤
∫ ∞

0

|e−stKeat| dt

= K

∫ ∞

0

e−(s−a)t dt

=
K

s− a
.

This shows that the integral converges absolutely and hence the Laplace transform exists
for s > a. Since |L {f} (s)| ≤ K

s−a
and lims→∞ K

s−a
= 0 it follows that

lim
s→∞

L{f} (s) = 0.



4.2. THE HEAVISIDE CLASS H 203

As might be expected computations using the definition to compute Laplace trans-
forms of even simple functions can be tedious. To illustrate the point consider the
following example.

Example 4.2.2. Use the definition to compute the Laplace transform of

f(t) =

{
t2 if 0 ≤ t < 1

2 if 1 ≤ t < ∞.

I Solution. Clearly f is piecewise continuous and bounded, hence it is in the Heaviside
class. We can thus proceed with the definition confident, by Theorem 4.2.1, that the
improper integral will converge. We have

L{f} (s) =

∫ ∞

0

e−stf(t) dt

=

∫ 1

0

e−st t2 dt +

∫ ∞

1

e−st 2 dt

For the first integral we need integration by parts twice:
∫ 1

0

e−st t2 dt =
t2e−st

−s
|10 +

2

s

∫ 1

0

e−st t dt

=
e−s

−s
+

2

s

(
te−st

−s
|10 +

1

s

∫ 1

0

e−st dt

)

= −e−s

s
+

2

s

(
−e−s

s
− 1

s2
e−st|10

)

= −e−s

s
− 2e−s

s2
+

2

s3
− 2e−s

s3
.

The second integral is much simpler and we get
∫ ∞

1

e−st 2 dt =
2e−s

s

Now putting things together and simplifying gives

L{f} (s) =
2

s3
+ e−s

(
− 2

s3
− 2

s2
+

1

s

)
.

J

Do not despair. The Heaviside function that we introduce next will lead to a Laplace
transform principle that will make unnecessary calculations like the one above.
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The Heaviside Function

In order to effectively manage piecewise continuous functions inH it is useful to introduce
an important auxiliary function called the unit step function or Heaviside function:

hc(t) =

{
0 if 0 ≤ t < c,

1 if c ≤ t.

The graph of this function is given in Figure 4.11.

1

c

Figure 4.11: The Heaviside Function hc(t)

Clearly, it is piecewise continuous, and since it is bounded it is of exponential type.
Thus hc ∈ H. Frequently we will write h(t) = h0(t). Observe also that hc(t) = h(t− c).
More complicated functions can be built from the Heaviside function. First consider the
model for an on-off switch, χ[a,b), which is 1 (the on state) on the interval [a, b) and 0
(the off state) elsewhere. Its graph is given in Figure 4.12. Observe that χ[a,b) = ha− hb

and χ[a,∞) = ha. Now using on-off switches we can easily describe functions defined
piecewise.

Example 4.2.3. Write the piecewise defined function

f(t) =

{
t2 if 0 ≤ t < 1,

2 if 1 ≤ t < ∞.

in terms of on-off switches and in terms of Heaviside functions.

I Solution. In this piecewise function t2 is in the on state only in the interval [0, 1)
and 2 is in the on state only in the interval [1,∞).Thus

f(t) = t2χ[0,1) + 2χ[1,∞).
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1

a b
t

Figure 4.12: The On/Off Switch χa,b(t)

Now rewriting the on-off switches in terms of the Heaviside functions we obtain:

f(t) = t2(h0 − h1) + 2h1

= t2h0 + (2− t2)h1

= t2 + (2− t2)h(t− 1).

J

The Laplace Transform on the Heaviside class

The importance of writing piecewise continuous functions in terms of Heaviside functions
is seen by the ease of computing its Laplace transform. For simplicity when f ∈ H we
will extend f by defining f(t) = 0 when t < 0. This extension does not effect the Laplace
transform for the Laplace transform only involves values f(t) for t > 0.

Theorem 4.2.4 (The Second Translation Principle). Suppose f ∈ H is a function
with Laplace transform F . Then

L{f(t− c)h(t− c)} = e−scF (s).

In terms of the inverse Laplace transform this is equivalent to

L−1
{
e−scF (s)

}
= f(t− c)h(t− c).
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Proof. The calculation is straightforward and involves a simple change of variables:

L{f(t− c)h(t− c)} (s) =

∫ ∞

0

e−stf(t− c)h(t− c) dt

=

∫ ∞

c

e−stf(t− c) dt

=

∫ ∞

0

e−s(t+c)f(t) dt (t 7→ t + c)

= e−sc

∫ ∞

0

e−stf(t) dt

= e−scF (s)

Frequently, we encounter expressions in the form g(t)h(t− c). If f(t) is replaced by
g(t + c) in Theorem 4.2.4 then we obtain

Corollary 4.2.5.

L{g(t)h(t− c)} = e−scL{g(t + c)} .

A simple example of this is when g = 1. Then L{hc} = e−scL{1} = e−sc

s
. When

c = 0 then L{h0)} = 1
s

which is the same as the Laplace transform of the constant
function 1. This is consistent since h0 = h = 1 for t ≥ 0.

Example 4.2.6. Find the Laplace transform of f(t) =

{
t2 if 0 ≤ t < 1

2 if 1 ≤ t < ∞ given in

Example 4.2.

I Solution. In Example 4.2.3 we found f(t) = t2 + (2− t2)h(t− 1). By the Corollary
we get

L{f} =
2

s3
+ e−sL{

2− (t + 1)2
}

=
2

s3
+ e−sL{−t2 − 2t + 1

}

=
2

s3
+ e−s

(
− 2

s3
− 2

s2
+

1

s

)

J
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Example 4.2.7. Find the Laplace transform of

f(t) =





cos t if 0 ≤ t < π

1 if π ≤ t < 2π

0 if 2π ≤ t < ∞.

I Solution. First writing f in terms of on-off switches gives

f = cos t χ[0,π) + 1 χ[π,2π) + 0 χ[2π,∞).

Now rewrite this expression in terms of Heaviside functions:

f = cos t (h0 − hπ) + (hπ − h2π) = cos t + (1− cos t)hπ − h2π.

Since hc(t) = h(t− c) the corollary gives

F (s) =
s

s2 + 1
+ e−sπL{1− cos(t + π)} − e−2sπ

s

=
s

s2 + 1
+ e−sπ

(
1

s
+

s

s2 + 1

)
− e−2sπ

s
.

In the second line we have used the fact that cos(t + π) = − cos t. J

Exercises

Graph each of the following functions defined by means of the unit step function h(t−c) and/or
the on-off switches χ[a, b).

1. f(t) = 3h(t− 2)− h(t− 5)

2. f(t) = 2h(t− 2)− 3h(t− 3) + 4h(t− 4)

3. f(t) = (t− 1)h(t− 1)

4. f(t) = (t− 2)2h(t− 2)

5. f(t) = t2h(t− 2)

6. f(t) = h(t− π) sin t
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7. f(t) = h(t− π) cos 2(t− π)

8. f(t) = t2χ[0, 1) + (1− t)χ[1, 3) + 3χ[3,∞)

For each of the following functions f(t), (a) express f(t) in terms of on-off switches, (b) express
f(t) in terms of Heaviside functions, and (c) compute the Laplace transform F (s) = L{f(t)}.

9. f(t) =

{
0 if 0 ≤ t < 2,

t− 2 if 2 ≤ t < ∞.

10. f(t) =

{
0 if 0 ≤ t < 2,

t if 2 ≤ t < ∞.

11. f(t) =

{
0 if 0 ≤ t < 2,

t + 2 if 2 ≤ t < ∞.

12. f(t) =

{
0 if 0 ≤ t < 4,

(t− 4)2 if 4 ≤ t < ∞.

13. f(t) =

{
0 if 0 ≤ t < 4,

t2 if 4 ≤ t < ∞.

14. f(t) =

{
0 if 0 ≤ t < 4,

t2 − 4 if 4 ≤ t < ∞.

15. f(t) =

{
0 if 0 ≤ t < 2,

(t− 4)2 if 2 ≤ t < ∞.

16. f(t) =

{
0 if 0 ≤ t < 4,

et−4 if 4 ≤ t < ∞.

17. f(t) =

{
0 if 0 ≤ t < 4,

et if 4 ≤ t < ∞.

18. f(t) =

{
0 if 0 ≤ t < 6,

et−4 if 6 ≤ t < ∞.

19. f(t) =

{
0 if 0 ≤ t < 4,

tet if 4 ≤ t < ∞.

20. f(t) =





1 if 0 ≤ t < 4
−1 if 4 ≤ t < 5
0 if 5 ≤ t < ∞.
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21. f(t) =





t if 0 ≤ t < 1
2− t if 1 ≤ t < 2
1 if 2 ≤ t < ∞.

22. f(t) =

{
t if 0 ≤ t < 1
2− t if 1 ≤ t < ∞.

23. f(t) =





t if 0 ≤ t < 1
t− 1 if 1 ≤ t < 2
t− 2 if 2 ≤ t < 3
... .

24. f(t) =

{
1 if 2n ≤ t < 2n + 1
0 if 2n + 1 ≤ t < 2n + 2.

25. f(t) =





t2 if 0 ≤ t < 2
4 if 2 ≤ t < 3
7− t if 3 ≤ t < ∞.

26. f(t) =





1− t if 0 ≤ t < 2
3− t if 2 ≤ t < 4
5− t if 4 ≤ t < 6
... .

27. f(t) =





1 if 0 ≤ t < 2
3− t if 2 ≤ t < 3
2(t− 3) if 3 ≤ t < 4
2 if 4 ≤ t < ∞.

4.3 The Inversion of the Laplace Transform

We now turn our attention to the inversion of the Laplace transform. In Chapter 2
we established a one-to-one correspondence between elementary functions and proper
rational functions: for each proper rational function its inverse Laplace transform is a
unique elementary function. For the Heaviside class the matter is complicated by our
allowing discontinuity. Two functions f1 and f2 are said to be essentially equal if for
each interval [0, N) they are equal as functions except at possibly finitely many points.
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For example, the functions

f1(t) =

{
1 if 0 ≤ t < 1

2 if 1 ≤ t < ∞ f2(t) =





1 if 0 ≤ t < 1

3 if t = 1

2 if 1 < t < ∞
f3(t) =

{
1 if 0 ≤ t ≤ 1

2 if 1 < t < ∞.

are essentially equal for they are equal everywhere except at t = 1. Two functions that
are essentially equal have the same Laplace transform. This is because the Laplace
transform is an integral operator and integration cannot distinguish functions that are
essentially equal. The Laplace transform of f1, f2, and f3 in our example above are all
1
s

+ e−s

s
. Here is our problem: Given a transform, like 1

s
+ e−s

s
, how do we decide what

‘the’ inverse Laplace transform is. It turns out that if F (s) is the Laplace transform of
functions f1, f2 ∈ H then f1 and f2 are essentially equal. For most practical situations
it does not matter which one is chosen. However, in this text we will consistently use
the one that is right continuous at each point. A function f in the Heaviside class is
said to be right continuous at a point a if we have

f(a) = f(a+) = lim
t→a+

f(t),

and it is right continuous on [0,∞) if it is right continuous at each point in [0,∞).
In the example above, f1 is right continuous while f2 and f3 are not. The function f3 is,
however, left continuous, using the obvious definition of left continuity. If we decide to
use right continuous functions in the Heaviside class then the correspondence with its
Laplace transform is one-to-one. We summarize this discussion as a theorem:

Theorem 4.3.1. If F (s) is the Laplace transform of a function in H then there is a
unique right continuous function f ∈ H such that L{f} = F . Any two functions in H
with the same Laplace transform are essentially equal.

Recall from our definition that hc is right continuous. So piecewise functions writ-
ten as sums of products of a continuous function and a Heaviside function are right
continuous.

Example 4.3.2. Find the inverse Laplace transform of

F (s) =
e−s

s2
+

e−3s

s− 4

and write it as a right continuous piecewise function.

I Solution. The inverse Laplace transforms of 1
s2 and 1

s−4
are, respectively, t and e4t.

By Theorem 4.2.4 the inverse Laplace transform of F (s) is

(t− 1)h1 + e4(t−3)h3.
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On the interval [0, 1) both t − 1 and e4(t−3) are off. On the interval [1, 3) only t − 1 is
on. On the interval [3,∞) both t− 1 and e4(t−3) are on. Thus

L−1 {F (s)} =





0 if 0 ≤ t < 1

t− 1 if 1 ≤ t < 3

t− 1 + e4(t−3) if 3 ≤ t < ∞
.

J

The Laplace Transform of tα and the Gamma function

We showed in Chapter 2 that the Laplace transform of tn is n!
sn+1 , for each nonnegative

integer n. One might conjecture that the Laplace transform of tα, for α an arbitrary
nonnegative real number, is given by a similar formula. Such a formula would necessarily
extend the notion of ‘factorial’. We define the gamma function by the formula

Γ(α) =

∫ ∞

0

e−ttα−1 dt.

It can be shown that the improper integral that defines the gamma function converges as
long as α is greater than 0. The following proposition, whose proof is left as an exercise,
establishes the fundamental properties of the gamma function.

Proposition 4.3.3.

1. Γ(α + 1) = αΓ(α) (The fundamental recurrence relation)

2. Γ(1) = 1

3. Γ(n + 1) = n!

The third formula in the proposition allows us to rewrite the Laplace transform of
tn in the following way:

L{tn} =
Γ(n + 1)

sn+1
.

If α > −1 we obtain

L{tα} =
Γ(α + 1)

sα+1
.
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(Even though tα is not in the Heaviside class for −1 < α < 0 its Laplace transform still
exists.) To establish this formula fix α > −1. By definition

L{tα} =

∫ ∞

0

e−sttα dt.

We make the change of variable u = st. Then du = sdt and

L{tα} (s) =

∫ ∞

0

e−u u

s

du

s

=
1

sα+1

∫ ∞

0

e−uuα du

=
Γ(α + 1)

sα+1
.

Of course, in order to actually compute the Laplace transform of some non integer
positive power of t one must know the value of the gamma function for the corresponding
power. For example, it is known that Γ(1

2
) =

√
π. By the fundamental recurrence

relation Γ(3
2
) = 1

2
Γ(1

2
) =

√
π

2
. Therefore

L
{

t
1
2

}
=

√
π

2s
3
2

.

Exercises

Compute the inverse Laplace transform of each of the following functions.

1.
e−3s

s− 1

2.
e−3s

s2

3.
e−3s

(s− 1)3

4.
e−πs

s2 + 1

5.
se−3πs

s2 + 1
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6.
e−πs

s2 + 2s + 5

7.
e−s

s2
+

e−2s

(s− 1)3

8.
e−2s

s2 + 4

9.
e−2s

s2 − 4

10.
se−4s

s2 + 3s + 2

11.
e−2s + e−3s

s2 − 3s + 2

12.
1− e−5s

s2

13.
1 + e−3s

s4

14. e−πs 2s + 1
s2 + 6s + 13

15. (1− e−πs)
2s + 1

s2 + 6s + 13

4.4 Properties of the Laplace Transform

Many of the properties of the Laplace transform that we discussed in Chapter 2 for
elementary functions carry over to the Heaviside class. Their proofs are the same.
These properties are summarized below.

Linearity L{af + bg} = aL{f}+ bL{g} .

The First Translation Principle L{e−atf} = L{f} (s− a).

Differentiation in Transform Space L(−tf(t)) = F ′(s)
L{(−t)nf(t)} = F (n)(s).

Integration in Domain Space L(
{∫ t

0
f(u) du

}
= F (s)

s
.
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There are a few properties though that need some clarifications. In particular, we
need to discuss the meaning of the fundamental derivative formula

L{f ′} = sL{f} − f(0),

when f is in the Heaviside class. You will recall that the derivative of an elementary
function is again an elementary function. However, for the Heaviside class this is not
necessarily the case. A couple of things can go wrong. First, there are examples of
functions in H for which the derivative does not exist at any point. Second, even when
the derivative exists there is no guarantee that it is back in H. As an example, consider
the function

f(t) = sin et2 .

This function is inH because it is bounded (between−1 and 1) and continuous. However,
its derivative is

f ′(t) = 2tet2 cos et2 ,

which is continuous but not of exponential type. To see this recall that et2 is not of
exponential type. Thus at those values of t where cos et2 = 1, |f ′(t)| is not bounded by
an exponential function and hence f ′ /∈ H. Therefore, in order to extend the derivative
formula to H we must include in the hypotheses the requirement that both f and f ′ be
in H. Recall that for f in H the symbol f ′ is used to denote the derivative of f if f is
differentiable except at a finite number of points on each interval of the form [0, N ].

The Laplace Transform of a Derivative

With these understandings we now have

Theorem 4.4.1. If f is continuous and f and f ′ are in H then

L{f ′} = sL{f} − f(0).

Proof. We begin by computing
∫ N

0
e−stf ′(t) dt. This integral requires that we consider

the points where f ′ is discontinuous. There are only finitely many on [0, N), a1, . . . , ak,
say, and we may assume ai < ai+1. If we et a0 = 0 and ak+1 = N then we obtain

∫ N

0

e−stf ′(t) dt =
k∑

i=0

∫ ai+1

ai

e−stf ′(t) dt,
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and integration by parts gives

∫ N

0

e−stf ′(t) dt =
k∑

i=0

(
f(t)e−st|ai+1

ai
+ s

∫ ai+1

ai

e−stf(t) dt

)

=
k∑

i=0

(f(a−i+1)e
−sai+1 − f(a+

i )e−sai) +

∫ N

0

e−stf(t) dt

= f(N)e−Ns − f(0) + s

∫ N

0

e−stf(t) dt.

We have used the continuity of f to make the evaluations at ai and ai+1, which allows
for the collapsing sum in line 2. We now take the limit as N goes to infinity and the
result follows.

The following corollary is immediate:

Corollary 4.4.2. If f and f ′ are continuous and f , f ′, and f ′′ are in H then

L{f ′′} = s2L{f} − sf(0)− f ′(0).

The Laplace Transform Method

The differential equations that we will solve by means of the Laplace transform are first
and second order constant coefficient linear differential equations with a forcing function
f in H:

y′ + ay = f(t)
y′′ + ay′ + by = f(t).

In order to apply the Laplace transform method we will need to know that there is
a solution y which is continuous in the first equation and both y and y′ are continuous
in the second equation. These facts were proved in Theorems 4.1.6 and 4.1.8.

We are now in a position to illustrate the Laplace transform method to solve differ-
ential equations with possibly discontinuous forcing functions f .

Example 4.4.3. Solve the following first order differential equation:

y′ + 2y = f(t), y(0) = 1,
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where

f(t) =

{
0 if 0 ≤ t < 1

t if 1 ≤ t < ∞.

I Solution. We first rewrite f in terms of Heaviside functions: f(t) = t χ[1,∞)(t) =
t h1(t). By Corollary 4.2.5 its Laplace transform is F (s) = e−sL{t + 1} = e−s( 1

s2 + 1
s
) =

e−s( s+1
s2 ). The Laplace transform of the differential equation yields

sY (s)− y(0) + 2Y (s) = e−s(
s + 1

s2
),

and solving for Y gives

Y (s) =
1

s + 2
+ e−s s + 1

s2(s + 2)
.

A partial fraction decomposition gives

s + 1

s2(s + 2)
=

1

4

1

s
+

1

2

1

s2
− 1

4

1

s + 2
,

and the second translation principle (Theorem 4.2.4) gives

y(t) = L−1

{
1

s + 2

}
+

1

4
L−1

{
e−s 1

s

}
+

1

2
L−1

{
e−s 1

s2

}
− 1

4
L−1

{
e−s 1

s + 2

}

= e−2t +
1

4
h1 +

1

2
(t− 1)h1 − 1

4
e−2(t−1)h1.

=

{
e−2t if 0 ≤ t < 1

e−2t + 1
4
(2t− 1)− 1

4
e−2(t−1) if 1 ≤ t < ∞.

J

We now consider a mixing problem of the type mentioned in the introduction to this
chapter.

Example 4.4.4. Suppose a tank holds 10 gallons of pure water. There are two input
sources of brine solution: the first source has a concentration of 2 pounds of salt per
gallon while the second source has a concentration of 3 pounds of salt per gallon. The
first source flows into the tank at a rate of 1 gallon per minute for 5 minutes after which
it is turned off and simultaneously the second source is turned on at a rate of 1 gallon
per minute. The well mixed solution flows out of the tank at a rate of 1 gallon per
minute. Find the amount of salt in the tank at any time t.
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I Solution. The principles we considered in Chapter 1.1 apply here:

y′(t) = Rate in− Rate out.

Recall that the input and output rates of salt are the product of the concentration of
salt and the flow rates of the solution. The rate at which salt is input depends on the
interval of time. For the first five minutes, source one inputs salt at a rate of 2 lbs per
minute, and after that, source two inputs salt at a rate of 3 lbs per minute. Thus the
input rate is represented by the function

f(t) =

{
2 if 0 ≤ t < 5

3 if 5 ≤ t < ∞.

The rate at which salt is output is y(t)
10

lbs per minute. We therefore have the following
differential equation and initial condition:

y′ = f(t)− y(t)

10
, y(0) = 0.

Rewriting f in terms of Heaviside functions gives f = 2χ[0,5)+3χ[5,∞) = 2(h0−h5)+3h5 =
2 + h5. Applying the Laplace transform to the differential equation and solving for
Y (s) = L{y} (s) gives

Y (s) =

(
1

s + 1
10

)(
2 + e−s

s

)

=
2

(s + 1
10

)s
+ e−5s 1

(s + 1
10

)s

=
20

s
− 20

s + 1
10

+ e−5s 10

s
− e−5s 10

s + 1
10

.

Taking the inverse Laplace transform of Y (s) gives

y(t) = 20− 20e−
t
10 + 10h5(t)− 10e−

t−5
10 h5(t)

=

{
20− 20e−

t
10 if 0 ≤ t < 5

30− 20e−
t
10 − 10e−

t−5
10 if 5 ≤ t < ∞.

The graph of y is given in Figure 4.13. As expected we observe that the solution is
continuous, but the small kink at t = 5 indicates that there is a discontinuity of the
derivative at this point. This occurred when the flow of the second source, which had a
higher concentration of salt, was turned on. J
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Figure 4.13: The solution to a mixing problem with discontinuous input function.

Exercises

Solve each of the following initial value problems.

1. y′ + 2y = f(t) where f(t) =

{
0 if 0 ≤ t < 1
−3 if t ≥ 1

y(0) = 0.

2. y′ + 2y = f(t) where f(t) =

{
−2 if 0 ≤ t < 1
2 if t ≥ 1

y(0) = 0.

3. y′ + 2y = f(t) where f(t) =





0 if 0 ≤ t < 1
2 if 1 ≤ t < 3
0 if t ≥ 3

y(0) = 0.

4. y′ + 2y = f(t) where f(t) =

{
t if 0 ≤ t < 1
0 if t ≥ 1

y(0) = 0.

5. y′′ + 9y = h(t− 3), y(0) = 0, y′(0) = 0.

6. y′′ − 5y′ + 4y = f(t) where f(t) =

{
1 if 0 ≤ t < 5
0 if t ≥ 5

y(0) = 0, y′(0) = 1.

7. y′′ + 5y′ + 6y =





0 if 0 ≤ t < 1
2 if 1 ≤ t < 3
0 if t ≥ 3

y(0) = 0, y′(0) = 0.

8. y′′ + 9y = h(t− 2π) sin t, y(0) = 1, y′(0) = 0.
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9. y′′ + 2y′ + y = h(t− 3), y(0) = 0, y′(0) = 1.

10. y′′ + 2y′ + y = h(t− 3)et, y(0) = 0, y′(0) = 1.

11. y′′ + 6y′ + 5y = 1− h(t− 2) + h(t− 4) + h(t− 6), y(0) = 0, y′(0) = 0.

4.5 The Dirac Delta Function

In applications we may encounter an input into a system we wish to study that is very
large in magnitude, but applied over a short period of time. Consider, for example, the
following mixing problem:

Example 4.5.1. A tank holds 10 gallons of a brine solution in which each gallon contains
2 pounds of dissolved salt. An input source begins pouring fresh water into the tank at
a rate of 1 gallon per minute and the thoroughly mixed solution flows out of the tank
at the same rate. After 5 minutes 3 pounds of salt are poured into the tank where it
instantly mixes into the solution. Find the amount of salt at any time t.

This example introduces a sudden action, namely, the sudden input of 3 pounds of
salt at time t = 5 minutes. If we imagine that it actually takes 1 second to do this
then the average rate of input of salt would be 3 lbs/ sec = 180 lbs/min. Thus we see
a high magnitude in the rate of input of salt over a short interval. Moreover, the rate
multiplied by the duration of input gives the total input.

More generally, if r(t) represents the rate of input over a time interval [a, b] then∫ b

a
r(t) dt would represent the total input over that interval. A unit input means that

this integral is 1. Let t = c ≥ 0 be fixed and let ε be a small positive number. Imagine
a constant input rate over the interval [c, c + ε) and 0 elsewhere. The function dc,ε =
1
ε
χ[c,c+ε) represents such an input rate with constant input (1

ε
) over the interval [c, c + ε)

( c.f. section 4.2 where the on-off switch χ[a,b) is discussed). The constant 1
ε

is chosen so
that the total input is

∫ ∞

0

dc,ε dt =
1

ε

∫ c+ε

c

1 dt =
1

ε
ε = 1.

For example, if ε = 1
60

min, then 3d5,ε would represent the input of 3 lbs of salt over a 1
second interval beginning at t = 5.

Figure 4.14 shows the graphs of dc,ε for a few values of ε. The main idea will be to take
smaller and smaller values of ε, i.e. we want to imagine the total input being concentrated
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Figure 4.14: Approximation to a delta function

at the point c. Formally, we define the Dirac delta function by δc(t) = limε→0+ dc,ε(t).
Heuristically, we would like to write

δc(t) =

{
∞ if t = c

0 elsewhere,

with the property that
∫∞
0

δc(t) dt = limε→0

∫∞
0

dc,ε dt = 1. Of course, there is really
no such function with this property. (Mathematically, we can make precise sense out
of this idea by extending the Heaviside class to a class that includes distributions or
generalized functions. We will not pursue distributions here as it will take us far
beyond the introductory nature of this text.) Nevertheless, this is the idea we want to
develop, at least formally. We will consider first order constant coefficient differential
equations of the form

y′ + ay = f(t)

where f involves the Dirac delta function δc. It turns out that the main problem lies in
the fact that the solution is not continuous, so Theorem 4.4.1 does not apply. Neverthe-
less, we will justify that we can apply the usual Laplace transform method in a formal
way to produce the desired solutions. The beauty of doing this is found in the ease in
which we can work with the ”Laplace transform” of δc.

We define the Laplace transform of δc by the formula:

L{δc} = lim
ε→0

L{dc,ε} .

Theorem 4.5.2. The Laplace transform of δc is

L{δc} = e−cs.
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Proof. We begin with dc,ε.

L{dc,ε} =
1

ε
L{hc − hc+ε}

=
1

ε

(
e−cs − e−(c+ε)s

s

)

=
e−cs

s

(
1− e−εs

ε

)
.

We now take limits as ε goes to 0 and use L’Hospitals rule to obtain:

L{δc} = lim
ε→0

L{dc,ε} =
e−cs

s

(
lim
ε→0

1− e−εs

ε

)
=

e−cs

s
· s = e−cs.

We remark that when c = 0 we have L{δ0} = 1. By Theorem 4.2.1 there is no Heav-
iside function with this property. Thus, to reiterate, even though L{δc} is a function,
δc is not. We will frequently write δ = δ0. Observe that δc(t) = δ(t− c).

The mixing problem from Example 4.5.1 gives rise to a first order linear differential
equation involving the Dirac delta function.

I Solution. Let y(t) be the amount of salt in the tank at time t. Then y(0) = 20 and
y′ is the difference of the input rate and the output rate. The only input of salt occurs
at t = 5. If the salt were input over a small interval, [5, 5 + ε) say, then 3

ε
χ[5,5+ε) would

represent the input of 3 pounds of salt over a period of ε minutes. If we let ε go to zero
then 3δ5 would represent the input rate. The output rate is y(t)/10. We are thus led to
the differential equation:

y′ +
y

10
= 3δ5, y(0) = 20.

J

The solution to this differential equation will fall out of the slightly more general
discussion we give below.
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Differential Equations of the form y′ + ay = kδc

We will present progressively four methods for solving

y′ + ay = kδc, y(0) = y0. ?

The last method, the formal Laplace Transform Method, is the simplest method and
is, in part, justified by the methods that precede it. The formal method will thereafter be
used to solve equations of the form ? and will work for all the problems introduced in this
section. Keep in mind though that in practice a careful analysis of the limiting processes
involved must be done to determine the validity of the formal Laplace Transform method.

Method 1. In our first approach we solve the equation

y′ + ay =
k

ε
χ[c,c+ε), y(0) = y0

and call the solution yε. We let y(t) = limε→0 yε. Then y(t) is the solution to y′ + ay =
kδc, y(0) = y0. Recall from Exercise ?? the solution to

y′ + ay = Aχ[α, β), y(0) = y0,

is

y(t) = y0e
−at +

A

a





0 if 0 ≤ t < α

1− e−a(t−α) if α ≤ t < β

e−a(t−β) − e−a(t−α) if β ≤ t < ∞.

We let A = k
ε
, α = c, and β = c + ε to get

yε(t) = y0e
−at +

k

aε





0 if 0 ≤ t < c

1− e−a(t−c) if c ≤ t < c + ε

e−a(t−c−ε) − e−a(t−c) if c + ε ≤ t < ∞.

The computation of limε→0 yε is done on each interval separately. If 0 ≤ t ≤ c then
yε = y0e

−at is independent of ε and hence

lim
ε→0

yε(t) = y0e
−at 0 ≤ t ≤ c.

If c < t < ∞ then for ε small enough, c + ε < t and thus

yε(t) = y0e
−at +

k

aε
(e−a(t−c−ε) − e−a(t−c)) = y0e

−at +
k

a
e−a(t−c) e

aε − 1

ε
.

Therefore
lim
ε→0

yε(t) = y0e
−at + ke−a(t−c) c < t < ∞.
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We thus obtain

y(t) =

{
y0e

−at if 0 ≤ t ≤ c

y0e
−at + ke−a(t−c) if c < t < ∞.

In the mixing problem above the infusion of 3 pounds of salt after five minutes will
instantaneously increase the amount of salt by 3; a jump discontinuity at t = 5. This
is seen in the solution y above. At t = c there is a jump discontinuity of jump k. Of
course, the solution to the mixing problem is obtained by setting a = 1

10
, k = 3, c = 5,

and y0 = 20:

y(t) =

{
20e−

t
10 if 0 ≤ t ≤ 5

20e−
t
10 + 3e−

t−5
10 if 5 < t < ∞,

whose graph is given in Figure 4.15. We observe that y(5−) = 20e−1/2 ' 12.13 and

0

2
4
6
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20

y

2 4 6 8 10 12 14 16 18 20
t

Figure 4.15: Graph of the Solution to the Mixing Problem

y(5+) = 20e−1/2 + 3 ' 15.13. Also notice that y(5+) is y(5−) plus the jump 3.

Method 2. Our second approach realizes that the mixing problem stated above can
be thought of as the differential equation, y′+ 1

10
y = 0, defined on two separate intervals;

(1) on the interval [0, 5) with initial value y(0) = 20 and (2) on the interval [5,∞) where
the initial value y(5) is the value of the solution given in part (1) at t = 5, plus the jump
3. We apply this idea to our more generic initial value problem, Equation ?.

On the interval [0, c) we solve y′ + ay = 0 with initial value y(0) = y0. The general
solution is easily seen to be y = be−at. The initial value y(0) = y0 gives b = y0. The
solution on [0, c) is thus

y = y0e
−at.

On the interval [c,∞) we solve y′ + ay = 0 with initial value y(c) = y0e
−ac + k. (y(c)

is the value of the solution just obtained at t = c plus the jump k.) Again the general
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solution is y = be−at and the initial condition implies be−ac = y0e
−ac + k. Solving for b

gives b = y0 + keac. Thus
y = y0e

−at + ke−a(t−c),

on the interval [c,∞). Piecing these two solutions together yields

y =

{
y0e

−at if 0 ≤ t < c

y0e
−at + ke−a(t−c) if c ≤ t < ∞ ,

which, as it should be, is the same solution we obtained by method 1.

Method 3. In this method we want to focus on the differential equation, y′+ay = 0
on the entire interval [0,∞) with the a priori knowledge that there is a jump discontinuity
at t = c. Recall from Theorem 4.4.1 that when y is continuous and both y and y′ are in
H we have the formula

L{y′} (s) = sY (s)− y(0).

We cannot apply this theorem as stated for y is not continuous. But if y has a single
jump discontinuity at t = c we can prove a slight generalization of Theorem 4.4.1.

Theorem 4.5.3. Suppose y and y′ are in H and y is continuous except for one jump
discontinuity at t = c with jump k. Then

L{y′} (s) = sY (s)− y(0)− ke−cs.

Proof. Let N > c. Then integration by parts gives

∫ N

0

e−sty′(t) dt =

∫ c

0

e−sty(t) dt +

∫ N

c

e−sty(t) dt

= e−sty(t)|c0 + s

∫ c

0

e−sty(t) dt + e−sty(t)|Nc + s

∫ N

c

e−sty(t) dt

= s

∫ N

0

e−sty(t) dt + e−sNy(N)− y(0)− e−sc(y(c+)− y(c−).

We take the limit as N goes to infinity and obtain:

L{y′} = sL{y} − y(0)− ke−sc.

We apply this theorem to the initial value problem

y′ + ay = 0, y(0) = y0
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with the knowledge that the solution y has a jump discontinuity at t = c with jump k.
Apply the Laplace transform to to the differential equation to obtain:

sY (s)− y(0)− ke−ac + aY (s) = 0.

Solving for Y gives

Y (s) =
y0

s + a
+ k

e−as

s + a
.

Applying the inverse Laplace transform gives the solution

y(t) = y0e
−at + ke−a(t−c)hc(t)

=

{
y0e

−at if 0 ≤ t < c

y0e
−at + ke−a(t−c) if c ≤ t < ∞.

Method 4: The Formal Laplace Transform Method. We now return to the
differential equation

y′ + ay = kδc, y(0) = y0

and apply the Laplace transform method directly. That we can do this is partly justified
by method 3 above. From Theorem 4.5.2 the Laplace transform of kδc is ke−sc. This
is precisely the term found in Theorem 4.5.3 where the assumption of a single jump
discontinuity is assumed. Thus the presence of kδc automatically encodes the jump
discontinuity in the solution. Therefore we can (formally) proceed without any advance
knowledge of jump discontinuities. The Laplace transform of

y′ + ay = kδc, y(0) = y0

gives
sY (s)− y(0) + kY (s) = ke−sc

and one proceeds as at the end of method 3 to get

y(t) =

{
y0e

−at if 0 ≤ t < c

y0e
−at + ke−a(t−c) if c ≤ t < ∞.

4.6 Impulse Functions

An impulsive force is a force with high magnitude introduced over a short period of
time. For example, a bat hitting a ball or a spike in electricity on an electric circuit
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both involve impulsive forces and are best represented by the Dirac delta function. In
this section we will consider the effect of the introduction of impulsive forces into such
systems and how they lead to second order differential equations of the form

my′′ + µy′ + ky = Kδc(t).

As we will soon see the effect of an impulsive force introduces a discontinuity not in y
but its derivative y′.

If F (t) represents a force which is 0 outside a time interval [a, b] then
∫∞
0

F (t) dt =∫ b

a
F (t) dt represents the total impulse of the force F (t) over that interval. A unit

impulse means that this integral is 1. If F is given by the acceleration of a constant
mass then F (t) = ma(t), where m is the mass and a(t) is the acceleration. The total
impulse ∫ b

a

F (t) dt =

∫ b

a

ma(t) dt = mv(b)−mv(a)

represents the change of momentum. (Momentum is the product of mass and velocity).
Now imagine this force is introduced over a very short period of time, or even instan-
taneously. As in the previous section, we could model the force by dc,ε = 1

ε
χ[c,c+ε) and

one would naturally be lead to the Dirac delta function to represent the instantaneous
change of momentum. Since momentum is proportional to velocity we see that such
impacts lead to discontinuities in the derivative y′.

Example 4.6.1. (see Chapter 3.8 for a discussion of spring-mass-dashpot systems) A
spring is stretched 49 cm when a 1 kg mass is attached. The body is pulled to 10 cm
below its spring-body equilibrium and released. We assume the system is frictionless.
After 3 sec the mass is suddenly struck by a hammer in a downward direction with total
impulse of 4 kg·m/sec. Find the motion of the mass.

I Solution. We will work in units of kg, m, and sec. Thus the spring constant k is
given by 1(9.8) = k 49

100
, so that k = 20. The initial conditions are given by y(0) = .10

and y′(0) = 0, and since the system is frictionless the rewritten initial value problem is

y′′ + 20y = 4δ3, y(0) = .10, y′(0) = 0.

J

We will return to the solution of this problem after we discuss the more general
second order case.
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Differential Equations of the form y′′ + ay′ + by = Kδc

Our goal is to solve

y′′ + ay′ + by = Kδc, y(0) = y0, y′(0) = y1 ?

using the formal Laplace transform method that we discussed in Method 4 of Section
4.5.

As we discussed above the effect of Kδc is to introduce a single jump discontinuity
in y′ at t = c with jump K. Therefore the solution to (?) is equivalent to solving

y′′ + ay′ + by = 0

with the advanced knowledge that y′ has a jump discontinuity at t = c. If we apply
Theorem 4.5.3 to y′ we obtain

L{y′′} = sL{y′} − y′(0)−Ke−sc

= s2Y (s)− sy(0)− y′(0)−Ke−sc

Therefore, the Laplace transform of y′′ + ay′ + by = 0 leads to

(s2 + as + b)Y (s)− sy(0)− y′(0)−Ke−sc = 0.

On the other hand, if we (formally) proceed with the Laplace transform of Equation (?)
without foreknowledge of discontinuities we obtain the equivalent equation

(s2 + as + b)Y (s)− sy(0)− y′(0) = Ke−sc.

Again, the Dirac function δc encodes the jump discontinuity automatically. If we proceed
as usual we obtain

Y (s) =
sy(0) + y′(0)

s2 + as + b
+

Ke−sc

s2 + as + b
.

The inversion will depend on the way the characteristic polynomial factors.

We now return to the example given above. The equation we wish to solve is

y′′ + 20y = 4δ3, y(0) = .10, y′(0) = 0.

I Solution. We apply the formal Laplace transform to obtain

Y (s) =
.1s

s2 + 20
+

e−3s

s2 + 20
.
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The inversion gives

y(t) =
1

10
cos(

√
20 t) +

1√
20

sin(
√

20 (t− 3))h3(t)

=
1

10
cos(

√
20 t) +

{
0 if 0 ≤ t < 3

1√
20

sin(
√

20 (t− 3)) if 3 ≤ t < ∞.

Figure 4.16 gives the graph of the solution. You will note that y is continuous but the
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Figure 4.16: Harmonic motion with impulse function

little kink at t = 3 indicates the discontinuity of y′. This is precisely when the impulse
to the system was delivered. J

Exercises

Solve each of the following initial value problems.

1. y′ + 2y = δ1(t), y(0) = 0

2. y′ + 2y = δ1(t), y(0) = 1

3. y′ + 2y = δ1(t)− δ3(t), y(0) = 0

4. y′′ + 4y = δπ(t), y(0) = 0, y′(0) = 1

5. y′′ + 4y = δπ(t)− δ2π(t), y(0) = 0, y′(0) = 0
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6. y′′ + 4y = δπ(t)− δ2π(t), y(0) = 1, y′(0) = 0

7. y′′ + 4y′ + 4y = 3δ1(t), y(0) = 0, y′(0) = 0

8. y′′ + 4y′ + 4y = 3δ1(t), y(0) = −1, y′(0) = 3

9. y′′ + 4y′ + 5y = 3δ1(t), y(0) = 0, y′(0) = 0

10. y′′ + 4y′ + 5y = 3δ1(t), y(0) = −1, y′(0) = 3

11. y′′ + 4y′ + 20y = δπ(t)− δ2π(t), y(0) = 1, y′(0) = 0

12. y′′ − 4y′ − 5y = 2e−t + δ3(t), y(0) = 0, y′(0) = 0

4.7 Periodic Functions

In modelling mechanical and other systems it frequently happens that the forcing func-
tion repeats over time. Periodic functions best model such repetition.

A function f defined on [0,∞) is said to be periodic if there is a positive number
p such that f(t + p) = f(t) for all t in the domain of f . We say p is a period of
f . If p > 0 is a period of f and there is no smaller period then we say p is the
fundamental period of f although we will usually just say the period. The interval
[0, p) is called the fundamental interval. If there is no such smallest positive p for a
periodic function then the period is defined to be 0. The constant function f(t) = 1 is an
example of a periodic function with period 0. The sine function is periodic with period
2π: sin(t + 2π) = sin(t). Knowing the sine on the interval [0, 2π) implies knowledge of
the function everywhere. Similarly, if we know f is periodic with period p > 0 and we
know the function on the fundamental interval then we know the function everywhere.
Figure 4.17 illustrates this point.

The Sawtooth Function

A particularly useful periodic function is the sawtooth function. With it we can express
other periodic functions simply by composition. Let p > 0. The saw tooth function is
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p 2p 3p 4p
t

Figure 4.17: An example of a periodic function with period p. Notice how the interval
[0, p) determines the function everywhere.

given by

< t >p=





t if 0 ≤ t < p

t− p if p ≤ t < 2p

t− 2p if 2p ≤ t < 3p
...

.

It is periodic with period p. Its graph is given in Figure 4.18.

p

y

p 2p 3p 4p
t

Figure 4.18: The Sawtooth Function < t >p with period p

The sawtooth function < t >p is obtained by extending the function y = t on the
interval [0, p) periodically to [0,∞). More generally, given a function f defined on the
interval [0, p), we can extend it periodically to [0,∞) by the formula





f(t) if 0 ≤ t < p

f(t− p) if p ≤ t < 2p

f(t− 2p) if 2p ≤ t < 3p
... .

.
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This complicated piecewise definition can be expressed simply by the composition of f
and < t >p:

f(< t >p).

For example, Figure 4.19 is the graph of y = sin(< t >π). This function, which is
periodic with period π, is known as the rectified sine wave.

1

π 2π 3π 4π
x

Figure 4.19: The Rectified Sine Wave: sin(< t >π)

The Staircase Function

Another function that will be particularly useful is the staircase function. For p > 0 it
is defined as follows:

[t]p =





0 if t ∈ [0, p)

p if t ∈ [p, 2p)

2p if t ∈ [2p, 3p)
...

.

Its graph is given in Figure 4.20. The staircase function is not periodic. It is useful in
expressing piecewise functions that are like steps on intervals of length p. For example,
if f is a function on [0,∞) then f([t]p) is a function whose value on [np, (n + 1)p) is the
constant f(np). Figure 4.21 illustrates this idea with the function f(t) = 1 − e−t and
p = 0.5.

Observe that the staircase function and the sawtooth function are related by

< t >p= t− [t]p.
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p

2p

3p

4p

5p

p 2p 3p 4p 5p
t

Figure 4.20: The Staircase Function: [t]p

0

0.2

0.4

0.6

0.8

1

1 2 3 4
t

Figure 4.21: The graph of 1− e−t and 1− e−[t].5

The Laplace Transform of Periodic Functions

Not surprisingly, the formula for the Laplace transform of a periodic function is deter-
mined by the fundamental interval.

Theorem 4.7.1. Let f be a periodic function in H and p > 0 a period of f . Then

L{f} (s) =
1

1− e−sp

∫ p

0

e−stf(t) dt.
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Proof.

L{f} (s) =

∫ ∞

0

e−stf(t) dt

=

∫ p

0

e−stf(t) dt +

∫ ∞

p

e−stf(t) dt

However, the change of variables t → t + p in the second integral and the periodicity of
f gives

∫ ∞

p

e−stf(t) dt =

∫ ∞

0

e−s(t+p)f(t + p) dt

= e−sp

∫ ∞

0

e−stf(t) dt

= e−spL{f} (s).

Therefore

L{f} (s) =

∫ p

0

e−stf(t) dt + e−spL{f} (s).

Solving for L{f} gives the desired result.

Example 4.7.2. Find the Laplace transform of the square-wave function swc given
by

swc(t) =

{
1 if t ∈ [2nc, (2n + 1)c)

0 if t ∈ [(2n + 1)c, (2n + 2)c)
for each integer n.

I Solution. The square-wave function swc is periodic with period 2c. Its graph is given
in Figure 4.22 and, by Theorem 4.7.1, its Laplace transform is

1

y

c 2c 3c 4c 5c 6c 7c
t

Figure 4.22: The graph of the square wave function swc
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L{swc} (s) =
1

1− e−2cs

∫ 2c

0

e−st swc(t) dt

=
1

1− e−2cs

∫ c

0

e−st dt

=
1

1− (e−sc)2

1− e−sc

s

=
1

1 + e−sc

1

s
.

J

Example 4.7.3. Find the Laplace transform of the sawtooth function < t >p.

I Solution. Since the sawtooth function is periodic with period p and since < t >p= t
for 0 ≤ t < p, Theorem 4.7.1 gives

L{< t >p} (s) =
1

1− e−sp

∫ p

0

e−stt dt.

Integration by parts gives

∫ p

0

e−stt dt =
te−st

−s
|p0 −

1

−s

∫ p

0

e−st dt = −pe−sp

s
− 1

s2
e−st|p0 = −pe−sp

s
− e−sp − 1

s2
.

With a little algebra we obtain

L{< t >p} (s) =
1

s2
(1− spe−sp

1− e−sp
).

J

As mentioned above it frequently happens that we build periodic functions by re-
stricting a given function f to the interval [0, p) and then extending it to be periodic
with period p: f(< t >p). Suppose now that f ∈ H. We can then express the Laplace
transform of f(< t >p) in terms of the Laplace transform of f . The following corollary
expresses this relationship and simplifies unnecessary calculations like the integration by
parts that we did in the previous example.

Corollary 4.7.4. Let p > 0 Suppose f ∈ H. Then

L{f(< t >p)} (s) =
1

1− e−sp
L{f − fhp} .
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Proof. The function f − fhp = f(1−hp) is the same as f on the interval [0, p) and 0 on
the interval [p,∞).. Therefore

∫ p

0

e−stf(t) dt =

∫ ∞

0

e−st(f(t)− f(t)hp(t)) dt = L{f − fhp} .

The result now follows from Theorem 4.7.1.

Let’s return to the sawtooth function in Example 4.7.3 and see how Corollary 4.7.4
simplifies the calculation of its Laplace transform.

L{< t >p} (s) =
1

1− e−sp
L{t− thp}

=
1

1− e−sp

(
1

s2
− e−spL{t + p}

)

=
1

1− e−sp

(
1

s2
− e−sp 1 + sp

s2

)

=
1

s2

(
1− spe−sp

1− e−sp

)
.

The last line requires a few algebraic steps.

Example 4.7.5. Find the Laplace transform of the rectified sine wave sin(< t >π). See
Figure 4.19.

I Solution. Corollary 4.7.4 gives

L{sin(< t >π)} =
1

1− e−πs
L{sin t− sin t hπ(t)}

=
1

1− e−πs

(
1

s2 + 1
− e−πsL{sin(t + π)}

)

=
1

1− e−πs

(
1 + e−πs

s2 + 1

)
,

where we use the fact that sin(t + π) = − sin(t). J
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The inverse Laplace transform

The inverse Laplace transform of functions of the form

1

1− e−sp
F (s)

is not always a straightforward matter to find unless, of course, F (s) is of the form
L{f − fhp} so that Corollary 4.7.4 can be used. Usually though this is not the case.
Let r be a fixed real or complex number. Recall that the geometric series

∞∑
n=0

rn = 1 + r + r2 + r3 + · · ·

converges to 1
1−r

when |r| < 1. Since e−sp < 1 for s > 0 we can write

1

1− e−sp
=

∞∑
n=0

e−snp

and therefore
1

1− e−sp
F (s) =

∞∑
n=0

e−snpF (s).

If f = L−1 {F} then a termwise computation gives

L−1

{
1

1− e−sp
F (s)

}
=

∞∑
n=0

L−1
{
e−snpF (s)

}
=

∞∑
n=0

f(t− np)hnp(t).

On an interval of the form [Np, (N + 1)p) the function hnp is 1 for n = 0, . . . , N and 0
otherwise. We thus obtain

L−1

{
1

1− e−sp
F (s)

}
=

∞∑
N=0

(
N∑

n=0

f(t− np)

)
χ[Np,(N+1)p).

A similar argument gives

L−1

{
1

1 + e−sp
F (s)

}
=

∞∑
N=0

(
N∑

n=0

(−1)nf(t− np)

)
χ[Np,(N+1)p).

For reference we record these results in the following theorem:

Theorem 4.7.6. Let p > 0 and suppose L{f(t)} = F (s). Then
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1. L−1
{

1
1−e−sp F (s)

}
=

∑∞
N=0

(∑N
n=0 f(t− np)

)
χ[Np,(N+1)p).

2. L−1
{

1
1+e−sp F (s)

}
=

∑∞
N=0

(∑N
n=0(−1)nf(t− np)

)
χ[Np,(N+1)p).

Example 4.7.7. Find the inverse Laplace transform of

1

(1− e−2s)s
.

I Solution. If f(t) = 1 then F (s) = 1
s

is its Laplace transform. We thus have

L−1

{
1

(1− e−2s)s

}
=

∞∑
N=0

(
N∑

n=0

f(t− 2n)

)
χ[2N,2(N+1))

=
∞∑

N=0

(N + 1)χ[2N,2(N+1))

= 1 +
1

2

∞∑
N=0

2Nχ[2N,2(N+1))

= 1 +
1

2
[t]2.

J

Mixing Problems with Periodic Input

We now turn our attention to two examples. Both are mixing problems with periodic
input functions.

Example 4.7.8. Suppose a tank contains 10 gallons of pure water. Two input sources
alternately flow into the tank for 1 minute intervals. The first input source is a brine
solution with concentration 1 pound salt per gallon and flows (when on) at a rate of 5
gallons per minute. The second input source is pure water and flows (when on) at a
rate of 5 gallons per minute. The tank has a drain with a constant outflow of 5 gallons
per minute. Let y(t) denote the total amount of salt at time t. Find y(t) and for large
values of t determine how y(t) fluctuates.
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I Solution. The input rate of salt is given piecewise by the formula

{
5 if 2n ≤ t < 2n + 1)

0 if 2n + 1 ≤ t < 2n + 2
= 5 sw1(t).

The output rate is given by
y(t)

10
· 5.

This leads to the first order differential equation

y′ +
1

2
y = 5 sw1(t) y(0) = 0.

A calculation using Example 4.7.2 gives that the Laplace transform is

Y (s) = 5
1

1 + e−s

1

s(s + 1
2
)
,

and a partial fraction decomposition gives

Y (s) = 10
1

1 + e−s

1

s
− 10

1

1 + e−s

1

s + 1
2

.

Now apply the inverse Laplace transform. By Theorem 4.7.6 the inverse Laplace trans-
form of the first expression is

10
∞∑

N=0

N∑
n=0

(−1)nχ[N,N+1) = 10
∞∑

N=0

χ[2N,2N+1) = 10 sw1(t).

By Theorem 4.7.6 the inverse Laplace transform of the second expression is

10
∞∑

N=0

N∑
n=0

(−1)ne−
1
2
(t−n)χ[N,N+1) = 10e−

1
2
t

∞∑
N=0

N∑
n=0

(−e
1
2 )nχ[N,N+1)

= 10e−
1
2
t

∞∑
N=0

1− (−e
1
2 )N+1

1 + e
1
2

χ[N,N+1)

=
10e−

1
2
t

1 + e
1
2

{
1 + e

N+1
2 if t ∈ [N, N + 1) (N even)

1− e
N+1

2 if t ∈ [N, N + 1) (N odd)
.

Finally, we put these two expression together to get our solution
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y(t) = 10 sw1(t)− 10e−
1
2
t

1 + e
1
2

{
1 + e

N+1
2 if t ∈ [N,N + 1) (N even)

1− e
N+1

2 if t ∈ [N,N + 1) (N odd)
(1)

=





10− 10 e−
1
2 t+e

−t+N+1
2

1+e
1
2

if t ∈ [N,N + 1) (N even)

−10 e−
1
2 t−e

−t+N+1
2

1+e
1
2

if t ∈ [N,N + 1) (N odd)

.

The graph of y(t), obtained with the help of a computer, is presented in Figure 4.23.

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20
t

Figure 4.23: A mixing problem with square wave input function.

The solution is sandwiched in between a lower and upper curve. The lower curve, l(t),
is obtained by setting t = m to be an even integer in the formula for the solution and
then continuing it to all reals. We obtain

l(m) = 10− 10
e−

1
2
m + e

−m+m+1
2

1 + e
1
2

= 10− 10
e−

1
2
m + e

1
2

1 + e
1
2

and thus

l(t) = 10− 10
e−

1
2
t + e

1
2

1 + e
1
2

In a similar way, the upper curve, u(t), is obtained by setting t = m− to be an odd
integer and continuing to all reals. We obtain

u(t) = −10
e−

1
2
t − e

1
2

1 + e
1
2

.
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An easy calculation gives

limt→∞ l(t) = 10− 10e
1
2

1+e
1
2
' 3.78 and limt→∞ u(t) = 10e

1
2

1+e
1
2
' 6.22.

This means that the salt fluctuation in the tank varies between 3.78 and 6.22 pounds
for large values of t. J

In practice it is not always possible to know the input function, f(t), precisely.
Suppose though that it is known that f is periodic with period p. Then the total input

on all intervals of the form [np, (n + 1)p) is
∫ (n+1)p

np
f(t) dt = h, a constant. On the

interval [0, p) we could model the input with a Dirac delta function concentrated at a
point, c say, and then extend it periodically. We would then obtain a sum of Dirac delta
functions of the form

a(t) = h(δc + δc+p + δc+2p + · · · )
that may adequately represent the input for the system we are trying to model. Addi-
tional information may justify distributing the total input over two or more points in
the interval and extend periodically. Whatever choices are made the solution will need
to be analyzed in the light of empirical data known about the system. Consider the
example above. Suppose that it is known that the input is periodic with period 2 and
total input 5 on the fundamental interval. Suppose additionally that you are told that
the distribution of the input of salt is on the first half of each interval. We might be led
to try to model the input on [0, 2) by 5

2
δ0 + 5

2
δ1 and then extend periodically to obtain

a(t) =
5

2

∞∑
n=0

δn.

Of course, the solution modelled by the input function a(t) will differ from the actual
solution. What is true though is that both exhibit similar long term behavior. This can
be observed in the following example.

Example 4.7.9. Suppose a tank contains 10 gallons of pure water. Pure water flows
into the tank at a rate of 5 gallons per minute. The tank has a drain with a constant
outflow of 5 gallons per minute. Suppose 5

2
pounds of salt is put in the tank each minute

whereupon it instantly and uniformly dissolves. Assume the level of fluid in the tank is
always 10 gallons. Let y(t) denote the total amount of salt at time t. Find y(t) and for
large values of t determine how y(t) fluctuates.

I Solution. As discussed above the input function is 5
2

∑∞
n=1 δn and therefore the dif-

ferential equation that models this system is

y′ +
1

2
y =

5

2

∞∑
n=1

δn, y(0) = 0.
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The Laplace transform leads to

Y (s) =
5

2

∞∑
n=0

e−sn 1

s + 1
2

,

and inverting the Laplace transform gives

y(t) =
5

2

∞∑
n=0

e−
1
2
(t−n)hn(t)

=
5

2
e−

1
2
t

∞∑
n=0

(e
1
2 )nhn(t)

=
5

2
e−

1
2
t

∞∑
N=0

(
N∑

n=0

(e
1
2 )n

)
χ[N,N+1)

=
5

2
e−

1
2
t

∞∑
N=0

1− e
N+1

2

1− e
1
2

χ[N,N+1)

=
5(e−

1
2
t − e−

1
2
(t−[t]−1))

2(1− e
1
2 )

.

The graph of this equation is given in Figure 4.24. The solution is sandwiched in between

0

1

2

3

4

5

6

2 4 6 8 10 12 14 16 18 20
x

Figure 4.24: A mixing problem with a periodic Dirac delta function: The solution to the
differential equation y′ + 1

2y = 5
2

∑∞
n=1 δn y(0) = 0.

a lower and upper curve. The lower curve, l(t), is obtained by setting t = m to be an
integer in the formula for the solution and then continuing it to all reals. We obtain

l(m) =
5

2(1− e−
1
2 )

(e−
m
2 − e

−m+m+1
2 ) =

5

2(1− e−
1
2 )

(e−
m
2 − e

1
2 )
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and thus

l(t) =
5

2(1− e−
1
2 )

(e−
t
2 − e

1
2 )

In a similar way, the upper curve, u(t), is obtained by setting t = (m + 1)− (an integer
slightly less than m + 1) and continuing to all reals. We obtain

u(t) =
5

2(1− e−
1
2 )

(e−
t
2 − 1)

An easy calculation gives

limt→∞ l(t) = −5e
1
2

2(1−e
1
2 )
' 3.85 and limt→∞ u(t) = −5

2(1−e
1
2 )
' 6.35.

This means that the salt fluctuation in the tank varies between 3.85 and 6.35 pounds
for large values of t. J

A comparison of the solutions in these examples reveals similar long term behavior
in the fluctuation of the salt content in the tank. Remember though that each problem
that is modelled must be weighed against hard empirical data to determine if the model
is appropriate or not. Also, we could have modelled the instantaneous input by assuming
the input was concentrated at a single point, rather than two points. The results are
not as favorable. These other possibilities are explored in the exercises.

4.8 Undamped Motion with Periodic Input

In Section 3.7 we discussed various kinds of harmonic motion that can result from
solutions to the differential equation

ay′′ + by′ + cy = f(t).

Undamped motion led to the differential equation

ay′′ + cy = f(t). (1)

In particular, we explored the case where f(t) = F0 cos ωt and were led to the solution

y(t) =





F0

a(β2 − ω2)
(cos ωt− cos βt) if β 6= ω

F0

2aω
t sin ωt if β = ω,

(2)
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where β =
√

c
a
. The case where β 6= ω gave rise to the notion of beats, while the case

β = ω gave us resonance. Since cos ωt is periodic the system that led to Equation 1
is an example of undamped motion with periodic input. In this section we will
explore this phenomenon with two further examples: a square wave periodic function,
swc and a periodic impulse function,

∑∞
n=0 δnc. Both examples are algebraically tedious,

so you will be asked to fill in some of the algebraic details in the exercises. To simplify
the notation we will rewrite Equation (1) as

y′′ + β2y = g(t)

and assume y(0) = y′(0) = 0.

Undamped Motion with square wave forcing function

Example 4.8.1. A constant force of r units for c units of time is applied to a mass-
spring system with no damping force that is initially at rest. The force is then released
for c units of time. This on-off force is extended periodically to give a periodic forcing
function with period 2c. Describe the motion of the mass.

I Solution. The differential equation which describes this system is

y′′ + β2y = r swc(t), y(0) = 0, y′(0) = 0 (3)

where swc is the square wave function with period 2c and β2 is the spring constant. By
Example 4.7.2 the Laplace transform leads to the equation

Y (s) = r
1

1 + e−sc

1

s(s2 + β2)
=

r

β2

1

1 + e−sc

(
1

s
− s

s2 + β2

)
(4)

=
r

β2

1

1 + e−sc

1

s
− r

β2

1

1 + e−sc

s

s2 + β2

Let

F1(s) =
r

β2

1

1 + e−sc

1

s
and F2(s) =

r

β2

1

1 + e−sc

s

s2 + β2
.

Again, by Example 4.7.2 we have

f1(t) =
r

β2
swc(t). (5)
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By Theorem 4.7.6 we have

f2(t) =
r

β2

∞∑
N=0

(
N∑

n=0

(−1)n cos(βt− nβc)

)
χ[Nc,(N+1)c). (6)

We consider two cases.

βc is not an odd multiple of π

Lemma 4.8.2. Suppose v is not an odd multiple of π and let α = sin(v)
1+cos(v)

. Then

1.
∑N

n=0(−1)n cos(u+nv) = 1
2

(
cos u + α sin u + (−1)N(cos(u + Nv)− α sin(u + Nv)

)

2.
∑N

n=0(−1)n sin(u+nv) = 1
2

(
sin u− α cos(u) + (−1)N(sin(u + Nv) + α cos(u + Nv)

)
.

Proof. The proof of the lemma is left as an exercise.

Let u = βt and v = −βc. Then α = − sin(βc)
1+cos (βc)

. In this case we can apply part (1) of

the lemma to Equation (6) to get

f2(t) =
r

2β2

∞∑
N=0

(
cos βt + α sin βt + (−1)N(cos β(t−Nc)− α sin β(t−Nc)

)
χ[Nc,N+1)c

=
r

2β2
(cos βt + α sin βt) +

r

2β2
(−1)[t/c]1(cos β < t >c −α sin β < t >c). (7)

Let

y1(t) =
r

β2
swc(t)− r

2β2
(−1)[t/c]1(cos β < t >c −α sin β < t >c)

=
r

2β2

(
2 swc(t)− (−1)[t/c]1(cos β < t >c −α sin β < t >c)

)

and

y2(t) = − r

2β2
(cos βt + α sin βt).

Then

y(t) = f1(t)− f2(t) = y1(t) + y2(t)

=
r

2β2

(
2 swc(t)− (−1)[t/c]1(cos β < t >c −α sin β < t >c)

)

− r

2β2
(cos βt + α sin βt). (8)
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A quick check shows that y1 is periodic with period 2c and y2 is periodic with period
2π
β

. Clearly y2 is continuous and since the solution y(t) is continuous by Theorem 4.1.8,
so is y1. The following lemma will help us determine when y is a periodic solution.

Lemma 4.8.3. Suppose g1 and g2 are continuous periodic functions with periods p1 > 0
and p2 > 0, respectively. Then g1 + g2 is periodic if and only if p1

p2
is a rational number.

Proof. If p1

p2
= m

n
is rational then np1 = mp2 is a common period of g1 and g2 and hence

is a period of g1 + g2. It follows that g1 + g2 is periodic. The opposite implication,
namely, that the periodicity of g1 + g2 implies p1

p2
is rational, is a nontrivial fact. We do

not include a proof.

Using this lemma we can determine precisely when the solution y = y1 + y2 is
periodic. Namely, y is periodic precisely when 2c

2π/β
= cβ

π
is rational. Consider the

following illustrative example. Set r = 2, c = 3π
2

, and β = 1. Then α = 1 and

y(t) = 2 swc(t)− (−1)[t/c]1(cos < t >c − sin < t >c)− (cos t + sin t). (9)

This function is graphed simultaneously with the forcing function in Figure 4.25. The
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Figure 4.25: The graph of equation 9

solution is periodic with period 4c = 6π. Notice that there is an interval where the
motion of the mass is stopped. This occurs in the interval [3c, 4c). The constant force
applied on the interval [2c, 3c) gently stops the motion of the mass by the time t = 3c.
Since the force is 0 on [3c, 4c) there is no movement. At t = 4c the force is reapplied
and the process thereafter repeats itself. This phenomenon occurs in all cases where the
solution y is periodic. (cf. Exercise ??)

In Section 3.7 we observed that when the natural frequency of the spring is close
to but not equal to the frequency of the forcing function, cos(ωt), then one observes
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vibrations that exhibit a beat. This phenomenon likewise occurs for the square wave
forcing function. Let r = 2, c = 9π

8
, and β = 1. Recall that frequency is merely

the reciprocal of the period so when these frequencies are close so are their periods.
The natural period of the spring is 2π

β
= 2π while the period of the forcing function

is 2c = 9π
4

: their periods are close and likewise their frequencies. Figure 4.26 gives a
graph of y in this case. Again it is evident that the motion of the mass stops on the last
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x

Figure 4.26: The graph of equation 9: the beats are evident here.

subinterval before the end of its period. More interesting is the fact that y oscillates
with an amplitude that varies with time and produces ’beats’.

βc is an odd multiple of π

We now return to equation (6) in the case βc is an odd multiple of π. Things reduce
substantially because cos(βt−Nβc) = (−1)N cos(βt) and we get

f2(t) =
r

β2

∞∑
N=0

N∑
n=0

cos(βt)χ[Nc,(N+1)c)

=
r

β2

∞∑
N=0

(N + 1)χ[Nc,(N+1)c) cos(βt)

=
r

β2
([t/c]1 + 1) cos(βt).
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The solution now is

y(t) = f1(t)− f2(t)

=
r

β2
(swc(t)− [t/c]1 cos(βt)− cos(βt)) . (10)

Figure 4.27 gives the graph of this in the case where r = 2, β = π and c = 1. Resonance
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Figure 4.27: The graph of equation 10: resonance is evident here.

is clearly evident. Of course, this is an idealized situation; the spring would eventually
fail.

J

Undamped Motion with period impulses

Example 4.8.4. A mass-spring system with no damping force is acted upon at rest by
an impulse force of r units at all multiples of c units of time starting at t = 0. (Imagine
a hammer exerting blows to the mass at regular intervals.) Describe the motion of the
mass.

I Solution. The differential equation that describes this system is given by

y′′ + β2y = r

∞∑
n=0

δnc y(0) = 0, y′(0) = 0,
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where, again, β2 is the spring constant. The Laplace transform gives

Y (s) =
r

β

∞∑
n=0

e−ncs β

s2 + β2
.

By Theorem 4.7.6

y(t) =
r

β

∞∑
n=0

sin β(t− nc)hnc

=
r

β

∞∑
N=0

N∑
n=0

sin(βt− nβc)χ[Nc,(N+1)c) (11)

Again we will consider two cases.

βc is not a multiple of 2π

Lemma 4.8.5. Suppose v is not a multiple of 2π. Let α = sin v
1−cos v

. Then

1.
∑N

n=0 sin(u + nv) = 1
2
(sin u + α cos u + sin(u + Nv)− α cos(u + Nv)) .

2.
∑N

n=0 cos(u + nv) = 1
2
(cos u− α sin u + cos(u + Nv) + α sin(u + Nv)) .

Let u = βt and v = −βc. By the first part of Lemma 4.8.5 we get

y(t) =
r

2β

∞∑
N=0

(sin βt + α cos βt + sin β(t−Nc)− α cos β(t−Nc)) χ[Nc,(N+1)c)

=
r

2β
(sin βt + α cos βt + sin β < t >c −α cos β < t >c) , (12)

where α = − sin βc
1−cos βc

. Lemma 4.8.3 implies that the solution will be periodic when c
2π/β

= βc
2π

is rational. Consider the following example. Let r = 2, β = 1 and c = 3π
2

. The graph of
the solution, Equation (12), in this case is given in Figure 4.28. The period is 6π = 4c.
Observe that on the interval [3c, 4c) the motion of the mass is completely stopped. At
t = 3c the hammer strikes and imparts a velocity that stops the mass dead in its track.
At t = 4c the process repeats itself. As in the previous example this phenomenon occurs
in all cases where the solution y is periodic, i.e. when c

2π/(β)
= βc

2π
is rational.
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Figure 4.28: The graph of equation 12
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Figure 4.29: A solution that demonstrates beats.

When the period of the forcing function is close to that of the natural period of the
spring the beats in the solution can again be seen. For example, Figure 4.29 shows the
graph when c = 9

8
(2π), β = 1, and r = 2.

βc is a multiple of 2π

In this case Equation (11) simplifies to

y(t) =
r

β
(sin βt + [t/c]1 sin βt) . (13)

Figure 4.30 gives a graph of the solution when c = 2π, β = 1, and r = 2. In this case
resonance occurs. J
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Figure 4.30: A solution with resonance.

4.9 Convolution

In this section we extend to the Heaviside class the definition of the convolution that we
introduced in Section 2.4. The importance of the convolution is that it provides a closed
formula for the inverse Laplace transform of a product of two functions. This is the
essence of the convolution theorem which we give here. We will then consider further
extensions to the delta functions δc and explore some very pleasant properties.

Given two functions f and g in H the function

u 7→ f(u)g(t− u)

is continuous except for perhaps finitely many points on each interval of the form [0, t].
Therefore the integral ∫ t

0

f(u)g(t− u) du

exists for each t > 0. The convolution of f and g is given by

f ∗ g(t) =

∫ t

0

f(u)g(t− u) du.

We will not make the argument but it can be shown that f ∗ g is in fact continuous.
Since there are numbers K, L, a, and b such that

|f(t)| ≤ Keat and |g(t)| ≤ Lebt
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it follows that

|f ∗ g(t)| ≤
∫ t

0

|f(u)| |g(t− u)| du

≤ KL

∫ t

0

eaueb(t−u) du

= KLebt

∫ t

0

e(a−b)u du

= KL

{
tebt if a = b
eat−ebt

a−b
if a 6= b

.

This shows that f ∗ g is of exponential type and therefore is back in H.

The linearity properties we listed in Section 2.4 extend to H. We restate them here:
Suppose f , g, and h are in H. Then

1. f ∗ g ∈ H
2. f ∗ g = g ∗ f

3. (f ∗ g) ∗ h = f ∗ (g ∗ h)

4. f ∗ (g + h) = f ∗ g + f ∗ h

5. f ∗ 0 = 0.

The sliding window and an example

Let’s now break the convolution up into its constituents to get a better idea of what it
does. The function u 7→ g(−u) has a graph that is folded or flipped across the y-axis.
The function u 7→ g(t−u) shifts the flip by t ≥ 0. The convolution measures the amount
of overlap between f and the flip and shift of g by positive values t. One can think of
g(t− u) as a horizontally sliding window by which f is examined and measured.

Example 4.9.1. Let f(t) = tχ[0,1)(t) and g(t) = χ[1,2)(t). Find the convolution f ∗ g.

I Solution. The flip of g is g(−u) = χ[−2,−1)(u) while the flip and shift of g is g(t−u) =
χ[t−2,t−1)(u). See Figure 4.31.
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t–1t–2

Figure 4.31: The flip and shift of g =
χ[1,2).

1

t–1t–2 0

Figure 4.32: The window g(t − u) and
f(u) have no overlap: 0 ≤ t < 1

If t < 1 then there is no overlap of the window u 7→ g(t − u) with f , i.e. u 7→
f(u)g(t−u) = 0 and hence f ∗ g(t) = 0. See Figure 4.32. Now suppose 1 ≤ t < 2. Then
there is overlap between the window and f as seen in Figure 4.33.

1

0 t–1t–2

Figure 4.33: The window g(t − u) and
f(u) overlap: 1 ≤ t < 2.

t–2 t–10

1

Figure 4.34: The window g(t − u) and
f continue to overlap: 2 ≤ t < 3.

The product of f(u) and g(t − u) is the function u 7→ u, 0 ≤ u < t − 1 and hence

f ∗ g(t) = (t−1)2

2
. Now if 2 ≤ t < 3 there is still overlap between the window and f as

seen in Figure 4.34. The product of f(u) and g(t − u) is u 7→ u, t − 2 ≤ u < 1 and

f ∗ g(t) = 1−(t−2)2

2
= −(t−1)(t−3)

2
. Finally, when 3 ≤ t < ∞ the window shifts past f as

illustrated in Figure 4.35. The product of f(u) and g(t− u) is 0 and f ∗ g(t) = 0.

0 t–1

1

t–2

Figure 4.35: Again, there is no overlap:
3 ≤ t < ∞

0

0.1

0.2

0.3

0.4

0.5

–1 1 2 3 4
t

Figure 4.36: The convolution f ∗ g.
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We can now piece these function together to get

f ∗ g(t) =





0 if 0 ≤ t < 1
(t−1)2

2
if 1 ≤ t < 2

−(t−1)(t−3)
2

if 2 ≤ t < 3

0 if 3 ≤ t < ∞

=
(t− 1)2

2
χ[1,2) − (t− 1)(t− 3)

2
χ[2,3).

Its graph is given in Figure 4.36. Notice that the convolution is continuous; in this case
it is not differentiable at t = 2, 3. J

Theorem 4.9.2 (The Convolution Theorem). Suppose f and g are in H and F
and G are their Laplace transforms, respectively. Then

L{f ∗ g} (s) = F (s)G(s)

or, equivalently,

L−1 {F (s)G(s)} (t) = (f ∗ g)(t).

Proof. For any f ∈ H we will define f(t) = 0 for t < 0. By Theorem 4.2.4

e−stG(s) = L{g(u− t)ht} .

Therefore,

F (s)G(s) =

∫ ∞

0

e−stf(t) dtG(s)

=

∫ ∞

0

e−stG(s)f(t) dt

=

∫ ∞

0

L{g(u− t)ht(u)} (s)f(t) dt

=

∫ ∞

0

∫ ∞

0

e−sug(u− t)h(u− t)f(t) du dt (1)

A theorem in calculus 1 tells us that we can switch the order of integration in (1)

1c.f. Vector Calculus, Linear Algebra, and Differential Forms, J.H. Hubbard and B.B Hubbard, page
444
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when f and g are in H. Thus we obtain

F (s)G(s) =

∫ ∞

0

∫ ∞

0

e−sug(u− t)h(u− t)f(t) dt du

=

∫ ∞

0

∫ t

0

e−sug(u− t)f(t) dt du

=

∫ ∞

0

e−su(f ∗ g)(u) du

= L{f ∗ g} (s)

There are a variety of uses for the convolution theorem. For one it is sometimes a
convenient way to compute the convolution of two functions f and g; namely (f ∗g)(t) =
L−1 {F (s)G(s)} .

Example 4.9.3. Compute the convolution of the functions given in 4.9.1:

f(t) = tχ[0,1) and g(t) = χ[1,2).

In the following example, which is a reworking of Example 4.9.1, instead of keeping track
of the sliding window g(t− u) the convolution theorem turns the problem into one that
is primarily algebraic.

I Solution. The Laplace transforms of f and g are, respectively,

F (s) =
1

s2
− e−s

(
1

s2
+

1

s

)
and G(s) =

e−s − e−2s

s
.

The product simplifies to

F (s)G(s) =
1

s3
e−s −

(
2

s3
+

1

s2

)
e−2s +

(
1

s3
+

1

s2

)
e−3s.

Its inverse Laplace transform is

(f ∗ g)(t) = L−1 {F (s)G(s)} (t)

=
(t− 1)2

2
h1(t)− ((t− 2)(t− 1))h2(t) +

(t− 3)(t− 1)

2
h3(t)

=
(t− 1)2

2
χ[1,2)(t)− (t− 1)(t− 3)

2
χ[2,3)(t)

J
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Convolution and the Dirac Delta Function

We would like to extend the definition of convolution to include the delta functions δc,
c ≥ 0. Recall that we formally defined the delta function by

δc(t) = lim
ε→0

dc,ε(t),

where dc,ε = 1
ε
χ[c,c+ε). In like manner, for f ∈ H, we define

f ∗ δc(t) = lim
ε→0

f ∗ dc,ε(t).

Theorem 4.9.4. For f ∈ H

f ∗ δc(t) = f(t− c)hc,

where the equality is understood to mean essentially equal.

Proof. Let f ∈ H. Then

f ∗ dc,ε(t) =

∫ t

0

f(u)dc,ε(t− u) dt

=
1

ε

∫ t

0

f(u)χ[c,c+ε)(t− u) du

=
1

ε

∫ t

0

f(u)χ[t−c−ε,t−c)(u) du

Now suppose t < c. Then χ[t−c−ε,t−c)(u) = 0, for all u ∈ [0, t). Thus f ∗ dc,ε = 0. On the
other hand if t > c then for ε small enough we have

f ∗ dc,ε(t) =
1

ε

∫ t−c

t−c−ε

f(u) du.

Let t be such that t− c is a point of continuity of f . Then by the Fundamental Theorem
of Calculus

lim
ε→0

1

ε

∫ t−c

t−c−ε

f(u) du = f(t− c).

Since f has only finitely many removable discontinuities on any finite interval it follows
that f ∗ δc is essentially equal to f(t− c)hc.

The special case c = 0 produces the following pleasant corollary.
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Corollary 4.9.5. For f ∈ H we have

f ∗ δ0 = f.

This corollary tells us that this extension to the Dirac delta function gives an iden-
tity under the convolution product. We thus have a correspondence between the mul-
tiplicative identities in domain and transform space under the Laplace transform since
L{δ0} = 1.

The Impulse Response Function

Let f ∈ H. Let us return to our basic second order differential equation

ay′′ + by′ + cy = f(t), y(0) = y0 and y′(0) = y1. (2)

By organizing terms in its Laplace transform in the right manner we can express the
solution in terms of convolution of a special function called the impulse response function
and f . To explain the main idea let’s begin by considering the following special case

ay′′ + by′ + cy = 0 y(0) = 0 and y′(0) = 1.

This corresponds to a system in initial position but with a unit velocity. Our discussion
in Section 4.6 shows that this is exactly the same thing as solving

ay′′ + by′ + cy = δ0, y(0) = 0 and y′(0) = 0

the same system at rest but with unit impulse at t = 0. The Laplace transform of either
equation above leads to

Y (s) =
1

as2 + bs + c
.

The inverse Laplace transform is the solution and will be denoted by ζ(t); it is called
the impulse response function.

The Laplace transform of Equation 2 leads to

Y (s) =
(as + b)y0 + y1

as2 + bs + c
+

F (s)

as2 + bs + c
.

Let

H(s) =
(as + b)y0 + y1

as2 + bs + c
and G(s) =

F (s)

as2 + bs + c
.
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Then Y (s) = H(s) + G(s). The inverse Laplace transform of H corresponds to the
solution to Equation 2 when f = 0. It is the homogeneous solution. On the other hand,
G can be written as a product

G(s) = F (s)

(
1

as2 + bs + c

)

and its inverses Laplace transform g(t) is

g(t) = f ∗ ζ(t),

by the convolution theorem.

We summarize this discussion in the following theorem:

Theorem 4.9.6. Let f ∈ H. The solution to Equation 2 can be expressed as

h(t) + f ∗ ζ(t),

where h is the homogenous solution to Equation 2 and ζ is the impulse response function.

Example 4.9.7. Solve the following differential equation:

y′′ + 4y = χ[0,1) y(0) = 0 and y′(0) = 0.

I Solution. The homogeneous solution to

y′′ + 4y = 0 y(0) = 0 and y′(0) = 0

is the trivial solution h = 0. The impulse response function is

ζ(t) = L−1

{
1

s2 + 4

}
=

1

2
sin 2t.

By Theorem 4.9.6 the solution is

y(t) = ζ ∗ χ[0,1)

=

∫ t

0

1

2
sin(2u)χ[0,1)(t− u) du

=
1

2

∫ t

0

sin(2u)χ[t− 1, t)(u) du

=
1

2

{∫ t

0
sin 2u du if 0 ≤ t < 1∫ t

t−1
sin 2u du if 1 ≤ u < ∞

=
1

4

{
1− cos 2t if 0 ≤ t < 1

cos 2(t− 1)− cos 2t if 1 ≤ t < ∞
J
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Chapter 5

MATRICES

Most students by now have been exposed to the language of matrices. They arise
naturally in many subject areas but mainly in the context of solving a simultaneous
system of linear equations. In this chapter we will give a review of matrices, systems
of linear equations, inverses, and determinants. The next chapter will apply what is
learned here to linear systems of differential equations.

5.1 Matrix Operations

A matrix is a rectangular array of entities and is generally written in the following way:

X =




x11 · · · x1n
...

. . .
...

xm1 · · · xmn


 .

We let R denote the set of entities that will be in use at any particular time. Each xij

is in R and in this text R can be one of the following sets:

R or C The scalars
R[t] or C[t] Polynomials with real or complex entries
R(s) or C(s) The real or complex rational functions
Cn(I,R) or Cn(I,C) Real or complex valued functions

with n continuous derivatives

Notice that addition and scalar multiplication is defined on R. Below we will extend
these operations to matrices. (In Chapter 6 we will see an instance where R will even
be matrices themselves; thus matrices of matrices. But we will avoid that for now.)

259
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The following are examples of matrices.

Example 5.1.1.

A =

[
1 0 3
2 −1 4

]
B =

[
1 −1 9

]
C =

[
i 2− i
1 0

]

D =

[
t2e2t

t3 cos t

]
E =

[
s

s2−1
1

s2−1−1
s2−1

s+2
s2−1

]

It is a common practice to use capital letters, like A, B, C, D, and E, to denote
matrices. The size of a matrix is determined by the number of rows m and the number
of columns n and written m × n. In Example 5.1.1 A is a 2 × 3 matrix, B is a 1 × 3
matrix, C and E are 2 × 2 matrices, and D is a 2 × 1 matrix. A matrix is square if
the number of rows is the same as the number of columns. Thus, C and E are square
matrices. An entry in a matrix is determined by its position. If X is a matrix the (i, j)
entry is the entry that appears in the ith row and jth column. We denote it in two
ways: entij(X) or more simply Xij. Thus, in Example 5.1.1, A1 3 = 3, B1 2 = −1, and
C2 2 = 0. We say that two matrices X and Y are equal if the corresponding entries are
equal, i.e. Xi j = Yi j, for all indices i and j. Necessarily X and Y must be the same size.
The main diagonal of a square n × n matrix X is the vector formed from the entries
Xi i, for i = 1, . . . , n. The main diagonal of C is (i, 0) and the main diagonal of E is
( s

s2−1
, s+2

s2−1
). In this book all scalars are either real or complex. A matrix is said to be a

real matrix if each entry is real and a complex matrix if each entry is complex. Since
every real number is also complex, every real matrix is also a complex matrix. Thus A
and B are real ( and complex) matrices while C is a complex matrix.

Even though a matrix is a structured array of entities in R it should be viewed as
a single object just as a word is a single object though made up of many letters. We
let Mm,n(R) denote the set of all m × n matrices with entries in R. If the focus is on
matrices of a certain size and not the entries we will sometimes just write Mm,n.

The following definitions highlights various kinds of matrices that commonly arise.

1. A diagonal matrix D is a square matrix in which all entries off the main diagonal
are 0. We can say this in another way:

Di j = 0 if i 6= j.

Examples of diagonal matrices are:

[
1 0
0 4

] 


et 0 0
0 e4t 0
0 0 1







1
s

0 0 0
0 2

s−1
0 0

0 0 0 0
0 0 0 − 1

s−2


 .
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It is convenient to write diag(d1, . . . , dn) to represent the diagonal n × n matrix
with (d1, . . . , dn) on the diagonal. Thus the diagonal matrices listed above are
diag(1, 4), diag(et, e4t, 1) and diag(1

s
, 2

s−1
, 0,− 1

s−2
), respectively.

2. The zero matrix 0 is the matrix with each entry 0. The size is usually determined
by the context. If we need to be specific we will write 0m,n to mean the m×n zero
matrix. Note that the square zero matrix, 0n,n is diagonal and is diag(0, . . . , 0).

3. The identity matrix, I, is the square matrix with ones on the main diagonal and
zeros elsewhere. The size is usually determined by the context, but if we want to
be specific, we write In to denote the n × n identity matrix. The 2 × 2 and the
3× 3 identity matrices are

I2 =

[
1 0
0 1

]
I3 =




1 0 0
0 1 0
0 0 1


 .

4. We say a square matrix is upper triangular if each entry below the main diagonal
is zero. We say a square matrix is lower triangular if each entry above the main
diagonal is zero.

[
1 2
0 3

]
and




1 3 5
0 0 3
0 0 −4


 are upper triangular

and [
4 0
1 1

]
and




0 0 0
2 0 0
1 1 −7


 are lower triangular.

5. Suppose A is an m × n matrix. The transpose of A, denoted At, is the n ×m
matrix obtained by turning the rows of A into columns. In terms of the entries we
have more explicitly,

(At)i j = Aj i.

This expression reverses the indices of A and thus changes rows to columns and
columns to rows. Simple examples are




2 3
9 0
−1 4




t

=

[
2 9 −1
3 0 4

] [
et

e−t

]t

=
[
et e−t

] [
1
s

2
s3

2
s2

3
s

]t

=

[
1
s

2
s2

2
s3

3
s

]
.
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Matrix Algebra

There are three matrix operations that make up the algebraic structure of matrices:
addition, scalar multiplication, and matrix multiplication.

Addition

Suppose A and B are two matrices of the same size. We define matrix addition, A+B,
entrywise by the following formula

(A + B)i j = Ai j + Bi j.

Thus if

A =

[
1 −2 0
4 5 −3

]
and B =

[
4 −1 0
−3 8 1

]

then

A + B =

[
1 + 4 −2− 1 0 + 0
4− 3 5 + 8 −3 + 1

]
=

[
5 −3 0
1 13 −2

]
.

Corresponding entries are added. Addition preserves the size of matrices. We can
symbolize this in the following way: + : Mm,n(R) × Mm,n(R) → Mm,n(R). Addition
satisfies the following properties:

Proposition 5.1.2. Suppose A, B, and C are m× n matrices. Then

A + B = B + A (commutative)

(A + B) + C = A + (B + C) (associative)

A + 0 = A (additive identity)

A + (−A) = 0 (additive inverse)

Scalar Multiplication

Suppose A is an matrix and c ∈ R. We define scalar multiplication, c ·A, (but usually
we will just write cA), entrywise by the following formula

(cA)i j = cAi j.

Thus if

c = −2 and A =




1 9
−3 0
2 5
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then

cA =



−2 −18
6 0
−4 −10


 .

Scalar multiplication preserves the size of matrices. Thus · : R×Mm,n(R) → Mm,n(R).
In this context we will call c ∈ R a scalar. Scalar multiplication satisfies the following
properties:

Proposition 5.1.3. Suppose A and B are matrices whose sizes are such that each line
below is defined. Suppose c1, c2 ∈ R. Then

c1(A + B) = c1A + c1B (distributive)

(c1 + c2)A = c1A + c2A (distributive)

c1(c2A) = (c1c2)A (associative)

1A = A

0A = 0

Matrix Multiplication

Matrix multiplication is more complicated than addition and scalar multiplication. We
will define it in two stages: first on row and column matrices and then on general
matrices.

A row matrix or row vector is a matrix which has only one row. Thus row vectors
are in M1,n. Similarly, a column matrix or column vector is a matrix which has
only one column. Thus column vectors are in Mm,1. We frequently will denote column
and row vectors by lower case boldface letters like v or x instead of capital letters. It is
unnecessary to use double subscripts to indicate the entries of a row or column matrix:
if v is a row vector then we write vi for the ith entry instead of v1 i. Similarly for column
vectors. Suppose v ∈ M1,n and w ∈ Mn,1. We define the product v · w (or preferably
vw) to be the scalar given by

vw = v1w1 + · · ·+ vnwn.

Even though this formula looks like the scalar product or dot product that you likely
have seen before, keep in mind that v is a row vector while w is a column vector. For
example, if

v =
[
1 3 −2 0

]
and w =




1
3
0
9
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then
vw = 1 · 1 + 3 · 3 + (−2) · 0 + 0 · 9 = 10.

Now suppose that A is any matrix. It is often convenient to distinguish the rows of
A in the following way: If Rowi(A) denotes the ith row of A then

A =




Row1(A)
Row2(A)

...
Rowm(A)


 .

Clearly Rowi(A) is a row vector. In a similar way, if B is another matrix we can
distinguish the columns of B: Let Colj(B) denote the jth column of B then

B =
[
Col1(B) Col2(B) · · · Colp(B)

]
.

Each Colj(B) is a column vector.

Now let A ∈ Mmn and B ∈ Mnp. We define the matrix product of A and B to be
the m× p matrix given entrywise by enti j(AB) = Rowi(A) Colj(B). In other words, the
(i, j)-entry of the product of A and B is the ith row of A times the jth column of B. We
thus have

AB =




Row1(A) Col1(B) Row1(A) Col2(B) · · · Row1(A) Colp(B)
Row2(A) Col1(B) Row2(A) Col2(B) · · · Row2(A) Colp(B)

...
...

. . .
...

Rowm(A) Col1(B) Rowm(A) Col2(B) · · · Rowm(A) Colp(B)


 .

Notice that each entry of AB is given as a product of a row vector and a column vector.
Thus it is necessary that the number of columns of A (the first matrix) match the number
of rows of B (the second matrix). This common number is n. The resulting product
is an m × p matrix. Symbolically, · : Mm,n(R) ×Mn,p(R) → Mm,p(R). In terms of the
entries of A and B we have

enti j(AB) = Rowi(A) Colj(B) =
n∑

k=1

enti k(A)entk j(B) =
n∑

k=1

Ai,kBk,j.

Example 5.1.4.

1. If

A =




2 1
−1 3
4 −2


 and B =

[
2 1
2 −2

]
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then AB is defined because the number of columns of A is the number of rows of
B. Further AB is a 3× 2 matrix and

AB =




[
2 1

] [
2
2

] [
2 1

] [
1
−2

]

[−1 3
] [

2
2

] [−1 3
] [

1
−2

]

[
4 −2

] [
2
2

] [
4 −2

] [
1
−2

]




=




6 0
4 −7
4 8


 .

2. If A =

[
et 2et

e2t 3e2t

]
and B =

[−2
1

]
then

AB =

[
et(−2) + 2et(1)

e2t(−2) + 3e2t(1)

]
=

[
0
e2t

]
.

Notice in the definition (and the example) that in a given column of AB the corre-
sponding column of B appears as the second factor. Thus

Colj(AB) = A Colj(B). (1)

Similarly, in each row of AB the corresponding row of A appears and we get

Rowi(A)B = Rowi(AB). (2)

Notice too that even though the product AB is defined it is not necessarily true that
BA is defined. This is the case in part 1 of the above example due to the fact that the
number of columns of B (2) does not match the number of rows of A (3). Even when
AB and BA are defined it is not necessarily true that they are equal. Consider the
following example:

Example 5.1.5. Suppose

A =

[
1 2
0 3

]
and B =

[
2 1
4 −1

]
.

Then

AB =

[
1 2
0 3

] [
2 1
4 −1

]
=

[
10 −1
12 −3

]
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yet

BA =

[
2 1
4 −1

] [
1 2
0 3

]
=

[
2 7
4 5

]
.

These products are not the same. This example show that matrix multiplication is not
commutative. However, the other properties that we are used to in an algebra are valid.
We summarize them in the following proposition.

Proposition 5.1.6. Suppose A, B, and C are matrices whose sizes are such that each
line below is defined. Suppose c1, c2 ∈ R. Then

A(BC) = (AB)C (associatvie)

A(c1B) = (c1A)B = c1(AB) (associative)

(A + B)C = AC + BC (distributive)

A(B + C) = AB + AC (distributive)

IA = AI = I (I is a multiplicative identity)

We highlight two useful formulas that follow from these algebraic properties. If A is
an m× n matrix then

Ax = x1 Col1(A) + · · ·xn Coln(A), where x =




x1
...

xn


 (3)

and
yA = y1Row1(A) + · · · ymRowm(A), where y =

[
y1 · · · ym

]
. (4)

Henceforth, we will use these algebraic properties without explicit reference. The
following result expresses the relationship between multiplication and transposition of
matrices

Theorem 5.1.7. Let A and B be matrices such that AB is defined. Then BtAt is
defined and

BtAt = (AB)t.

Proof. The number of columns of Bt is the same as the number of rows of B while the
number of rows of At is the number of columns of A. These numbers agree since AB is
defined so BtAt is defined. If n denotes these common numbers then

(BtAt)i j =
n∑

k=1

(Bt)i k(A
t)k j =

n∑

k=1

Aj kBk i = (AB)j i = ((AB)t)i j.
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Exercises

Let A =
[
2 −1 3
1 0 4

]
, B =




1 −1
2 3
−1 2


, and C =




0 2
−3 4
1 1


. Compute the following

matrices.

1. B + C, B − C, 2B − 3C

2. AB, AC, BA, CA

3. A(B + C), AB + AC, (B + C)A

4. Let A =




2 1
3 4
−1 0


 and B =




1 2
−1 1
1 0


. Find C so that 3A + C = 4B.

Let A =




3 −1
0 −2
1 2


, B =

[
2 1 1 −3
0 −1 4 −1

]
, and C =




2 1 2
1 3 1
0 1 8
1 1 7


. Find the following

products

5. AB

6. BC

7. CA

8. BtAt

9. ABC.

10. Let A =
[
1 4 3 1

]
and B =




1
0
−1
−2


. Find AB and BA.

Let A =




1 2 5
2 4 10
−1 −2 −5


, B =

[
1 0
4 −1

]
, C =

[
3 −2
3 −2

]
. Verify the following facts:
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11. A2 = 0

12. B2 = I2

13. C2 = C

Compute AB −BA in each of the following cases.

14. A =
[
0 1
1 1

]
, B =

[
1 0
1 1

]

15. A =




2 1 0
1 1 1
−1 2 1


, B =




3 1 −2
3 −2 4
−3 5 −1




16. Let A =
[
1 a
0 1

]
and B =

[
1 0
b 1

]
. Show that there are no numbers a and b so that

AB −BA = I, where I is the 2× 2 identity matrix.

17. Suppose that A and B are 2× 2 matrices.

(a) Show by example that it need not be true that (A + B)2 = A2 + 2AB + B2.

(b) Find conditions on A and B to insure that the equation in Part (a) is valid.

18. If A =
[
0 1
1 1

]
, compute A2 and A3.

19. If B =
[
1 1
0 1

]
, compute Bn for all n.

20. If A =
[
a 0
0 b

]
, compute A2, A3, and more generally, An for all n.

21. Let A =
[
v1

v2

]
be a matrix with two rows v1 and v2. (The number of columns of A is

not relevant for this problem) Describe the effect of multiplying A on the left by the
following matrices:

(a)
[
0 1
1 0

]
(b)

[
1 c
0 1

]
(c)

[
1 0
c 1

]
(d)

[
a 0
0 1

]
(e)

[
1 0
0 a

]

22. Let E(θ) =
[

cos θ sin θ
− sin θ cos θ

]
. Show that E(θ1 + θ2) = E(θ1)E(θ2).
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23. Let (θ) =
[
cosh θ sinh θ
sinh θ cosh θ

]
. Show that F (θ1 + θ2) = F (θ1)F (θ2).

24. Let D = diag(d1, . . . , dn) and E = diag(e1, . . . , e2). Show that

DE = diag(d1e1, . . . , dnen)

.

5.2 Systems of Linear Equations

Most students have learned various techniques for finding the solution of a system of
linear equations. They usually include various forms of elimination and substitutions.
In this section we will learn the Gauss-Jordan elimination method. It is essentially a
highly organized method involving elimination and substitution that always leads to the
solution set. This general method has become the standard for solving systems. At
first reading it may seem to be a bit complicated because of its description for general
systems. However, with a little practice on a few examples it is quite easy to master.
We will as usual begin with our definitions and proceed with examples to illustrate the
needed concepts. To make matters a bit cleaner we will stick to the case where R = R.
Everything we do here will work for R = C , R(s), or C(s) as well. (A technical difficulty
for general R is the lack of inverses.)

If x1, . . . , xn are variables then the equation

a1x1 + · · ·+ anxn = b

is called a linear equation in the unknowns x1, . . . , xn. A system of linear equations
is a set of m linear equations in the unknowns x1, . . . , xn and is written in the form

a1 1x1 + a1 2x2 + · · · + a1 nxn = b1

a2 1x1 + a2 2x2 + · · · + a2 nxn = b2
...

...
...

...
am 1x1 + am 2x2 + · · · + am nxn = bm.

(1)

The entries ai j are in R and are called coefficients. Likewise, each bj is in R. A
key observation is that Equation (1) can be rewritten in matrix form as:

Ax = b, (2)



270 CHAPTER 5. MATRICES

where

A =




a1 1 a1 2 · · · a1 n

a2 1 a2 2 · · · a2 n
...

...
...

am 1 am 2 · · · am n,


 x =




x1

x2
...

xn


 and b =




b1

b2
...

bm


 .

We call A the coefficient matrix, x the variable matrix, and b the output
matrix. Any column vector x with entries in R that satisfies (1) (or (2)) is called a
solution. If a system has a solution we say it is consistent; otherwise, it is inconsis-
tent. The solution set, denoted by Sb

A, is the set of all solutions. The system (1) is
said to be homogeneous if b = 0, otherwise it is called nonhomogeneous. Another
important matrix associated with (2) is the augmented matrix:

[A| b ] =




a1 1 a1 2 · · · a1 n b1

a2 1 a2 2 · · · a2 n b2
...

...
...

...
am 1 am 2 · · · am n bm


 ,

where the vertical line only serves to separate A from b.

Example 5.2.1. Write the coefficient, variable, output, and augmented matrices for
the following system:

−2x1 + 3x2 − x3 = 4
x1 − 2x2 + 4x3 = 5.

Determine whether the following vectors are solutions:

(a) x =



−3
0
2


 (b) x =




7
7
3


 (c) x =




10
7
1


 (d) x =

[
2
1

]
.

I Solution. The coefficient matrix is A =

[−2 3 −1
1 −2 4

]
, the variable matrix is x =




x1

x2

x3


 , the output matrix is b =

[
4
5

]
, and the augmented matrix is

[ −2 3 −1 4
1 −2 4 5

]
.

The system is nonhomogeneous. Notice that

A



−3
0
2


 =

[
4
5

]
and A




7
7
3


 =

[
4
5

]
while A




10
7
1


 =

[
0
0

]
.

Therefore (a) and (b) are solutions, (c) is not a solution and the matrix in (d) is not the
right size and thus cannot be a solution. J
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Remark 5.2.2. When only 2 or 3 variables are involved in an example we will frequently
use the variables x, y, and z instead of the subscripted variables x1, x2, and x3.

Linearity

It is convenient to think of Rn as the set of column vectors Mn,1(R). If A is an m × n
real matrix then for each column vector x ∈ Rn, the product, Ax, is a column vector
in Rm. Thus the matrix A induces a map which we also denote just by A : Rn → Rm

given by matrix multiplication. It satisfies the following important property.

Proposition 5.2.3. The map A : Rn → Rm is linear. In other words,

1. A(x + y) = A(x) + A(y)

2. A(cx) = cA(x),

for all x,y ∈ Rn and c ∈ R.

Proof. This follows directly from Propositions 5.1.3 and 5.1.6.

Linearity is an extremely important property for it allows us to describe the structure
of the solution set to Ax = b in a particularly nice way. Recall that Sb

A denotes the
solution set to the equation Ax = b.

Proposition 5.2.4. With A as above we have two possibilities:

1. Sb
A = ∅ or

2. there is an xp ∈ Sb
A and Sb

A = xp + S0
A.

In other words, when Sb
A is not the empty set then each solution to Ax = b has the form

xp + xh,

where xp is a fixed particular solution to Ax = b and xh is a solution to Ax = 0.
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Proof. Suppose xp is a fixed particular solution and xh ∈ S0
A. Then A(xp + xh) =

Axp + Axh = b + 0 = b. This implies that each column vector of the form xp + xh is in
Sb

A. On the other hand, suppose x is in Sb
A. Then A(x− xp) = Ax− Axp = b− b = 0.

This means that x− xp is in S0
A. Therefore x = xp + xh, for some vector xh ∈ S0

A.

Remark 5.2.5. The system of equations Ax = 0 is called the associated homoge-
neous system. Case (1) is a legitimate possibility. For example, the simple equation
0x = 1 has empty solution set. When the solution set is not empty it should be men-
tioned that the particular solution xp is not necessarily unique. In Chapter 3 we saw a
similar theorem for a second order differential equation Ly = f . That theorem provided
a strategy for solving such differential equations: First we solved the homogeneous equa-
tion Ly = 0 and second found a particular solution (using variation of parameters or
undetermined coefficients). For a linear system of equations the matter is much simpler;
the Gauss-Jordan method will give the whole solution set at one time. We will see that
it has the above form.

Homogenous Systems

The homogeneous case, Ax = 0, is of particular interest. Observe that x = 0 is always
a solution so S0

A is never the empty set, i.e. case (1) is not possible. But much more is
true.

Proposition 5.2.6. The solution set, S0
A, to a homogeneous system is closed under

addition and multiplication by scalars. In other words, if x and y are solutions to the
homogeneous system and c is a scalar then x + y and cx are also solutions.

Proof. Suppose x and y are in S0
A. Then A(x + y) = Ax + Ay = 0 + 0 = 0. This shows

that x + y is in S0
A. Now suppose c ∈ R. Then A(cx) = cAx = c0 = 0. Hence cx ∈ S0

A.
This shows that S0

A is closed under addition and scalar multiplication.

Corollary 5.2.7. The solution set to a general system of linear equations, Ax = b, is
either

1. empty

2. unique

3. or infinite.
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Proof. The associated homogeneous system Ax = 0 has solution set, S0
A, that is either

equal to the trivial set {0} or an infinite set. To see this suppose that x is a nonzero
solution to Ax = 0 then by Proposition 5.2.6 all multiples, cx, are in S0

A as well.
Therefore, by Proposition 5.2.4, if there is a solution to Ax = b it is unique or there are
infinitely many.

The Elementary Equation and Row Operations

We say that two systems of equations are equivalent if their solution sets are the same.
This definition implies that the variable matrix is the same for each system.

Example 5.2.8. Consider the following systems of equations:

2x + 3y = 5
x − y = 0

and
x = 1
y = 1.

The solution set to the second system is transparent. For the first system there are
some simple operations that easily lead to the solution: First, switch the two equations
around. Next, multiply the equation x − y = 1 by −2 and add the result to the first.
We then obtain

x − y = 0
5y = 5

Next, multiply the second equation by 1
5

to get y = 1. Then add this equation to the
first. We get x = 1 and y = 1. Thus they both have the same solution set, namely the

single vector

[
1
1

]
. They are thus equivalent. When used in the right way these kinds of

operations can transform a complicated system into a simpler one. We formalize these
operations in the following definition:

Suppose Ax = b is a given system of linear equations. The following three operations
are called elementary equation operations.

1. Switch the order in which two equations are listed

2. Multiply an equation by a nonzero scalar

3. Add a multiple of one equation to another
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Notice that each operation produces a new system of linear equations but leaves the
size of the system unchanged. Furthermore we have the following proposition.

Proposition 5.2.9. An elementary equation operation applied to a system of linear
equations is an equivalent system of equations.

Proof. This means that the system that arises from an elementary equation operation
has the same solution set as the original. We leave the proof as an exercise.

The main idea in solving a system of linear equations is to perform a finite sequence
of elementary equation operations to transform a system into simpler system where the
solution set is transparent. Proposition 5.2.9 implies that the solution set of the simpler
system is the same as original system. Let’s consider our example above.

Example 5.2.10. Use elementary equation operations to transform

2x + 3y = 5
x − y = 0

into
x = 1
y = 1.

I Solution.

2x + 3y = 5
x − y = 0

Switch the order of the two equations x − y = 0
2x + 3y = 5

Add −2 times the first equation
to the second equation

x − y = 0
5y = 5

Multiply the second equation by 1
5

x − y = 0
y = 1

Add the second equation to the first x = 1
y = 1

J



5.2. SYSTEMS OF LINEAR EQUATIONS 275

Each operation produces a new system equivalent to the first by Proposition (5.2.9).
The end result is a system where the solution is transparent. Since y = 1 is apparent in
the fourth system we could have stopped and used the method of back substitution,
that is, substitute y = 1 into the first equation and solve for x. However, it is in
accord with the Gauss-Jordan elimination method to continue as we did to eliminate
the variable y in the first equation.

You will notice that the variables x and y play no prominent role here. They merely
serve as placeholders for the coefficients, some of which change with each operation. We
thus simplify the notation (and the amount of writing) by performing the elementary
operations on just the augmented matrix. The elementary equation operations become
the elementary row operations which act on the augmented matrix of the system.

The elementary row operations on a matrix are

1. Switch two rows.

2. Multiply a row by a nonzero constant.

3. Add a multiple of one row to another.

The following notations for these operations will be useful.

1. pij - switch rows i and j.

2. mi(a) - multiply row i by a 6= 0.

3. tij(a) - add to row j the value of a times row i.

The effect of pij on a matrix A is denoted by pij(A). Similarly for the other elementary
row operations.

The corresponding operations when applied to the augmented matrix for the system
in example 5.2.10 becomes:
[

2 3 5
1 −1 0

]
p1 2−−→

[
1 −1 0
2 3 5

]
t1 2(−2)−−−−−→

[
1 −1 0
0 5 5

]
m2(1/5)−−−−−→

[
1 −1 0
0 1 1

]
t2 1(1)−−−−→

[
1 0 1
0 1 1

]

Above each arrow is the notation for the elementary row operation performed to produce
the next augmented matrix. The sequence of elementary row operations chosen follows
a certain strategy: Starting from left to right and top down one tries to isolate a 1 in
a given column and produce 0’s above and below it. This corresponds to isolating and
eliminating variables.
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Let’s consider three illustrative examples. The sequence of elementary row operation
we perform is in accord with the Gauss-Jordan method which we will discuss in detail
later on in this section. For now verify each step. The end result will be an equivalent
system for which the solution set will be transparent.

Example 5.2.11. Consider the following system of linear equations

2x + 3y + 4z = 9
x + 2y − z = 2

.

Find the solution set and write it in the form xp + S0
A.

I Solution. We first will write the augmented matrix and perform a sequence of ele-
mentary row operations:

[
2 3 4 9
1 2 −1 2

]
p1 2−−→

[
1 2 −1 2
2 3 4 9

]
t1 2(−2)−−−−−→

[
1 2 −1 2
0 −1 6 5

]

m2(−1)−−−−−→

[
1 2 −1 2
0 1 −6 −5

]
t2 1(−2)−−−−−→

[
1 0 11 12
0 1 −6 −5

]

The last augmented matrix corresponds to the system

x + 11z = 12
y − 6z = −5.

In the first equation we can solve for x in terms of z and in the second equation we can
solve for y in terms of z. We refer to z as a free variable and let z = α be a parameter
in R. Then we obtain

x = 12− 11α
y = −5 + 6α
z = α

In vector form we write

x =




x
y
z


 =




12− 11α
−5 + 6α

α


 =




12
−5
0


 + α



−11
6
1


 .

The vector, xp =




12
−5
0


 is a particular solution ( corresponding to α = 0) while the

vector xh =



−11
6
1


 generates the homogeneous solutions as α varies over R. We have

thus written the solution in the form xp + S0
A. J
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Example 5.2.12. Find the solution set for the system

3x + 2y + z = 4
2x + 2y + z = 3
x + y + z = 0.

I Solution. Again we start with the augmented matrix and apply elementary row
operations. Occasionally we will apply more than one operation at a time. When this is
so we stack the operations above the arrow with the topmost operation performed first
followed in order by the ones below it.




3 2 1 4
2 2 1 3
1 1 1 0


 p1 3−−→




1 1 1 0
2 2 1 3
3 2 1 4


 t1 2(−2)

t1 3(−3)
−−−−−→




1 1 1 0
0 0 −1 3
0 −1 −2 4




p2 3−−→




1 1 1 0
0 −1 −2 4
0 0 −1 3


 m2(−1)

m3(−1)
−−−−−→




1 1 1 0
0 1 2 −4
0 0 1 −3




t3 2(−2)
t3 1(−1)
−−−−−→




1 1 0 3
0 1 0 2
0 0 1 −3


 t2 1(−1)−−−−−→




1 0 0 1
0 1 0 2
0 0 1 −3




The last augmented matrix corresponds to the system

x = 1
y = 2
z = −3.

The solution set is transparent: x =




1
2
−3


 . J

In this example we note that S0
A = {0} so that the solution set Sb

A consists of a single
point: The system has a unique solution.

Example 5.2.13. Solve the following system of linear equations:

x + 2y + 4z = −2
x + y + 3z = 1
2x + y + 5z = 2
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I Solution. Again we begin with the augmented matrix and perform elementary row
operations.




1 2 4 −2
1 1 3 1
2 1 5 2


 t1 2(−1)

t1 3(−2)
−−−−−→




1 2 4 −2
0 −1 −1 3
0 −3 −3 6


 m2(−1)−−−−−→




1 2 4 −2
0 1 1 −3
0 −3 −3 6




t2 3(3)−−−−→




1 2 4 −2
0 1 1 −3
0 0 0 −3


 m3(−1/3)

t2 1(−2)
−−−−−−−→




1 0 2 6
0 1 1 −3
0 0 0 1




t3 1(−6)
t3 2(3)
−−−−−→




1 0 2 0
0 1 1 0
0 0 0 1


 .

The system that corresponds to the last augmented matrix is

x + 2z = 0
y + z = 0

0 = 1.

The last equation, which is shorthand for 0x+0y+0z = 1, clearly has no solution. Thus
the system has no solution. In this case we write Sb

A = ∅. J

Reduced Matrices

These last three examples typify what happens in general and illustrate the three possible
outcomes discussed in Corollary 5.2.7: infinitely many solutions, a unique solution, or
no solution at all. The most involved case is when the solution set has infinitely many
solutions. In Example 5.2.11 a single parameter α was needed to generate the set of
solutions. However, in general, there may be many parameters needed. We will always
want to use the least number of parameters possible, without dependencies amongst
them. In each of the three preceding examples it was transparent what the solution was
by considering the system determined by the last listed augmented matrix. The last
matrix was in a certain sense reduced as simple as possible.

We say that a matrix A is in row echelon form (REF) if the following three
conditions are satisfied.
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1. The nonzero rows lie above the zero rows.

2. The first nonzero entry in a non zero row is 1. (We call such a 1 a leading one.)

3. For any two adjacent nonzero rows the leading one of the upper row is to the left
of the leading one of the lower row. (We say the leading ones are in echelon form.)

We say A is in row reduced echelon form (RREF) if it also satisfies

4 The entries above each leading one are zero.

Example 5.2.14. Determine which of the following matrices are row echelon form, row
reduced echelon form, or neither. For the matrices in row echelon form determine the
columns (C) of the leading ones. If a matrix is not in row reduced echelon form explain
which conditions are violated.

(1)




1 0 −3 11 2
0 0 1 0 3
0 0 0 1 4


 (2)




0 1 0 1 4
0 0 1 0 2
0 0 0 0 0


 (3)




0 1 0
0 0 0
0 0 1




(4)




1 0 0 4 3 0
0 2 1 2 0 2
0 0 0 0 0 0


 (5)

[
1 1 2 4 −7
0 0 0 0 1

]
(6)




0 1 0 2
1 0 0 −2
0 0 1 0




I Solution. 1. (REF): leading ones are in the first, third and fourth column. It is
not reduced because there is a nonzero entry above the leading one in the third
column.

2. (RREF): The leading ones are in the second and third column.

3. neither: The zero row is not at the bottom.

4. neither: The first non zero entry in the second row is not 1.

5. (REF): leading ones are in the first and fifth column. It is not reduced because
there is a nonzero entry above the leading one in the fifth column.

6. neither: The leading ones are not in echelon form.

J
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The definitions we have given are for arbitrary matrices and not just matrices that
come from a system of linear equations; i.e. the augmented matrix. Suppose though that
a system Ax = b which has solutions is under consideration. If the augmented matrix
[A|b] is transformed by elementary row operations to a matrix which is in row reduced
echelon form the variables that correspond to the columns where the leading ones occur
are called the leading variables or dependent variables. All of the other variables
are called free variables. The free variables are sometimes replaced by parameters,
like α, β, . . .. Each leading variable can be solved for in terms of the free variables alone.
As the parameters vary the solution set is generated. The Gauss-Jordan elimination
method which will be explained shortly will always transform an augmented matrix into
a matrix that is in row reduced echelon form. This we did in Examples 5.2.11, 5.2.12,
and 5.2.13. In Example 5.2.11 the augmented matrix was transformed to

[
1 0 11 12
0 1 −6 −5

]
.

The leading variables are x and y while there is only one free variable, z. Thus we
obtained

x =




12− 11α
−5 + 6α

α


 =




12
−5
0


 + α



−11
6
1


 ,

where z is replace by the parameter α. In example 5.2.12 the augmented matrix was
transformed to 


1 0 0 1
0 1 0 2
0 0 1 −3


 .

In this case x, y, and z are leading variables; there are no free variables. The solution
set is

x =




1
2
−3


 .

In Example 5.2.13 the augmented matrix was transformed to




1 0 2 0
0 1 1 0
0 0 0 1


 .

In this case there are no solutions; the last row corresponds to the equation 0 = 1. There
are no leading variable nor free variables.

These examples illustrate the following proposition which explains Corollary 5.2.7 in
terms of the augmented matrix in row reduced echelon form.
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Proposition 5.2.15. Suppose Ax = b is a system of linear equations and the augmented
matrix [A|b] is transformed by elementary row operations to a matrix [A′|b′] which is in
row reduced echelon form.

1. If a row of the form
[
0 . . . 0 | 1

]
appears in [A′|b′] then there are no solutions.

2. If there are no rows of the form
[
0 . . . 0 | 1

]
and no free variables associated

with [A′|b′] then there is a unique solution.

3. If there is one or more free variables associated with [A′|b′] and no rows of the
form

[
0 . . . 0 | 1

]
then there are infinitely many solution.

Example 5.2.16. Suppose the following matrices are obtained by transforming the
augmented matrix of a system of linear equations using elementary row operations.
Identify the leading and free variables and write down the solution set. Assume the
variables are x1, x2, . . ..

(1)




1 1 4 0 2
0 0 0 1 3
0 0 0 0 0


 (2)




1 0 3 1 2
0 1 1 −1 3
0 0 0 0 0


 (3)

[
1 1 0 1
0 0 0 0

]

(4)




1 0 0 3
0 1 0 4
0 0 1 5


 (5)




1 0 1
0 1 2
0 0 1
0 0 0
0 0 0




(6)




0 1 2 0 2
0 0 0 1 0
0 0 0 0 0




I Solution. 1. The zero row provides no information and can be ignored. The
variables are x1, x2, x3, and x4. The leading ones occur in the first and fourth
column. Therefore x1 and x4 are the leading variables. The free variables are x2

and x3. Let α = x2 and β = x3. The first row implies the equation x1+x2+4x3 = 2.
We solve for x1 and obtain x1 = 2−x2−4x3 = 2−α−4β. The second row implies
the equation x4 = 3. Thus

x =




x1

x2

x3

x4


 =




2− α− 4β
α
β
3


 =




2
0
0
3


 + α




−1
1
0
0


 + β




−4
0
1
0


 ,

where α and β are arbitrary parameters in R.

2. The leading ones are in the first and second column therefore x1 and x2 are the
leading variables. The free variables of x3 and x4. Let α = x3 and β = x4. The
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first row implies x1 = 2− 3α− β and the second row implies x2 = 3− α + β. The
solution is

x =




2− 3α− β
3− α + β

α
β


 =




2
3
0
0


 + α




−3
−1
1
0


 + β




−1
1
0
1


 ,

where α, β are in R.

3. x1 is the leading variable. α = x2 and β = x3 are free variables. The first row
implies x1 = 1− α. The solution is

x =




1− α
α
β


 =




1
0
0


 + α



−1
1
0


 + β




0
0
1


 ,

where α and β are in R.

4. The leading variables are x1, x2, and x3. There are no free variables. The solution
set is

x =




3
4
5


 .

5. The row
[
0 0 1

]
implies the solution set is empty.

6. The leading variables are x2 and x4. The free variables are α = x1 and β = x3.
The first row implies x2 = 2− 2β and the second row implies x4 = 0. The solution
set is

x =




α
2− 2β

β
0


 =




0
2
0
0


 + α




1
0
0
0


 + β




0
−2
1
0


 ,

where α and β are in R.

J

The Gauss-Jordan Elimination Method

Now that you have seen several examples we present the Gauss-Jordan Elimination
Method for any matrix. It is an algorithm to transform any matrix to row reduced
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echelon form using a finite number of elementary row operations. When applied to
an augmented matrix of a system of linear equations the solution set can be readily
discerned. It has other uses as well so our description will be for an arbitrary matrix.

Algorithm 5.2.17. The Gauss-Jordan Elimination Method Let A be a matrix.
There is a finite sequence of elementary row operations that transform A to a matrix
in row reduced echelon form. There are two stages of the process: (1) The first stage is
called Gaussian elimination and transforms a given matrix to row echelon form and
(2) The second stage is called Gauss-Jordan elimination and transforms a matrix in
row echelon form to row reduced echelon form.

From A to REF: Gaussian elimination

1. Let A1 = A. If A1 = 0 then A is in row echelon form.

2. If A1 6= 0 then in the first nonzero column from the left, ( say the jth column)
locate a nonzero entry in one of the rows: (say the ith row with entry a.)

(a) Multiply that row by the reciprocal of that nonzero entry. (mi(1/a))

(b) Permute that row with the top row. (p1 i) There is now a 1 in the (1, j) entry.

(c) If b is a nonzero entry in the (i, j) position for i 6= 1, add −b times the first
row to the ith row.(t1 j(−b)) Do this for each row below the first.

The transformed matrix will have the following form



0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0
...

. . .
... A2

0 · · · 0 0


 .

The *’s in the first row are unknown entries and A2 is a matrix with fewer
rows and columns than A1.

3. If A2 = 0 we are done. The above matrix in in row echelon form.

4. If A2 6= 0, apply step (2) to A2. Since there are zeros to the left of A2 and the only
elementary row operations we apply effect the rows of A2 (and not all of A) there
will continue to be zeros to the left of A2. The result will be a matrix of the form




0 · · · 0 1 ∗ · · · ∗ ∗ ∗ · · · ∗
0 0 · · · 0 1 ∗ · · · ∗

...
. . .

... 0 0 · · · 0 0
...

...
...

... A3

0 · · · 0 0 0 · · · 0 0




.
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5. If A3 = 0, we are done. Otherwise continue repeating step (2) until a matrix
Ak = 0 is obtained.

From REF to RREF: Gauss-Jordan Elimination

1. The leading ones now become apparent in the previous process. We begin with
the rightmost leading one. Suppose it is in the kth row and lth column. If there
is a nonzero entry (b say) above that leading one we add −b times the kth row to
it. (tk j(−b).) We do this for each nonzero entry in the lth column. The result is
zeros above the rightmost leading one. (The entries to the left of a leading one are
zeros. This process preserves that property.)

2. Now repeat the process described above to each leading one moving right to left.
The result will be a matrix in row reduced echelon form.

Example 5.2.18. Use the Gauss-Jordan method to row reduce the following matrix to
echelon form:




2 3 8 0 4
3 4 11 1 8
1 2 5 1 6
−1 0 −1 0 1


 .

I Solution. We will first write out the sequence of elementary row operations that
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transforms A to row reduced echelon form.



2 3 8 0 4
3 4 11 1 8
1 2 5 1 6
−1 0 −1 0 1


 p13−→




1 2 5 1 6
3 4 11 1 8
2 3 8 0 4
−1 0 −1 0 1




t1 2(−3)
t1 3(−2)
t1 4(1)
−−−−−→




1 2 5 1 6
0 −2 −4 −2 −10
0 −1 −2 −2 −8
0 2 4 1 7


 m2(−1/2)−−−−−−−→




1 2 5 1 6
0 1 2 1 5
0 −1 −2 −2 −8
0 2 4 1 7


 t2 3(1)

t2 4(−2)
−−−−−→




1 2 5 1 6
0 1 2 1 5
0 0 0 −1 −3
0 0 0 −1 −3


 m3(−1)

t3 4(1)
−−−−−→




1 2 5 1 6
0 1 2 1 5
0 0 0 1 3
0 0 0 0 0


 t3 2(−1)

t3 1(−1)
−−−−−→




1 2 5 0 3
0 1 2 0 2
0 0 0 1 3
0 0 0 0 0


 t2 1(−2)−−−−−→




1 0 1 0 −1
0 1 2 0 2
0 0 0 1 3
0 0 0 0 0


 .

In the first step we observe that the first column is nonzero so it is possible to produce
a 1 in the upper left hand corner. This is most easily accomplished by p1,3. The next
set of operations produces 0’s below this leading one. We repeat this procedure on the
submatrix to the right of the zeros’s. We produce a one in the 2, 2 position by m2(−1

2
)

and the next set of operations produce zeros below this second leading one. Now notice
that the third column below the second leading one is zero. There are no elementary
row operations that can produce a leading one in the (3, 3) position that involve just the
third and fourth row. We move over to the fourth column and observe that the entries
below the second leading one are not both zero. The elementary row operation m3(−1)
produces a leading one in the (3, 4) position and the subsequent operation produces a
zero below it. At this point A has been transformed to row echelon form. Now starting
at the rightmost leading one, the 1 in the 3, 4 position, we use operations of the form
t3 i(a) to produce zeros above that leading one. This is applied to each column that
contains a leading one. J

The student is encouraged to go carefully through Examples 5.2.11, 5.2.12, and
5.2.13. In each of those examples the Gauss-Jordan Elimination method was used to
transform the augmented matrix to the matrix in row reduced echelon form.
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Exercises

1. For each system of linear equations identify the coefficient matrix A, the variable matrix
x, the output matrix b and the augmented matrix [A|b].

(a)

x + 4y + 3z = 2
x + y − z = 4
2x + z = 1

y − z = 6

(b)
2x1 − 3x2 + 4x3 + x4 = 0
3x1 + 8x2 − 3x3 − 6x4 = 1

2. Suppose A =




1 0 −1 4 3
5 3 −3 −1 −3
3 −2 8 4 −3
−8 2 0 2 1


, x =




x1

x2

x3

x4

x5




, and b =




2
1
3
−4


 . Write out the

system of linear equations that corresponds to Ax = b.

In the following matrices identify those that are in row reduced echelon form. If a
matrix is not in row reduced echelon form find a single elementary row operation that
will transform it to row reduced echelon form and write the new matrix.

3.




1 0 1
0 0 0
0 1 −4




4.
[
1 0 4
0 1 2

]

5.
[
1 2 1 0 1
0 1 3 1 1

]

6.




0 1 0 3
0 0 2 6
0 0 0 0




7.




0 1 1 0 3
0 0 0 1 2
0 0 0 0 0




8.




1 0 1 0 3
0 1 3 4 1
3 0 3 0 9




Use elementary row operations to row reduce each matrix to row reduced echelon form.

9.




1 2 3 1
−1 0 3 −5
0 1 1 0
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10.




2 1 3 1 0
1 −1 1 2 0
0 2 1 1 2




11.




0 −2 3 2 1
0 2 −1 4 0
0 6 −7 0 −2
0 4 −6 −4 −2




12.




1 2 1 1 5
2 4 0 0 6
1 2 0 1 3
0 0 1 1 2




13.



−1 0 1 1 0 0
−3 1 3 0 1 0
7 −1 −4 0 0 1




14.




1 2 4
2 4 8
−1 2 0
1 6 8
0 4 4




15.




5 1 8 1
1 1 4 0
2 0 2 1
4 1 7 1




16.




2 8 0 0 6
1 4 1 1 7
−1 −4 0 1 0




17.




1 −1 1 −1 1
1 1 −1 −1 1
−1 −1 1 1 −1
1 1 −1 1 −1




Solve the following systems of linear equations:

18.
x + 3y = 2
5x + 3z = −5
3x − y + 2z = −4

19.

3x1 + 2x2 + 9x3 + 8x4 = 10
x1 + x3 + 2x4 = 4
−2x1 + x2 + x3 − 3x4 = −9
x1 + x2 + 4x3 + 3x4 = 3



288 CHAPTER 5. MATRICES

20.
−x + 4y = −3x
x − y = −3y

21.
−2x1 − 8x2 − x3 − x4 = −9
−x1 − 4x2 − x4 = −8
x1 + 4x2 + x3 + x4 = 6

22.
2x + 3y + 8z = 5
2x + y + 10z = 3
2x + 8z = 4

23.

x1 + x2 + x3 + 5x4 = 3
x2 + x3 + 4x4 = 1

x1 + x3 + 2x4 = 2
2x1 + 2x2 + 3x3 + 11x4 = 8
2x1 + x2 + 2x3 + 7x4 = 7

24.
x1 + x2 = 3 + x1

x2 + 2x3 = 4 + x2 + x3

x1 + 3x2 + 4x3 = 11 + x1 + 2x2 + 2x3

25. Suppose the homogeneous system Ax = 0 has the following two solutions:




1
1
2


 and




1
−1
0


. Is




5
−1
4


 a solution? Why or why not?

26. For what value of k will the following system have a solution:

x1 + x2 − x3 = 2
2x1 + 3x2 + x3 = 4
x1 − 2x2 + 8x3 = k

27. Let A =




1 3 4
−2 1 7
1 1 0


, b1 =




1
0
0


, b2 =




1
1
0


,and b3 =




1
1
1


 .

(a) Solve Ax = bi, for each i = 1, 2, 3.

(b) Solve the above systems simultaneously by row reducing

[A|b1|b2|b3] =




1 3 4 1 1 1
−2 1 7 0 1 1

1 1 0 0 0 1
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5.3 Invertible Matrices

Let A be a square matrix. A matrix B is said to be an inverse of A if BA = AB = I.
In this case we say A is invertible or nonsingular. If A is not invertible we say A is
singular.

Example 5.3.1. Suppose

A =

[
3 1
−4 −1

]
.

Show that A is invertible and an inverse is

B =

[−1 −1
4 3

]
.

I Solution. Observe that

AB =

[
3 1
−4 −1

] [−1 −1
4 3

]
=

[
1 0
0 1

]

and

BA =

[−1 −1
4 3

] [
3 1
−4 −1

]
=

[
1 0
0 1

]
.

J

The following proposition says that when A has an inverse there can only be one.

Proposition 5.3.2. Let A be an invertible matrix. Then the inverse is unique.

Proof. Suppose B and C are inverses of A. Then

B = BI = B(AC) = (BA)C = IC = C.

Because of uniqueness we can properly say the inverse of A when A is invertible.

In Example 5.3.1, the matrix B =

(−1 −1
4 3

)
is the inverse of A; there are no others.

It is standard convention to denote the inverse of A by A−1.

For many matrices it is possible to determine their inverse by inspection. For ex-
ample, the identity matrix In is invertible and its inverse is In: InIn = In. A diagonal
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matrix diag(a1, . . . , an) is invertible if each ai 6= 0, i = 1, . . . , n. The inverse then is sim-
ply diag( 1

a1
, . . . , 1

an
). However, if one of the ai is zero then the matrix in not invertible.

Even more is true. If A has a zero row, say the ith row, then A is not invertible. To see
this we get from Equation (2) in Section 5.1 that Rowi(AB) = Rowi(A)B = 0. Hence,
there is no matrix B for which AB = I. Similarly, a matrix with a zero column cannot
be invertible.

Proposition 5.3.3. Let A and B be invertible matrices. Then

1. A−1 is invertible and (A−1)−1 = A.

2. AB is invertible and (AB)−1 = B−1A−1.

Proof. Suppose A and B are invertible. The symmetry of the equation A−1A = AA−1 =
I says that A−1 is invertible and (A−1)−1 = A. Also (B−1A−1)(AB) = B−1(A−1A)B =
B−1IB = B−1B = I and (AB)(B−1A−1) = A(B−1B)A−1 = AA−1 = I. This shows
(AB)−1 = B−1A−1.

The following corollary easily follows:

Corollary 5.3.4. If A = A1 · · ·Ak is the product of invertible matrices then A is in-
vertible and A−1 = A−1

k · · ·A−1
1 .

Inversion Computations

Let ei be the column vector with 1 in the ith position and 0’s elsewhere. By Equation
(1) of Section 5.1 the equation AB = I implies that A Coli(B) = Coli(I) = ei. This
means that the solution to Ax = ei is the ith column of the inverse of A, when A is
invertible. We can thus compute the inverse of A one column at a time using the Gauss-
Jordan elimination method on the augmented matrix [A|ei]. Better yet, though, is to
perform the Gauss-Jordan elimination method on the matrix [A|I]. If A is invertible it
will reduce to a matrix of the form [I|B] and B will be A−1. If A is not invertible it will
not be possible to produce the identity in the first slot.

We illustrate this in the following two examples.
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Example 5.3.5. Determine whether the matrix

A =




2 0 3
0 1 1
3 −1 4




is invertible. If it is compute the inverse.

I Solution. We will augment A with I and follow the procedure outlined above:




2 0 3 1 0 0
0 1 1 0 1 0
3 −1 4 0 0 1


 t1 3(−1)

p1 3−−−→




1 −1 1 −1 0 1
0 1 1 0 1 0
2 0 3 1 0 0


 t1 3(−2)

t2 3(−2)−−−−→



1 −1 1 −1 0 1
0 1 1 0 1 0
0 0 −1 3 −2 −2


 m3(−1)

t3 2(−1)
t3 1(−1)−−−−→




1 −1 0 2 −2 −1
0 1 0 3 −1 −2
0 0 1 −3 2 2


 t2 1(1)−−→




1 0 0 5 −3 −3
0 1 0 3 −1 −2
0 0 1 −3 2 2


 .

It follows that A is invertible and A−1 =




5 −3 −3
3 −1 −2
−3 2 2


 . J

Example 5.3.6. Let A =




1 −4 0
2 1 3
0 −7 3


 . Determine whether A is invertible. If it is find

its inverse.

I Solution. Again, we augment A with I and row reduce:




1 −4 0 1 0 0
2 1 3 0 1 0
0 9 3 0 0 1


 t1 2(−2)

t2 3(−1)−−−→




1 −4 0 1 0 0
0 9 3 −2 1 0
0 0 0 2 −1 1




We can stop at this point. Notice that the row operations produced a 0 row in the
reduction of A. This implies A cannot be invertible. J
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Solving a System of Equations

Suppose A is a square matrix with a known inverse. Then the equation Ax = b implies
x = A−1Ax = A−1b and thus gives the solution.

Example 5.3.7. Solve the following system:

2x + + 3z = 1
y + z = 2

3x − y + 4z = 3.

I Solution. The coefficient matrix is

A =




2 0 3
0 1 1
3 −1 4




whose inverse we computed in the example above:

A−1 =




5 −3 −3
3 −1 −2
−3 2 2


 .

The solution to the system is thus

x = A−1b =




5 −3 −3
3 −1 −2
−3 2 2







1
2
3


 =



−10
−5
7


 .

J

Exercises

Determine whether the following matrices are invertible. If so, find the inverse:

1.
[
1 1
3 4

]

2.
[
3 2
4 3

]
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3.
[
1 −2
2 −4

]

4.
[
1 −2
3 −4

]

5.




1 2 4
0 1 −3
2 5 5




6.




1 1 1
0 1 2
0 0 1




7.




1 2 3
4 5 1
−1 −1 1




8.




1 0 −2
2 −2 0
1 2 −1




9.




1 3 0 1
2 2 −2 0
1 −1 0 4
1 2 3 9




10.




−1 1 1 −1
1 −1 1 −1
1 1 −1 −1
−1 −1 −1 1




11.




0 1 0 0
1 0 1 0
0 1 1 1
1 1 1 1




12.




−3 2 −8 2
0 2 −3 5
1 2 3 5
1 −1 1 −1




Solve each system Ax = b, where A and b are given below, by first computing A−1 and
and applying it to Ax = b to get x = A−1b.

13. A =
[
1 1
3 4

]
b =

[
2
3

]
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14. A =




1 1 1
0 1 2
0 0 1


 b =




1
0
−3




15. A =




1 0 −2
2 −2 0
1 2 −1


 b =



−2
1
2




16. A =




1 −1 1
2 5 −2
− 2 −1


 b =




1
1
1




17. A =




1 3 0 1
2 2 −2 0
1 −1 0 4
1 2 3 9


 b =




1
0
−1
2




18. A =




0 1 0 0
1 0 1 0
0 1 1 1
1 1 1 1


 b =




1
−1
−2
1




19. Suppose A is an invertible matrix. Show that At is invertible and give a formula for the
inverse.

20. Let E(θ) =
[

cos θ sin θ
− sin θ cos θ

]
. Show E(θ) is invertible and find its inverse.

21. Let F (θ) =
[
sinh θ cosh θ
cosh θ sinh θ

]
. Show F (θ) is invertible and find its inverse.

22. Suppose A is invertible and AB = AC. Show that B = C. Give an example of a nonzero
matrix A (not invertible) with AB = AC, for some B and C, but B 6= C.

5.4 Determinants

In this section we will discuss the definition of the determinant and some of its properties.
For our purposes the determinant is a very useful number that we can associate to a
square matrix. The determinant has an wide range of applications. It can be used
to determine whether a matrix is invertible. Cramer’s rule gives the unique solution
to a system of linear equations as the quotient of determinants. In multidimensional
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calculus, the Jacobian is given by a determinant and expresses how area or volume
changes under a transformation. Most students by now are familiar with the definition

of the determinant for a 2× 2 matrix: Let A =

[
a b
c d

]
. The determinant of A is given

by

det(A) = ad− bc.

It is the product of the diagonal entries minus the product of the off diagonal entries.

For example, det

[
1 3
5 −2

]
= 1 · (−2)− 5 · 3 = −17.

The definition of the determinant for an n×n matrix is decidedly more complicated.
We will present an inductive definition. Let A be an n × n matrix and let A(i, j) be
the matrix obtained from A by deleting the ith row and jth column. Since A(i, j) is an
(n − 1) × (n − 1) matrix we can inductively define the (i, j) minor, Minori j(A), to be
the determinant of A(i, j):

Minori j(A) = det(A(i, j)).

The following theorem, whose proof is extremely tedious and we omit, is the basis
for the definition of the determinant.

Theorem 5.4.1 (Laplace expansion formulas). Suppose A is an n×n matrix. Then
the following numbers are all equal and we call this number the determinant of A:

det A =
n∑

j=1

(−1)i+jai,jMinori j(A) for each i

and

det A =
n∑

i=1

(−1)i+jai,jMinori j(A) for each j.

Any of these formulas can thus be taken as the definition of the determinant. In
the first formula the index i is fixed and the sum is taken over all j. The entries ai,j

thus fill out the ith row. We therefore call this formula the Laplace expansion of the
determinant along the ith row or simply a row expansion . Since the index i can
range from 1 to n there are n row expansions. In a similar way, the second formula is
called the Laplace expansion of the determinant along the jth column or simply
a column expansion and there are n column expansions. The presence of the factor
(−1)i+j alternates the signs along the row or column according as i + j is even or odd.
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The sign matrix 


+ − + · · ·
− + − · · ·
+ − + · · ·
...

...
...

. . .




is a useful tool to organize the signs in an expansion.

It is common to use the absolute value sign |A| to denote the determinant of A. This
should not cause confusion unless A is a 1× 1 matrix, in which case we will not use this
notation.

Example 5.4.2. Find the determinant of the matrix

A =




1 2 −2
3 −2 4
1 0 5


 .

I Solution. For purposes of illustration we compute the determinant in two ways.
First, we expand along the first row.

det A = 1 ·
∣∣∣∣
−2 4
0 5

∣∣∣∣− 2

∣∣∣∣
3 4
1 5

∣∣∣∣ + (−2)

∣∣∣∣
3 −2
1 0

∣∣∣∣ = 1 · (−10)− 2 · (11)− 2(2) = −36.

Second, we expand along the second column.

det A = (−)2

∣∣∣∣
3 4
1 5

∣∣∣∣ + (−2)

∣∣∣∣
1 −2
1 5

∣∣∣∣ (−)0

∣∣∣∣
1 −2
3 4

∣∣∣∣ = (−2) · 11− 2 · (7) = −36.

Of course, we get the same answer; that’s what the theorem guarantees. Observe though
that the second column has a zero entry which means that we really only needed to
compute two minors. In practice we usually try to use an expansion along a row or
column that has a lot of zeros. Also note that we use the sign matrix to adjust the signs
on the appropriate terms. J

Properties of the determinant

The determinant has many important properties. The three listed below show how the
elementary row operations effect the determinant. They are used extensively to simplify
many calculations.
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Corollary 5.4.3. Let A be an n× n matrix. Then

1. det pi,jA = − det A.

2. det mi(a)A = a det A.

3. det ti,j(a) = det A.

Proof. We illustrate the proof for the 2× 2 case. Let A =

[
r s
t u

]
. We then have

1. |p1,2(A)| =
∣∣∣∣
t u
r s

∣∣∣∣ = ts− ru = −|A|.

2. |t1,2(a)(A)| =
∣∣∣∣

r s
t + ar u + as

∣∣∣∣ = r(u + as)− s(t + ar) = |A|.

3. |m1(a)(A) =

∣∣∣∣
ar as
t u

∣∣∣∣ = aru− ast = a|A|.

Further important properties include:

1. If A has a zero row (or column) then det A = 0.

2. If A has two equal rows (or columns) then det A = 0.

3. det A = det At.

Example 5.4.4. Use elementary row operations to find det A if

1) A =




2 4 2
−1 3 5
0 1 1


 and 2) A =




1 0 5 1
−1 2 1 3
2 2 16 6
3 1 0 1


 .
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I Solution. Again we will write the elementary row operation that we have used above
the equal sign.

1)

∣∣∣∣∣∣

2 4 2
−1 3 5
0 1 1

∣∣∣∣∣∣
m1( 1

2
)

= 2

∣∣∣∣∣∣

1 2 1
−1 3 5
0 1 1

∣∣∣∣∣∣
t12(1)

= 2

∣∣∣∣∣∣

1 2 1
0 5 6
0 1 1

∣∣∣∣∣∣

p23

= −2

∣∣∣∣∣∣

1 2 1
0 1 1
0 5 6

∣∣∣∣∣∣
t23(−5)

= −2

∣∣∣∣∣∣

1 2 1
0 1 1
0 0 1

∣∣∣∣∣∣
=− 2.

In the last equality we have used the fact that the last matrix is upper triangular
and its determinant is the product of the diagonal entries.

2)

∣∣∣∣∣∣∣∣

1 0 5 1
−1 2 1 3
2 2 16 6
3 1 0 1

∣∣∣∣∣∣∣∣

t12(1)
t13(−2)
t14(−3)

=

∣∣∣∣∣∣∣∣

1 0 5 1
0 2 6 4
0 2 6 4
0 1 −15 −2

∣∣∣∣∣∣∣∣
= 0,

because two rows are equal. J

In the following example we use elementary row operations to zero out entries in a
column and then use a Laplace expansion formula.

Example 5.4.5. Find the determinant of

A =




1 4 2 −1
2 2 3 0
−1 1 2 4
0 1 3 2


 .

I Solution.

det(A) =

∣∣∣∣∣∣∣∣

1 4 2 −1
2 2 3 0
−1 1 2 4
0 1 3 2

∣∣∣∣∣∣∣∣

t1,2(−2)
t1,3(1)

=

∣∣∣∣∣∣∣∣

1 4 2 −1
0 −6 −1 2
0 5 4 3
0 1 3 2

∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣

−6 −1 2
5 4 3
1 3 2

∣∣∣∣∣∣
t3,1(6)

t3,2(−5)
=

∣∣∣∣∣∣

0 17 14
0 −11 −7
1 3 2

∣∣∣∣∣∣

=

∣∣∣∣
17 14
−11 −7

∣∣∣∣ = −119 + 154 = 35
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J

The following theorem contains two very important properties of the determinant.
We will omit the proof.

Theorem 5.4.6.

1. A square matrix A is invertible if and only if det A 6= 0.

2. If A and B are square matrices of the same size then

det(AB) = det A det B.

The cofactor and adjoint matrices

Again, let A be a square matrix. We define the cofactor matrix, Cof(A), of A to be
the matrix whose (i, j)-entry is (−1)i+jMinori,j. We define the adjoint matrix, Adj(A),
of A by the formula Adj(A) = (Cof(A))t. The important role of the adjoint matrix is
seen in the following theorem and its corollary.

Theorem 5.4.7. For A a square matrix we have

A Adj(A) = Adj(A) A = det(A)I.

Proof. The (i, j) entry of A Adj(A) is

n∑

k=0

Ai k(Adj(A))k j =
n∑

k=0

(−1)k+jAi kMinork j(A).

When i = j this is a Laplace expansion formula and is hence det A by Theorem 5.4.1.
When i 6= j this is the expansion of a determinant for a matrix with two equal rows and
hence is zero.

The following corollary immediately follows.

Corollary 5.4.8 (The adjoint inversion formula). If det A 6= 0 then

A−1 =
1

det A
Adj(A).
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The inverse of a 2 × 2 matrix is a simple matter: Let A =

[
a b
c d

]
. Then Adj(A) =

[
d −b
−c a

]
and if det(A) = ad− bd 6= 0 then

A−1 =
1

ad− bc

[
d −b
−c a

]
. (1)

For an example suppose A =

[
1 −3
−2 1

]
. Then det(A) = 1 − (6) = −5 6= 0 so A is

invertible and A−1 = −1
5

[
1 3
2 1

]
=

[−1
5

−3
5

−2
5

−1
5

]
.

The general formula for the inverse of a 3× 3 is substantially more complicated and
difficult to remember. Consider though an example.

Example 5.4.9. Let

A =




1 2 0
1 4 1
−1 0 3


 .

Find its inverse if it is invertible.

I Solution. We expand along the first row to compute the determinant and get det(A) =

1 det

[
4 1
0 3

]
− 2 det

[
1 1
−1 3

]
= 1(12) − 2(4) = 4. Thus A is invertible. The cofactor of

A is Cof(A) =




12 −4 4
−6 3 −2
2 −1 2


 and Adj(A) = Cof(A)t =




12 −6 2
−4 3 −1
4 −2 2


 . The inverse

of A is thus

A−1 =
1

4




12 −6 2
−4 3 −1
4 −2 2


 =




3 −3
2

1
2

−1 3
4

−1
4

1 −1
2

1
2


 .

J

In our next example we will consider a matrix with entries in R = R[s]. Such
matrices will arise naturally in Chapter 6.

Example 5.4.10. Let

A =




1 2 1
0 1 3
1 1 2


 .
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Find the inverse of the matrix

sI − A =




s− 1 −2 −1
0 s− 1 −3
−1 −1 s− 2




.

I Solution. A straightforward computation gives det(sI − A) = (s − 4)(s2 + 1). The
matrix of minors for sI − A is




(s− 1)(s− 2)− 3 −3 s− 1
−2(s− 2)− 1 (s− 1)(s− 2)− 1 −(s− 1)− 2
6 + (s− 1) −3(s− 1) (s− 1)2


 .

After simplifying somewhat we obtain the cofactor matrix



s2 − 3s− 1 3 s− 1
2s− 3 s2 − 3s + 1 s + 1
s + 5 3s− 3 (s− 1)2


 .

The adjoint matrix is



s2 − 3s− 1 2s− 3 s + 5
3 s2 − 3s + 1 3s− 3

s− 1 s + 1 (s− 1)2


 .

Finally, we obtain the inverse:

(sI − A)−1 =




s2−3s−1
(s−4)(s2+1)

2s−3
(s−4)(s2+1)

s+5
(s−4)(s2+1)

3
(s−4)(s2+1)

s2−3s+1
(s−4)(s2+1)

3s−3
(s−4)(s2+1)

s−1
(s−4)(s2+1)

s+1
(s−4)(s2+1)

(s−1)2

(s−4)(s2+1)


 .

J

Cramer’s Rule

We finally consider a well known theoretical tool used to solve a system Ax = b when
A is invertible. Let A(i,b) denote the matrix obtained by replacing the ith column of A
with the column vector b. We then have the following theorem:
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Theorem 5.4.11. Suppose det A 6= 0. Then the solution to Ax = b is given coordinate
wise by the formula:

xi =
det A(i,b)

det A
.

Proof. Since A is invertible we have

xi = (A−1b)i =
n∑

k=1

(A−1)i kbk

=
1

det A

n∑

k=1

(−1)i+kMinork i(A)bk

=
1

det(A)

n∑

k=1

(−1)i+kbkMinork i(A) =
det A(i,b)

det A
.

The following example should convince you that Cramer’s Rule is mainly a theoretical
tool and not a practical one for solving a system of linear equations. The Gauss-Jordan
elimination method is usually far more efficient than computing n + 1 determinants for
a system Ax = b, where A is n× n.

Example 5.4.12. Solve the following system of linear equations using Cramer’s Rule.

x + y + z = 0
2x + 3y − z = 11
x + z = −2

I Solution. We have

det A =

∣∣∣∣∣∣

1 1 1
2 3 −1
1 0 1

∣∣∣∣∣∣
= −3,

det A(1,b) =

∣∣∣∣∣∣

0 1 1
11 3 −1
−2 0 1

∣∣∣∣∣∣
= −3,

det A(2,b) =

∣∣∣∣∣∣

1 0 1
2 11 −1
1 −2 1

∣∣∣∣∣∣
= −6,



5.4. DETERMINANTS 303

and det A(3,b) =

∣∣∣∣∣∣

1 1 0
2 3 11
1 0 −2

∣∣∣∣∣∣
= 9,

where b =




0
11
−2


. Since det A 6= 0 Cramer’s Rule gives

x1 =
det A(1,b)

det A
=
−3

−3
= 1,

x2 =
det A(2,b)

det A
=
−6

−3
= 2,

and

x3 =
det A(3,b)

det A
=

9

−3
= −3.

J

Exercises

Find the determinant of each matrix given below in three ways: a row expansion, a
column expansion, and using row operations to reduce to a triangular matrix.

1.
[
1 4
2 9

]

2.
[
1 1
4 4

]

3.
[
3 4
2 6

]

4.




1 1 −1
1 4 0
2 3 1




5.




4 0 3
8 1 7
3 4 1
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6.




3 98 100
0 2 99
0 0 1




7.




0 1 −2 4
2 3 9 2
1 4 8 3
−2 3 −2 4




8.




−4 9 −4 1
2 3 0 −4
−2 3 5 −6
−3 2 0 1




9.




2 4 2 3
1 2 1 4
4 8 4 6
1 9 11 13




Find the inverse of (sI −A) and determine for which values of s det(sI −A) = 0.

10.
[
1 2
1 2

]

11.
[
3 1
1 3

]

12.
[

1 1
−1 1

]

13.




1 0 1
0 1 0
0 3 1




14.




1 −3 3
−3 1 3
3 −3 1




15.




0 4 0
−1 0 0
1 4 −1




Use the adjoint formula for the inverse for the matrices given below.

16.
[
1 4
2 9

]

17.
[
1 1
4 4

]
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18.
[
3 4
2 6

]

19.




1 1 −1
1 4 0
2 3 1




20.




4 0 3
8 1 7
3 4 1




21.




3 98 100
0 2 99
0 0 1




22.




0 1 −2 4
2 3 9 2
1 4 8 3
−2 3 −2 4




23.




−4 9 −4 1
2 3 0 −4
−2 3 5 −6
−3 2 0 1




24.




2 4 2 3
1 2 1 4
4 8 4 6
1 9 11 13
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Chapter 6

SYSTEMS OF DIFFERENTIAL
EQUATIONS

6.1 Systems of Differential Equations

6.1.1 Introduction

In the previous chapters we have discussed ordinary differential equations in a single
unknown function. These are adequate to model real world systems as they evolve in
time, provided that only one state, i.e., one number y(t), is necessary to describe the
system. For instance, we might be interested in the way that the population of a species
changes over time, the way the temperature of an object changes over time, the way the
concentration of a pollutant in a lake changes over time, or the displacement over time
of a weight attached to a spring. In each of these cases, the system we wish to describe
is adequately represented by a single number. In the examples listed, the number is the
population p(t) at time t, the temperature T (t) at time t, the concentration c(t) of a
pollutant at time t, or the displacement y(t) of the weight from equilibrium. However, a
single ordinary differential equation is inadequate for describing the evolution over time
of a system which needs more than one number to describe its state at a given time t. For
example, an ecological system consisting of two species will require two numbers p1(t)
and p2(t) to describe the population of each species at time t, i.e., to describe a system
consisting of a population of rabbits and foxes, you need to give the population of both
rabbits and foxes at time t. Moreover, the description of the way this system changes
with time will involve the derivatives p′1(t), p′2(t), the functions p1(t), p2(t) themselves,
and possibly the variable t. This is precisely what is intended by a system of ordinary
differential equations.

307
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A system of ordinary differential equations is a system of equations relating
several unknown functions yi(t) of an independent variable t, some of the derivatives of
the yi(t), and possibly t itself. As for a single differential equation, the order of a system
of differential equations is the highest order derivative which appears in any equation.

Example 6.1.1. The following two equations

y′1 = ay1 − by1y2

y′2 = −cy1 + dy1y2
(1)

constitute a system of ordinary differential equations involving the unknown functions
y1 and y2. Note that in this example the number of equations is equal to the number of
unknown functions. This is the typical situation which occurs in practice.

Example 6.1.2. Suppose that a particle of mass m moves in a force field F = (F1, F2, F3)
that depends on time t, the position of the particle x(t) = (x1(t), x2(t), x3(t)) and the
velocity of the particle x′(t) = (x′1(t), x

′
2(t), x

′
3(t)). Then Newton’s second law of motion

states, in vector form, that F = ma, where a = x′′ is the acceleration. Writing out what
this says in components, we get a system of second order differential equations

mx′′1(t) = F1(t, x1(t), x2(t), x3(t), x
′
1(t), x

′
2(t), x

′
3(t))

mx′′2(t) = F2(t, x1(t), x2(t), x3(t), x
′
1(t), x

′
2(t), x

′
3(t))

mx′′3(t) = F3(t, x1(t), x2(t), x3(t), x
′
1(t), x

′
2(t), x

′
3(t)).

(2)

In this example, the state at time t is described by six numbers, namely the three coor-
dinates and the three velocities, and these are related by the three equations described
above. The resulting system of equations is a second order system of differential equa-
tions since the equations include second order derivatives of some of the unknown func-
tions. Notice that in this example we have six states, namely the three coordinates of the
position vector and the three coordinates of the velocity vector, but only three equations.
Nevertheless, it is easy to put this system in exactly the same theoretical framework as
the first example by renaming the states as follows. Let y = (y1, y2, y3, y4, y5, y6) where
y1 = x1, y2 = x2, y3 = x3, y4 = x′1, y5 = x′2, and y6 = x′3. Using these new function
names, the system of equations (2) can be rewritten using only first derivatives:

y′1 = y4

y′2 = y5

y′3 = y6

y′4 =
1

m
F1(t, y1, y2, y3, y4, y5, y6)

y′5 =
1

m
F2(t, y1, y2, y3, y4, y5, y6)

y′6 =
1

m
F3(t, y1, y2, y3, y4, y5, y6).

(3)
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Note that this can be expressed as a vector equation

y′ = f(t,y)

where

f(t,y) = (y4, y5, y6,
1

m
F1(t,y),

1

m
F2(t,y),

1

m
F3(t,y)).

The trick used in Example 6.1.2 to reduce the second order system to a first order
system in a larger number of variables works in general, so that it is only really necessary
to consider first order systems of differential equations.

As with a single first order ordinary differential equation, it is convenient to consider
first order systems in a standard form for purposes of describing properties and solution
algorithms for these systems.

Definition 6.1.3. The standard form for a first order system of ordinary differential
equations is a vector equation of the form

y′ = f(t,y) (4)

where f : U → Rn is a function from an open subset U of Rn+1 to Rn. If an initial
point t0 and an initial vector y0 are also specified, then one obtains an initial value
problem:

y′ = f(t,y), y(t0) = y0. (5)

A solution of Equation (4) is a differentiable vector function y : I → Rn where I is an
open interval in R and the function y satisfies Equation (4) for all t ∈ I. This means
that

y′(t) = f(t,y(t)) (6)

for all t ∈ I. If also y(t0) = y0, then y(t) is a solution of the initial value problem (5).

Equation (1) is a system in standard form where n = 2. That is, there are two
unknown functions y1 and y2 which can be incorporated into a two dimensional vector
y = (y1, y2), and if f(t,y) = (f1(t, y1, y2), f2(t, y1,2 )) = (ay1− by1y2, −cy1 +dy1y2), then
Equation (5) is a short way to write the system of equations

y′1 = ay1 − by1y2 = f1(t, y1, y2)
y′2 = −cy1 + dy1y2 = f2(t, y1, y2).

(7)

Equation (3) of Example 6.1.2 is a first order system with n = 6. We shall primarily
concentrate on the study of systems where n = 2 or n = 3, but Example 6.1.2 shows
that even very simple real world systems can lead to systems of differential equations
with a large number of unknown functions.
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Example 6.1.4. Consider the following first order system of ordinary differential equa-
tions:

y′1 = 3y1 − y2

y′2 = 4y1 − 2y2.
(8)

1. Verify that y(t) = (y1(t), y2(t)) = (e2t, e2t) is a solution of Equation (8).

I Solution. Since y1(t) = y2(t) = e2t,

y′1(t) = 2e2t = 3e2t − e2t = 3y1(t)− y2(t)

and y′2(t) = 2e2t = 4e2t − 2e2t = 4y1(t)− 2y2(t),

which is precisely what it means for y(t) to satisfy (8). J

2. Verify that z(t) = (z1(t), z2(t)) = (e−t, 4e−t) is a solution of Equation (8).

I Solution. As above, we calculate

z′1(t) = −e−t = 3e−t − 4e−t = 3z1(t)− z2(t)

and z′2(t) = −4e−t = 4e−t − 2 · 4e−t = 4z1(t)− 2z2(t),

which is precisely what it means for z(t) to satisfy (8). J

3. If c1 and c2 are any constants, verify that w(t) = c1y(t) + c2z(t) is also a solution
of Equation (8).

I Solution. Note that w(t) = (w1(t), w2(t)), where w1(t) = c1y1(t) + c2z1(t) =
c1e

2t + c2e
−t and w2(t) = c1y2(t) + c2z2(t) = c1e

2t + c24e
−t. Then

w′
1(t) = 2c1e

2t − c2e
−t = 3w1(t)− w2(t)

and w′
2(t) = 2c1e

−t − 4c2e
−t = 4w1(t)− 2w2(t).

Again, this is precisely what it means for w(t) to be a solution of (8). We shall see
in the next section that w(t) is, in fact, the general solution of Equation (8). That
is, any solution of this equation is obtained by a particular choice of the constants
c1 and c2. J

Example 6.1.5. Consider the following first order system of ordinary differential equa-
tions:

y′1 = 3y1 − y2 + 2t
y′2 = 4y1 − 2y2 + 2.

(9)

Notice that this is just Equation (8) with one additional term (not involving the unknown
functions y1 and y2) added to each equation.
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1. Verify that yp(t) = (yp1(t), yp2(t)) = (−2t + 1, −4t + 5) is a solution of Equation
(9).

I Solution. Since yp1(t) = −2t + 1 and yp2(t) = −4t + 5, direct calculation gives
y′p1(t) = −2, y′p2(t) = −4 and

3yp1(t)− yp2(t) + 2t = 3(−2t + 1)− (−4t + 5) + 2t = −2 = y′p1(t)

and 4y′p1(t)− 2y′p2(t) + 2 = 4(−2t + 1)− 2(−4t + 5) + 2 = −4 = y′p2(t).

Hence yp(t) is a solution of (9). J

2. Verify that zp(t) = 2yp(t) = (zp1(t), zp2(t)) = (−4t+2, −8t+10) is not a solution
to Equation (9).

I Solution. Since

3zp1(t)− zp2(t) + 2t = 3(−4t + 2)− (−8t + 10) + 2t = −2t− 4 6= −4 = z′p1(t),

zp(t) fails to satisfy the first of the two equations of (9), and hence is not a solution
of the system. J

3. We leave it as an exercise to verify that yg(t) = w(t) + yp(t) is a solution of (9),
where w(t) is the general solution of Equation (8) from the previous example.

We will now list some particular classes of first order systems of ordinary differential
equations. As for the case of a single differential equation, it is most convenient to
identify these classes by describing properties of the right hand side of the equation
when it is expressed in standard form.

Definition 6.1.6. The first order system in standard form

y′ = f(t,y)

is said to be

1. autonomous if f(t,y) is independent of t;

2. linear if f(t,y) = A(t)y+q(t) where A(t) = [aij(t)] is an n×n matrix of functions
and q(t) = (q1(t), . . . , qn(t)) is a vector of functions of t;

3. constant coefficient linear if f(t,y) = Ay + q(t) where A = [aij] is an n × n
constant matrix and q(t) = (q1(t), . . . , qn(t)) is a vector of functions of t;
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4. linear and homogeneous if f(t,y) = A(t)y. That is, a system of linear ordinary
differential equations is homogeneous provided the term q(t) is 0.

In the case n = 2, a first order system is linear if it can be written in the form

y′1 = a(t)y1 + b(t)y2 + q1(t)

y′2 = c(t)y1 + d(t)y2 + q2(t);

this linear system is homogeneous if

y′1 = a(t)y1 + b(t)y2

y′2 = c(t)y1 + d(t)y2,

and it is a constant coefficient linear system if

y′1 = ay1 + by2 + q1(t)

y′2 = cy1 + dy2 + q2(t)

In the first two cases the matrix of functions is A(t) =

[
a(t) b(t)
c(t) d(t)

]
, while in the third

case, the constant matrix is A =

[
a b
c d

]
. Notice that the concepts constant coefficient

and autonomous are not identical for linear systems of differential equations. The linear
system y′ = A(t)y + q(t) is constant coefficient provided all entries of A(t) are constant
functions, while it is autonomous if all entries of both A(t) and q(t) are constants.

Example 6.1.7. 1. The linear system (1) of Example 6.1.1 is autonomous, but not
linear.

2. The system

y′1 = y2

y′2 = −y1 − 1

t
y2

is linear and homogeneous, but not autonomous.

3. The system

y′1 = −y2

y′2 = y1

is linear, constant coefficient, and homogeneous (and hence autonomous).
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4. The system

y′1 = −y2 + 1

y′2 = y1

is linear and autonomous (and hence constant coefficient) but not homogeneous.

5. The system

y′1 = −y2 + t

y′2 = y1

is constant coefficient, but not autonomous or homogeneous.

Note that the term autonomous applies to both linear and nonlinear systems of
ordinary differential equations, while the term constant coefficient applies only to linear
systems of differential equations, and as the examples show, even for linear systems, the
terms constant coefficient and autonomous do not refer to the same systems.

6.1.2 Examples of Linear Systems

In this section we will look at some situations which give rise to systems of ordinary
differential equations. Our goal will be to simply set up the differential equations;
techniques for solutions will come in later sections.

Example 6.1.8. The first example is simply the observation that a single ordinary
differential equation of order n can be viewed as a first order system of n equations
in n unknown functions. We will do the case for n = 2; the extension to n > 2 is
straightforward. Let

y′′ = f(t, y, y′), y(t0) = a, y′(t0) = b (10)

be a second order initial value problem. By means of the identification y1 = y, y2 = y′,
Equation (10) can be identified with the system

y′1 = y2 y1(t0) = a
y′2 = f(t, y1, y2) y2(t0) = b

(11)

For a numerical example, consider the second order initial value problem

(∗) y′′ − y = t, y(0) = 1, y′(0) = 2.
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According to Equation (11), this is equivalent to the system

(∗∗) y′1 = y2 y1(0) = 1
y′2 = y1 + t y2(0) = 2.

Equation (∗) can be solved by the techniques of Chapter 3 to give a solution y(t) =
2et − e−t − t. The corresponding solution to the system (∗∗) is the vector function

y(t) = (y1(t), y2(t)) = (2et − e−t − t, 2et + e−t − 1),

where y1(t) = y(t) = 2et − e−t − t and y2(t) = y′(t) = 2et + e−t − 1.

Example 6.1.9 (Predator-Prey System). In Example 1.1.8 we introduced two dif-
ferential equation models for the growth of population of a single species. These were
the Malthusian proportional growth model, given by the differential equation p′ = kp
(where, as usual, p(t) denotes the population at time t), and the Verhulst model which is
governed by the logistic differential equation p′ = c(m−p)p, where c and m are constants.
In this example we will consider an ecological system consisting of two species, where
one species, which we will call the prey, is the food source for another species which we
will call the predator. For example we could have coyotes (predator) and rabbits (prey)
or sharks (predators) and food fish (prey). Let p1(t) denote the predator population at
time t and let p2(t) denote the prey population at time t. Using some assumptions we
may formulate potential equations satisfied by the rates of change of p1 and p2. To talk
more succinctly, we will assume that the predators are coyotes, and the prey are rabbits.
Let us assume that if there are no coyotes then the rabbit population will increase at a
rate proportional to the current population, that is p′2(t) = ap2(t) where a is a positive
constant. Since the coyotes eat the rabbits, we may assume that the rate at which the
rabbits are eaten is proportional to the number of contacts between coyotes and rabbits,
which we may assume is proportional to p1(t)p2(t); this will, of course, have a negative
impact upon the rabbit population. Combining the growth rate (from reproduction) and
the rate of decline (from being eaten by coyotes), we arrive at p′2(t) = ap2(t)−bp1(t)p2(t)
where b is a positive constant as a formula expressing the rate of change of the rabbit
population. A similar reasoning will apply to the coyote population. If no rabbits are
present, then the coyote population will die out, and we will assume that this happens at
a rate proportional to the current population. Thus p′1(t) = −cp1(t) where c is a positive
constant is the first approximation. Moreover, the increase in the population of coyotes
is dependent upon interactions with their food supply, i.e., rabbits, so a simple assump-
tion would be that the increase is proportional to the number of interactions between
coyotes and rabbits, which we can take to be proportional to p1(t)p2(t). Thus, combining
the two sources of change in the coyote population gives p′1(t) = −cp1(t) + dp1(t)p2(t).
Therefore, the predator and prey populations are governed by the first order system of
differential equations

p′1(t) = −cp1(t) + dp1(t)p2(t)

p′2(t) = ap2(t)− bp1(t)p2(t).
(12)
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If we let p(t) =

[
p1(t)
p2(t)

]
then Equation (12) can be expressed as the vector equation

p′(t) = f(t,p(t)), (13)

where

f(t,u) =

[−cu1 + du1u2

au2 − bu1u2

]

and u =

[
u1

u2

]
, which is a more succinct way to write the system (12) for many purposes.

We shall have more to say about this system in a later section.

Example 6.1.10 (Mixing problem). Example 1.1.10 considers the case of computing
the amount of salt in a tank at time t if a salt mixture is flowing into the tank at a known
volume rate and concentration and the well-stirred mixture is flowing out at a known
volume rate. What results is a first order linear differential equation for the amount y(t)
of salt at time t (Equation (8)). The current example expands upon the earlier example
by considering the case of two connected tanks. See Figure 6.1. Tank 1 contains 200

Tank 1 Tank 2

200 Gal 200 Gal

6 Gal/Min
4 Gal/Min

2 Gal/Min

4 Gal/Min

Figure 6.1: A Two Tank Mixing Problem.

gallons of brine which 50 pounds of salt are initially dissolved ; Tank 2 initially contains
200 gallons of pure water. Moreover, the mixtures are pumped between the two tanks,
6 gal/min from Tank 1 to Tank 2 and 2 gal/min going from Tank 2 back to Tank 1.
Assume that a brine mixture containing .5 lb/gal enters Tank 1 at a rate of 4 gal/min,
and the well-stirred mixture is removed from Tank 2 at the same rate of 4 gal/min. Let
y1(t) be the amount of salt in Tank 1 at time t and let y2(t) be the amount of salt in
Tank 2 at time t. Find a system of differential equations which relates y1(t) and y2(t).
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I Solution. The underlying principle is the same as that of the single tank mixing
problem. Namely, we apply the balance equation

(†) y′(t) = Rate in− Rate out

to the amount of salt in each tank. If y1(t) denotes the amount of salt at time t in Tank
1, then the concentration of salt at time t in Tank 1 is c1(t) = (y1(t)/200) lb/gal.
Similarly, the concentration of salt in Tank 2 at time t is c2(t) = (y2(t)/200) lb/gal. The
relevant rates of change can be summarized in the following table.

From To Rate

Outside Tank 1 (0.5 lb/gal)·(4 gal/min) = 2 lb/min

Tank 1 Tank2
y1(t)

200
· 6 gal/min = 0.03y1(t) lb/min

Tank 2 Tank 1
y2(t)

200
lb/gal · 2 gal/min = 0.01y2(t) lb/min

Tank 2 Outside
y2(t)

200
lb/gal · 4 gal/min = 0.02y2(t) lb/min

The data for the balance equations (†) can then be read from the following table:

Tank Rate in Rate out
1 2 + 0.01y2(t) 0.03y1(t)
2 0.03y1(t) 0.02y2(t)

Putting these data in the balance equations then gives

y′1(t) = 2 + 0.01y2(t) − 0.03y1(t)
y′2(t) = 0.03y1(t) − 0.02y2(t)

as the first order system of ordinary differential equations satisfied by the vector function
whose two components are the amount of salt in tank 1 and in tank 2 at time t. This
system is a nonhomogeneous, constant coefficient, linear system. We shall address some
techniques for solving such equations in Section 6.4, after first considering some of the
theoretical underpinnings of these equations in the next two sections. J

Exercises

For each of the following systems of differential equations, determine if it is linear
(yes/no) and autonomous (yes/no). For each of those which is linear, further determine
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if the equation is homogeneous/nonhomogeneous and constant coefficient (yes/no). Do
not solve the equations.

1.
y′1 = y2

y′2 = y1y2

2.
y′1 = y1 + y2 + t2

y′2 = −y1 + y2 + 1

3.
y′1 = (sin t)y1 − y2

y′2 = y1 + (cos t)y2

4.
y′1 = t sin y1 − y2

y′2 = y1 + t cos y2

5.

y′1 = y1

y′2 = 2y1 + y4

y′3 = y4

y′4 = y2 + 2y3

6.
y′1 =

1
2
y1 − y2 + 5

y′2 = −y1 +
1
2
y2 − 5

7. Verify that y(t) =
[
y1(t)
y2(t)

]
, where y1(t) = et − e3t and y2(t) = 2et − e3t is a solution of

the initial value problem

y′ =
[
5 −2
4 −1

]
y; y(0) =

[
0
1

]
.

Solution: First note that y1(0) = 0 and y2(0) = 1, so the initial condition is satisfied.

Then y′(t) =
[
y′1(t)
y′2(t)

]
=

[
et − 3e3t

2et − 3e3t

]
while

[
5 −2
4 −1

]
y(t) =

[
5(et − e3t)− 2(2et − e3t)
4(et − e3t)− (2et − e3t)

]
=

[
et − 3e3t

2et − 3e3t

]
. Thus y′(t) =

[
5 −2
4 −1

]
y, as required.

8. Verify that y(t) =
[
y1(t)
y2(t)

]
, where y1(t) = 2e4t− e−2t and y2(t) = 2e4t + e−2t is a solution

of the initial value problem

y′ =
[
1 3
3 1

]
y; y(0) =

[
1
3

]
.
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9. Verify that y(t) =
[
y1(t)
y2(t)

]
, where y1(t) = et + 2tet and y2(t) = 4tet is a solution of the

initial value problem

y′ =
[
3 −1
4 −1

]
y; y(0) =

[
1
0

]
.

10. Verify that y(t) =
[
y1(t)
y2(t)

]
, where y1(t) = cos 2t−2 sin 2t and y2(t) = − cos 2t is a solution

of the initial value problem

y′ =
[

1 5
−1 −1

]
y; y(0) =

[
1
−1

]
.

Rewrite each of the following initial value problems for an ordinary differential equation
as an initial value problem for a first order system of ordinary differential equations.

11. y′′ + 5y′ + 6y = e2t, y(0) = 1, y′(0) = −2.

Solution: Let y1 = y and y2 = y′. Then y′1 = y′ = y2 and y′2 = y′′ = −5y′ − 6y + e2t =

−6y1 − 5y2 + e2t. Letting y =
[
y1

y2

]
, this can be expressed in vector form (see Equation

(6.1.7)) as

y′ =
[

0 1
−6 −5

]
y +

[
0

e2t

]
; y(0) =

[
1
−2

]
.

12. y′′ + k2y = 0, y(0) = −1, y′(0) = 0

13. y′′ − k2y = 0, y(0) = −1, y′(0) = 0

14. y′′ + k2y = A cosωt, y(0) = 0, y′(0) = 0

15. ay′′ + by′ + cy = 0, y(0) = α, y′(0) = β

16. ay′′ + by′ + cy = A sinωt, y(0) = α, y′(0) = β

17. t2y′′ + 2ty′ + y = 0, y(1) = −2, y′(1) = 3

6.2 Linear Systems of Differential Equations

This section and the next will be devoted to the theoretical underpinnings of linear sys-
tems of ordinary differential equations which accrue from the main theorem of existence
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and uniqueness of solutions of such systems. As with Picard’s existence and uniqueness
theorem (Theorem 1.5.2) for first order ordinary differential equations, and the similar
theorem for linear second order equations (Theorem 3.1.6), we will not prove this the-
orem, but rather show how it leads to immediately useful information to assist us in
knowing when we have found all solutions.

A first order system y′ = f(t, y) in standard form is linear provided f(t, y) =
A(t)y + q(t) where A(t) = [aij(t)] is an n× n matrix of functions, while

q(t) =




q1(t)
...

qn(t)


 and y =




y1
...

yn




are n×1 matrices. Thus the standard description of a first order linear system in matrix
form is

y′ = A(t)y + q(t), (1)

while, if the matrix equation is written out in terms of the unknown functions y1, y2,
. . ., yn, then (1) becomes

y′1 = a11(t)y1 + a12(t)y2 + · · · + a1n(t)yn + q1(t)
y′2 = a21(t)y1 + a22(t)y2 + · · · + a2n(t)yn + q2(t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y′n = an1(t)y1 + an2(t)y2 + · · · + ann(t)yn + qn(t).

(2)

For example, the matrix equation

y′ =
[

1 −t
e−t −1

]
y +

[
cos t

0

]

and the system of equations

y′1 = y1 − ty2 + cos t

y′2 = e−ty1 − y2

have the same meaning.

It is convenient to state most of our results on linear systems of ordinary differential
equations in the language of matrices and vectors. To this end the following terminology
will be useful. A property P of functions will be said to be satisfied for a matrix A(t) =
[aij(t)] of functions if it is satisfied for all of the functions aij(t) which make up the
matrix. In particular:

1. A(t) is defined on an interval I of R if each aij(t) is defined on I.
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2. A(t) is continuous on an interval I of R if each aij(t) is continuous on I. For
instance, the matrix

A(t) =




1

t + 2
cos 2t

e−2t 1

(2t− 3)2




is continuous on each of the intervals I1 = (−∞,−2), I2 = (−2, 3/2) and I3 =
(3/2,∞), but it is not continuous on the interval I4 = (0, 2).

3. A(t) is differentiable on an interval I of R if each aij(t) is differentiable on I.
Moreover, A′(t) = [a′ij(t)]. That is, the matrix A(t) is differentiated by differenti-
ating each entry of the matrix. For instance, for the matrix A(t) in the previous
item,

A′(t) =




−1

(t + 2)2
−2 sin 2t

−2e−2t −4

(2t− 3)3


 .

4. A(t) is integrable on an interval I of R if each aij(t) is integrable on I. Moreover,
the integral of A(t) on the interval [a, b] is computed by computing the integral

of each entry of the matrix, i.e.,
∫ b

a
A(t) dt =

[∫ b

a
aij(t) dt

]
. For the matrix A(t) of

item 2 above, this gives

∫ 1

0

A(t) dt =




∫ 1

0

1

t + 2
dt

∫ 1

0
cos 2t dt

∫ 1

0
e−2t dt

∫ 1

0

1

(2t− 3)2
dt


 =

[
ln 3

2
1
2
sin 2

1
2
(1− e−2) 1

3

]
,

while, if t ∈ I2 = (−2, 3/2), then

∫ t

0

A(u) du =




∫ t

0

1

u + 2
du

∫ t

0
cos 2u du

∫ t

0
e−2u du

∫ 1

0

1

(2u− 3)2
du


 =




ln
t + 2

2
1
2
sin 2t

1
2
(1− e−2t)

−1

2(2t− 3)
− 1

6


 .

5. If each entry aij(t) of A(t) is of exponential type (see the definition on page
201), we can take the Laplace transform of A(t), by taking the Laplace trans-
form of each entry. That is L(A(t))(s) = [L(aij(t))(s)]. For example, if A(t) =[

te−2t cos 2t
e3t sin t (2t− e)2

]
, this gives

L(A(t))(s) =

[ L (te−2t) (s) L(cos 2t)(s)

L(e3t sin t)(s) L ((2t− 3)2) (s)

]
=




1

(s + 2)2

2

s2 + 4

1

(s− 3)2 + 1

8e
3t
2

s3


 .
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If A(t) and q(t) are continuous matrix functions on an interval I, then a solution to
the linear differential equation

y′ = A(t)y + q(t)

on the subinterval J ⊆ I, is a continuous matrix function y(t) on J such that

y′(t) = A(t)y(t) + q(t)

for all t ∈ J . If moreover, y(t0) = y0, then y(t) is a solution of the initial value
problem

y′ = A(t)y + q(t), y(t0) = y0. (3)

Example 6.2.1. Verify that y(t) =

[
e3t

3e3t

]
is a solution of the initial value problem (3)

on the interval (−∞, ∞) where

A(t) =

[
0 1
6 −1

]
, q(t) =

[
0

6e3t

]
, t0 = 0 and y0 =

[
1
3

]
.

I Solution. All of the functions in the matrices A(t), y(t), and q(t) are differentiable

on the entire real line (−∞, ∞) and y(t0) = y(0) =

[
1
3

]
= y0. Moreover,

(∗) y′(t) =

[
3e3t

9e3t

]

and

(∗∗) A(t)y(t) + q(t) =

[
0 1
6 −1

] [
e3t

3e3t

]
+

[
0

6e3t

]
=

[
3e3t

9e3t

]
.

Since (∗) and (∗∗) agree, y(t) is a solution of the initial value problem. J

The Existence and Uniqueness Theorem

The following result is the fundamental foundational result of the current theory. It is
the result which guarantees that if we can find a solution of a linear initial value problem
by any means whatsoever, then we know that we have found the only possible solution.
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Theorem 6.2.2 (Existence and Uniqueness). 1 Suppose that the n×n matrix func-
tion A(t) and the n× 1 matrix function q(t) are both continuous on an interval I in R.
Let t0 ∈ I. Then for every choice of the vector y0, the initial value problem

y′ = A(t)y + q(t), y(t0) = y0

has a unique solution y(t) which is defined on the same interval I.

Remark 6.2.3. How is this theorem related to existence and uniqueness theorems we
have stated previously?

• If n = 1 then this theorem is just Corollary 1.3.9. In this case we have actually
proved the result by exhibiting a formula for the unique solution. We are not so
lucky for general n. There is no formula like Equation (7) which is valid for the
solutions of linear initial value problems if n > 1.

• Theorem 3.1.6 is a corollary of Theorem 6.2.2. Indeed, if n = 2,

A(t) =

[
0 1

−b(t) −a(t)

]
,

q(t) =

[
0

f(t)

]
, y0 =

[
y0

y1

]
, and y =

[
y
y′

]
, then the second order linear initial value

problem
y′′ + a(t)y′ + b(t)y = f(t), y(t0) = y0, y′(t0) = y1

has the solution y(t) if and only if the first order linear system

y′ = A(t)y + q(t), y(t0) = y0

has the solution y(t) =

[
y(t)
y′(t)

]
. You should convince yourself of the validity of

this statement.

Example 6.2.4. Let n = 2 and consider the initial value problem (3) where

A(t) =




−t
1

t + 1
1

t2 − 2
t2


 , q(t) =

[
e−t

cos t

]
, t0 = 0, y0 =

[
1
2

]
.

Determine the largest interval I on which a solution to (3) is guaranteed by Theorem
6.2.2.

1A Proof of this result can be found in the text An Introduction to Ordinary Differential Equations
by Earl Coddington, Prentice-Hall, (1961), Page 256.
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I Solution. All of the entries in all the matrices above are continuous on the entire

real line except that
1

t + 1
is not continuous for t = −1 and

1

t2 − 2
is not continuous for

t = ±√2. Thus the largest interval I containing 0 for which all of the matrix entries
are continuous is I = (−1,

√
2). The theorem applies on this interval, and on no larger

interval containing 0. J

For first order differential equations, the Picard approximation algorithm (Algorithm
1.5.1) provides an algorithmic procedure for finding an approximate solution to a first
order initial value problem y′ = f(t, y), y′(t0) = y0. For first order systems, the Picard
approximation algorithm also works. We will state the algorithm only for linear first
order systems and then apply it to constant coefficient first order systems, where we will
be able to see an immediate analogy to the simple linear equation y′ = ay, y′(0) = c,
which, as we know from Chapter 1, has the solution y(t) = ceat.

Algorithm 6.2.5 (Picard Approximation for Linear Systems). Perform the fol-
lowing sequence of steps to produce an approximate solution to the initial value problem
(3).

(i) A rough initial approximation to a solution is given by the constant function

y0(t) := y0.

(ii) Insert this initial approximation into the right hand side of Equation (3) and obtain
the first approximation

y1(t) := y0 +

∫ t

t0

(A(u)y0(u) + q(u)) du.

(iii) The next step is to generate the second approximation in the same way; i.e.,

y2(t) := y0 +

∫ t

t0

(A(u)y1(u) + q(u)) du.

(iv) At the n-th stage of the process we have

yn(t) := y0 +

∫ t

t0

(A(u)yn−1(u) + q(u)) du,

which is defined by substituting the previous approximation yn−1(t) into the right
hand side of Equation (3).
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As in the case of first order equations, under the hypotheses of the Existence and
Uniqueness for linear systems, the sequence of vector functions yn(t) produced by the
Picard Approximation algorithm will converge on the interval I to the unique solution
of the initial value problem (3).

Example 6.2.6. We will consider the Picard Approximation algorithm in the special
case where the coefficient matrix A(t) is constant, so that we can write A(t) = A, the
function q(t) = 0, and the initial point t0 = 0. In this case the initial value problem (3)
becomes

y′ = Ay, y(0) = y0, (4)

and we get the following sequence of Picard approximations yn(t) to the solution y(t)
of (4).

y0(t) = y0

y1(t) = y0 +

∫ t

0

Ay0 du

= y0 + Ay0t

y2(t) = y0 +

∫ t

0

Ay1(u) du

= y0 +

∫ t

0

A(y0 + Ay0u) du

= y0 + Ay0t +
1

2
A2y0t

2

y3(t) =

∫ t

0

A

(
y0 + Ay0u +

1

2
A2y0u

2

)
du

= y0 + Ay0t +
1

2
A2y0t

2 +
1

6
A3y0t

3

...

yn(t) = y0 + Ay0t +
1

2
A2y0t

2 + · · ·+ 1

n!
Any0t

n.

Notice that we may factor a y0 out of each term on the right hand side of yn(t). This
gives the following expression for the function yn(t):

yn(t) =

(
In + At +

1

2
A2t2 +

1

3!
A3t3 + · · ·+ 1

n!
Antn

)
y0 (5)

where In denotes the identity matrix of size n. If you recall the Taylor series expansion
for the exponential function eat:

eat = 1 + at +
1

2
(at)2 +

1

3!
(at)3 + · · ·+ 1

n!
(at)n + · · ·
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you should immediately see a similarity. If we replace the scalar a with the n×n matrix
A and the scalar 1 with the identity matrix In then we can define eAt to be the sum of
the resulting series. That is,

eAt = In + At +
1

2
(At)2 +

1

3!
(At)3 + · · ·+ 1

n!
(At)n + · · · . (6)

It is not difficult (but we will not do it) to show that the series we have written down
for defining eAt in fact converges for any n × n matrix A, and the resulting sum is an
n× n matrix of functions of t. That is

eAt =




h11(t) h12(t) · · · h1n(t)
h21(t) h22(t) · · · h2n(t)

...
...

. . .
...

hn1(t) hn2(t) · · · hnn(t)


 .

It is not, however, obvious what the functions hij(t) are. Much of the remainder of
this chapter will be concerned with precisely that problem. For now, we simply want
to observe that the functions yn(t) (see Equation (5)) computed from the Picard ap-
proximation algorithm converge to eAty0, that is the matrix function eAt multiplied by
the constant vector y0 from the initial value problem (4). Hence we have arrived at the
following fact: The unique solution to (4) is

y(t) = eAty0. (7)

Following are a few examples where we can compute the matrix exponential eAt with
only the definition.

Example 6.2.7. Compute eAt for each of the following constant matrices A.

1. A =

[
0 0
0 0

]
= 02. (In general 0k denotes the k× k matrix, all of whose entries are

0.)

I Solution. In this case Antn =

[
0 0
0 0

]
for all n. Hence,

e02t = eAt = I2 + At +
1

2
A2t2 +

1

3!
A3t3 + · · ·

= I2 + 02 + 02 + · · ·
= I2.

Similarly, e0nt = In. This is the matrix analog of the fact e0 = 1. J
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2. A =

[
2 0
0 3

]
.

I Solution. In this case the powers of the matrix A are easy to compute. In fact

A2 =

[
4 0
0 9

]
, A3 =

[
8 0
0 27

]
, · · · An =

[
2n 0
0 3n

]
,

so that

eAt = I + At +
1

2
A2t2 +

1

3!
A3t3 + · · ·

=

[
1 0
0 1

]
+

[
2t 0
0 3t

]
+

1

2

[
4t2 0
0 9t2

]
+

+
1

3!

[
8t3 0
0 27t3

]
+ · · ·+ 1

n!

[
2ntn 0
0 3ntn

]
+ · · ·

=

[
1 + 2t + 1

2
4t2 + · · ·+ 1

n!
2ntn + · · · 0

0 1 + 3t + 1
2
9t2 + · · ·+ 1

n!
3ntn + · · ·

]

=

[
e2t 0
0 e3t

]
.

J

3. A =

[
a 0
0 b

]
.

I Solution. There is clearly nothing special about the numbers 2 and 3 on the
diagonal of the matrix in the last example. The same calculation shows that

eAt = e


a 0
0 b


t

=

[
eat 0
0 ebt

]
. (8)

J

4. A =

[
0 1
0 0

]
.
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I Solution. In this case, check that A2 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
= 02. Then

An = 02 for all n ≥ 2. Hence,

eAt = I + At +
1

2
A2t2 +

1

3!
A3t3 + · · ·

= I + At

=

[
1 t
0 1

]
.

Note that in this case, the individual entries of eAt do not look like exponential
functions eat at all. J

5. A =

[
0 −1
1 0

]
.

I Solution. We leave it as an exercise to compute the powers of the matrix A.

You should find A2 =

[−1 0
0 −1

]
, A3 =

[
0 1
−1 0

]
, A4 =

[
1 0
0 1

]
= I2, A5 = A,

A6 = A2, etc. That is, the powers repeat with period 4. Then

eAt = I + At +
1

2
A2t2 +

1

3!
A3t3 + · · ·

=

[
1 0
0 1

]
+

[
0 −t
t 0

]
+

1

2

[−t2 0
0 −t2

]
+

1

3!

[
0 t3

−t3 0

]
+

1

4!

[
t4 0
0 t4

]
+ · · ·

=




1− 1
2
t2 + 1

4!
t4 + · · · −t + 1

3!
t3 − 1

5!
t5 + · · ·

t− 1
3!
t3 + 1

5!
t5 − · · · 1− 1

2
t2 + 1

4!
t4 + · · ·




=

[
cos t − sin t
sin t cos t

]
.

In this example also the individual entries of eAt are not themselves exponential
functions. J

Example 6.2.8. Use Equation (7) and the calculation of eAt from the corresponding
item in the previous example to solve the initial value problem

y′ = Ay, y(0) = y0 =

[
c1

c2

]

for each of the following matrices A.

1. A =

[
0 0
0 0

]
= 02.
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I Solution. By Equation (7), the solution y(t) is given by

y(t) = eAty0 = I2y0 = y0 =

[
c1

c2

]
. (9)

That is, the solution of the vector differential equation y′ = 0, y(0) = y0 is the
constant function y(t) = y0. In terms of the component functions y1(t), y2(t), the
system of equations we are considering is

y′1 = 0, y1(0) = c1

y′2 = 0, y2(0) = c2

and this clearly has the solution y1(t) = c1, y2(t) = c2, which agrees with (9). J

2. A =

[
2 0
0 3

]
.

I Solution. Since in this case, eAt =

[
e2t 0
0 e3t

]
, the solution of the initial value

problem is

y(t) = eAty0 =

[
e2t 0
0 e3t

] [
c1

c2

]
=

[
c1e

2t

c2e
3t

]
.

Again, in terms of the component functions y1(t), y2(t), the system of equations
we are considering is

y′1 = 2y1, y1(0) = c1

y′2 = 3y2, y2(0) = c2.

Since the first equation does not involve y2 and the second equation does not
involve y1, what we really have is two independent first order linear equations.
The first equation clearly has the solution y1(t) = c1e

2t and the second clearly has
the solution y2(t) = c2e

3t, which agrees with the vector description provided by
Equation (7). (If the use of the word clearly is not clear, then you are advised to
review Section 1.3.) J

3. A =

[
a 0
0 b

]
.

I Solution. Since in this case, eAt =

[
eat 0
0 ebt

]
, the solution of the initial value

problem is

y(t) = eAty0 =

[
eat 0
0 ebt

] [
c1

c2

]
=

[
c1e

at

c2e
bt

]
.

J
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4. A =

[
0 1
0 0

]
.

I Solution. In this case eAt =

[
1 t
0 1

]
, so the solution of the initial value problem

is

y(t) = eAty0 =

[
1 t
0 1

] [
c1

c2

]
=

[
c1 + tc2

c2

]
.

Again, for comparative purposes, we will write this equation as a system of two
equations in two unknowns:

y′1 = y2, y1(0) = c1

y′2 = 0, y2(0) = c2.

In this case also, it is easy to see directly what the solution of the system is and to
see that it agrees with that computed by Equation (7). Indeed, the second equation
says that y2(t) = c2, and then the first equation implies that y1(t) = c1 + tc2 by
integration.

J

5. A =

[
0 −1
1 0

]
.

I Solution. The solution of the initial value problem is

y(t) = eAty0 =

[
cos t − sin t
sin t cos t

] [
c1

c2

]
=

[
c1 cos t− c2 sin t
c1 sin t + c2 cos t

]
.

J

Exercises

Compute the derivative of each of the following matrix functions.

1. A(t) =
[

cos 2t sin 2t
− sin 2t cos 2t

]

2. A(t) =
[
e−3t t
t2 e2t

]
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3. A(t) =




e−t te−t t2e−t

0 e−t te−t

0 0 e−t




4. y(t) =




t
t2

ln t




5. A(t) =
[
1 2
3 4

]

6. v(t) =
[
e−2t ln(t2 + 1) cos 3t

]

For each of the following matrix functions, compute the requested integral.

7. Compute
∫ π
0 A(t) dt if A(t) =

[
cos 2t sin 2t
− sin 2t cos 2t

]
.

8. Compute
∫ 1
0 A(t) dt if A(t) = 1

2

[
e2t + e−2t e2t − e−2t

e−2t − e2t e2t + e−2t

]

9. Compute
∫ 2
1 y(t) dt for the matrix y(t) of Exercise 4.

10. Compute
∫ 5
1 A(t) dt for the matrix A(t) of Exercise 5.

11. On which of the following intervals is the matrix function A(t) =
[

t (t + 1)−1

(t− 1)−2 t + 6

]

continuous?
(a) I1 = (−1, 1) (b) I2 = (0,∞) (c) I3 = (−1,∞)
(d) I4 = (−∞,−1) (e) I5 = (2, 6)

If A(t) = [aij(t)] is a matrix of functions, then the Laplace transform of A(t) can be
defined by taking the Laplace transform of each function aij(t). That is,

L(A(t))(s) = [L(aij(t))(s)] .

For example, if A(t) =
[

e2t sin 2t
e2t cos 3t t

]
, then

L(A(t))(s) =

[
1

s−2
2

s2+4
s−2

(s−2)2+9
1
s2

]
.

Compute the Laplace transform of each of the following matrix functions.
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12. A(t) =
[

1 t
t2 e2t

]

13. A(t) =
[

cos t sin t
− sin t cos t

]

14. A(t) =
[

t3 t sin t te−t

t2 − t e3t cos 2t 3

]

15. A(t) =




t
t2

t3




16. A(t) = et

[
1 −1
−1 1

]
+ e−t

[−1 1
1 −1

]

17. A(t) =




1 sin t 1− cos t
0 cos t sin t
0 − sin t cos t




The inverse Laplace transform of a matrix function is also defined by taking the inverse
Laplace transform of each entry of the matrix. For example,

L−1







1
s

1
s2

1
s3

1
s4





 =




1 t

t2

2
t4

6


 .

Compute the inverse Laplace transform of each matrix function:

18.
[
1
s

2
s2

6
s3

]

19.




1
s

1
s2

s

s2 − 1
s

s2 + 1




20.




1
s− 1

1
s2 − 2s + 1

4
s3 + 2s2 − 3s

1
s2 + 1

3s

s2 + 9
1

s− 3
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21.




2s

s2 − 1
2

s2 − 1
2

s2 − 1
2s

s2 − 1




For each matrix A given below:

(i) Compute (sI −A)−1.

(ii) Compute the inverse Laplace transform of (sI −A)−1.

22. A =
[
1 0
0 2

]

23. A =
[

1 −1
−2 2

]

24. A =




0 1 1
0 0 1
0 0 0




25. A =
[

0 1
−1 0

]

26. Let A(t) =
[
0 t
t 0

]
and consider the initial value problem

y′ = Ay, y(0) =
[
1
1

]
.

(a) Use Picard’s method to calculate the first four terms, y0, · · · ,y3.

(b) Make a conjecture about what the n-th term will be. Do you recognize the series?

(c) Verify that y(t) =

[
et2/2

et2/2

]
is a solution. Are there any other solutions possible?

Why or Why not?

27. Let A(t) =
[

0 t
−t 0

]
and consider the initial value problem

y′ = Ay, y(0) =
[
1
0

]
.

(a) Use Picard’s method to calculate the first four terms, y0, · · · ,y3.
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(b) Verify that y(t) =
[

cos t2/2
− sin t2/2

]
is a solution. Are there any other solutions possible?

Why or Why not?

28. Let A(t) =
[

t t
−t −t

]
and consider the initial value problem

y′ = Ay, y(0) =
[
1
1

]
.

(a) Use Picard’s method to calculate the first four terms, y0, · · · ,y3.

(b) Deduce the solution.

29. Verify the product rule for matrix functions. That is, if A(t) and B(t) are matrix
functions which can be multiplied and C(t) = A(t)B(t) is the product, then

C ′(t) = A′(t)B(t) + A(t)B′(t).

Hint: Write the ij term of C(t) as cij(t) =
∑r

k=1 aik(t)bkj(t) (where r is the number of
columns of A(t) = the number of rows of B(t)), and use the ordinary product and sum
rules for derivatives.

What is the largest interval containing 0 on which the initial value problem

y′ = A(t)y, y(0) =
[

2
−1

]

is guaranteed by Theorem 4.2.2 to have a solution, assuming:

30. A(t) =
[

0 1
(t2 + 2)−1 cos t

]

31. A(t) =
[
(t + 4)−2 t2 + 4
ln(t− 3) (t + 2)−4

]

32. A(t) =

[
t+2

t2−5t+6
t

t2 t3

]

33. A(t) =
[
1 −1
2 5

]

34. Let N =




0 1 0
0 0 1
0 0 0


.
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(a) Show that

N2 =




0 0 1
0 0 0
0 0 0


 and N3 =




0 0 0
0 0 0
0 0 0


 .

(b) Using the above calculations, compute eNt.

(c) Solve the initial value problem

y′ = Ny, y(0) =




1
2
3


 .

(d) Compute the Laplace transform of eNt, which you calculated in Part (b).

(e) Compute the matrix (sI −N)−1. Do you see a similarity to the matrix computed
in the previous part?

35. Let A =
[
1 1
0 1

]
.

(a) Verify that An =
[
1 n
0 1

]
for all natural numbers n.

(b) Using part (a), verify, directly from the definition, that

eAt =
[
et tet

0 et

]
.

(c) Now solve the initial value problem y′ = Ay, y(0) = y0 for each of the following
initial conditions y0.

(i) y0 =
[
1
0

]
, (ii) y0 =

[
0
1

]
, (iii) y0 =

[−2
5

]
, (iv) y0 =

[
c1

c2

]

(d) Compute the Laplace transform of eAt.

(e) Compute (sI −A)−1 and compare to the matrix computed in Part (d).

36. One of the fundamental properties of the exponential function is the formula ea+b = eaeb.
The goal of this exercise is to show, by means of a concrete example, that the analog
of this fundamental formula is not true for the matrix exponential function (at least
without some additional assumptions). From the calculations of Example 4.2.7, you

know that if A =
[
2 0
0 3

]
and B =

[
0 1
0 0

]
, then

eAt =
[
e2t 0
0 e3t

]
and eBt =

[
1 t
0 1

]
.
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(a) Show that eAteBt =
[
e2t te3t

0 e3t

]
.

(b) Let y0 =
[
0
1

]
and let y(t) = eAteBty0. Compute y′(t) and (A + B)y(t). Are these

two functions the same?

(c) What do these calculations tell you about the possible equality of the matrix func-
tions eAteBt and e(A+B)t for these particular A and B?

(d) We will see later that the formula e(A+B)t = eAteBt is valid provided that AB = BA.
Check that AB 6= BA for the matrices of this exercise.

6.3 Linear Homogeneous Equations

This section will be concerned with using the fundamental existence and uniqueness
theorem for linear systems (Theorem 6.2.2) to describe the solution set for a linear
homogeneous system of ordinary differential equations

y′ = A(t)y. (1)

The main result will be similar to the description given by Theorem 3.2.4 for linear
homogeneous second order equations.

Recall that if A(t) is a continuous n × n matrix function on an interval I, then a
solution to system (1) is an n × 1 matrix function y(t) such that y′(t) = A(t)y(t) for
all t ∈ I. Since this is equivalent to the statement

y′(t)− A(t)y(t) = 0 for all t ∈ I,

to be consistent with the language of solution sets used in Chapter 3, we will denote the
set of all solutions of (1) by S0

L, where L = D−A(t) is the (vector) differential operator
which acts on the vector function y(t) by the rule

L(y(t)) = (D − A(t))(y(t)) = y′(t)− A(t)y(t).

Thus

S0
L = {y(t) : L(y(t)) = 0} .
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Let y1(t) and y2(t) be two solutions of system (1), i.e., y1(t) and y2(t) are in S0
L and

let y(t) = c1y1(t) + c2y2(t) where c1 and c2 are scalars (either real or complex). Then

y′(t) = (c1y1(t) + c2y2(t))
′

= c1y
′
1(t) + c2y

′
2(t)

= c1A(t)y1(t) + c2A(t)y2(t)

= A(t) (c1y1(t) + c2y2(t))

= A(t)y(t).

Thus every linear combination of two solutions of (1) is again a solution. which in the
language of linear algebra means that S0

L is a vector space. We say that a set of vectors

B = {v1, . . . , vk}

in a vector space V is a basis of V if the set B is linearly independent and if every
vector v in V can be written as a linear combination

v = λ1v1 + · · ·+ λkvk.

The number k of vectors in a basis B of V is known as the dimension of V . Thus R2

has dimension 2 since it has a basis e1 = (1, 0), e2 = (0, 1) consisting of 2 vectors, R3

has dimension 3 since it has a basis e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) consisting
of 3 vectors, etc. The main theorem on solutions of linear homogeneous systems can be
expressed most conveniently in the language of vector spaces.

Theorem 6.3.1. If the n × n matrix A(t) is continuous on an interval I, then the
solution set S0

L of the homogeneous system

y′ = A(t)y (2)

is a vector space of dimension n. In other words,

1. There are n linearly independent solutions of (2) in S0
L.

2. If ϕ1, ϕ2, . . ., ϕn ∈ S0
L are independent solutions of (2), and ϕ is any function

in S0
L, then ϕ can be written as

ϕ = c1ϕ1 + · · ·+ cnϕn

for some scalars c1, . . ., cn ∈ R.
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Proof. To keep the notation as explicit as possible, we will only present the proof in the
case n = 2. You should compare this proof with that of Theorem 3.2.4. To start with,
let

e1 =

[
1
0

]
and e2 =

[
0
1

]
,

and let t0 ∈ I. By Theorem 6.2.2 there are vector functions ψ1(t) and ψ2(t) defined for
all t ∈ I and which satisfy the initial conditions

ψi(t0) = ei for i = 1, 2. (3)

Suppose there is a dependence relation c1ψ1 + c2ψ2 = 0. This means that

c1ψ1(t) + c2ψ2(t) = 0

for all t ∈ I. Applying this equation to the particular point t0 gives

0 = c1ψ1(t0) + c2ψ2(t0) = c1e1 + c2e2 = c1

[
1
0

]
+ c2

[
0
1

]
=

[
c1

c2

]
.

Thus c1 = 0 and c2 = 0 so that ψ1 and ψ2 are linearly independent. This proves (1).

Now suppose that ϕ ∈ S0
L. Evaluating at t0 gives

ϕ(t0) =

[
r
s

]
.

Now define ψ ∈ S0
L by ψ = rψ1 + sψ2. Note that ψ ∈ S0

L since S0
L is a vector space.

Moreover,

ψ(t0) = rψ1(t0) + sψ2(t0) = re1 + se2 =

[
r
s

]
= ϕ(t0).

This means that ϕ and ψ = rψ1 + sψ2 are two elements of S0
L which have the same

value at t0. By the uniqueness part of Theorem 6.2.2, they are equal.

Now suppose that ϕ1 and ϕ2 are any two linearly independent solutions of (2) in
S0

L. From the argument of the previous paragraph, there are scalars a, b, c, d so that

ϕ1 = aψ1 + bψ2

ϕ2 = cψ1 + dψ2

which in matrix form can be written

[
ϕ1 ϕ2

]
=

[
ψ1 ψ2

] [
a c
b d

]
.
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We multiply both sides of this matrix equation on the right by the adjoint

[
d −c
−b a

]
to

obtain

[
ϕ1 ϕ2

] [
d −c
−b a

]
=

[
ψ1 ψ2

] [
ad− bc 0

0 ad− bc

]
=

[
ψ1 ψ2

]
(ad− bc).

Suppose ad− bc = 0. Then

dϕ1 − bϕ2 = 0

and − cϕ1 + aϕ2 = 0.

But since ϕ1 and ϕ2 are independent this implies that a, b, c, and d are zero which in
turn implies that ϕ1 and ϕ2 are both zero. But this cannot be. We conclude that
ad− bc 6= 0. We can now write ψ1 and ψ2 each as a linear combination of ϕ1 and ϕ2.
Specifically,

[
ψ1 ψ2

]
=

1

ad− bc

[
ϕ1 ϕ2

] [
d −c
−b a

]
.

Since ϕ is a linear combination of ψ1 and ψ2 it follows that ϕ is a linear combination
of ϕ1 and ϕ2.

The matrix

[
a c
b d

]
that appears in the above proof is a useful theoretical criterion

for determining if a pair of solutions ϕ1, ϕ2 in S0
L is linearly indpependent and hence a

basis in the case n = 2. The proof shows:

1.
[
ϕ1(t0) ϕ2(t0)

]
=

[
a c
b d

]

2. If the solutions ϕ1(t), ϕ2(t) are a basis of S0
L, then ad− bc = det

[
a c
b d

]
6= 0, and

moreover, this is true for any t0 ∈ I.

3. The converse of the above statement is also true (and easy). Namely, if

det
[
ϕ1(t0) ϕ2(t0)

] 6= 0

for some t0 ∈ I, then ϕ1, ϕ2 in S0
L is a basis of the solution space (always assuming

n = 2).

Now assume that ϕ1 and ϕ2 are any two solutions in S0
L. Then we can form a 2× 2

matrix of functions
Φ(t) =

[
ϕ1(t) ϕ2(t)

]



6.3. LINEAR HOMOGENEOUS EQUATIONS 339

where each column is a solution to y′ = A(t)y. We will say that Φ(t) is a fundamental
matrix for y′ = A(t)y if the columns are linearly independent, and hence form a basis
of S0

L. Then the above discussion is summarized in the following result.

Theorem 6.3.2. If A(t) is a 2× 2 matrix of continuous functions on I, and if Φ(t) =[
ϕ1(t) ϕ2(t)

]
where each column is a solution to y′ = A(t)y, then Φ(t) is a fundamental

matrix for y′ = A(t)y if and only if detΦ(t) 6= 0 for at least one t ∈ I. If this is true
for one t ∈ I, it is in fact true for all t ∈ I.

Remark 6.3.3. The above theorem is also true, although we will not prove it, for n×n
matrix systems y′ = A(t)y, where a solution matrix consists of an n× n matrix

Φ(t) =
[
ϕ1(t) · · · ϕn(t)

]

where each column ϕi(t) is a solution to y′ = A(t)y. Then Φ(t) is a fundamental matrix,
that is the columns are a basis for S0

L if and only if det Φ(t) 6= 0 for at least one t ∈ I.

Note that if a matrix B is written in columns, say

B =
[
b1 · · · bn

]
,

then the matrix multiplication AB, if it is defined (which means the number of columns
of A is the number of rows of B), can be written as

AB = A
[
b1 · · · bn

]
=

[
Ab1 · · · Abn

]
.

In other words, multiply A by each column of B separately. For example, if

A =

[
1 −1
2 3

]
and B =

[
1 0 2
0 1 −1

]
,

then

AB =

[
1 −1
2 3

] [
1 0 2
0 1 −1

]

=

[[
1 −1
2 3

] [
1
0

] [
1 −1
2 3

] [
0
1

] [
1 −1
2 3

] [
2
−1

]]

=

[
1 −1 3
2 3 1

]
.

Now suppose that Φ(t) =
[
ϕ1(t) · · · ϕn(t)

]
is a fundamental matrix of solutions

for y′ = A(t)y. Then

Φ′(t) =
[
ϕ′

1(t) · · · ϕ′
n(t)

]

=
[
A(t)ϕ1(t) · · · A(t)ϕn(t)

]

= A(t)
[
ϕ1(t) · · · ϕn(t)

]

= A(t)Φ(t).
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Thus the n× n matrix Φ(t) satisfies the same differential equation, namely y′ = A(t)y,
as each of its columns. We summarize this discussion in the following theorem.

Theorem 6.3.4. If A(t) is a continuous n × n matrix of functions on an interval I,
then an n × n matrix of functions Φ(t) is a fundamental matrix for the homogeneous
linear equation y′ = A(t)y if and only if

Φ′(t) = A(t)Φ(t)
and detΦ(t) 6= 0.

(4)

The second condition need only be checked for one value of t ∈ I.

Example 6.3.5. Show that

Φ(t) =

[
e2t e−t

2e2t −e−t

]

is a fundamental matrix for the system y′ =
[
0 1
2 1

]
y.

I Solution. First check that Φ(t) is a solution matrix, i.e., check that the first condition
of Equation (4) is satisfied. To see this, we calculate

Φ′(t) =

[
e2t e−t

2e2t −e−t

]′
=

[
2e2t −e−t

4e2t e−t

]

and [
0 1
2 1

]
Φ(t) =

[
0 1
2 1

] [
e2t e−t

2e2t −e−t

]
=

[
2e2t −e−t

4e2t e−t

]
.

Since these two matrices of functions are the same, Φ(t) is a solution matrix.

To check that it is a fundamental matrix, pick t = 0 for example. Then

Φ(0) =

[
1 1
2 −1

]

and this matrix has determinant −3, so Φ(t) is a fundamental matrix. J

Example 6.3.6. Show that

Φ(t) =

[
te2t (t + 1)e2t

e2t e2t

]

is a fundamental matrix for the system y′ =
[
2 1
0 2

]
y.
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I Solution. Again we check that the two conditions of Equation (4) are satisfied. First
we calculate Φ′(t):

Φ′(t) =

[
te2t (t + 1)e2t

e2t e2t

]′
=

[
(2t + 1)e2t (2t + 3)e2t

2e2t 2e2t

]
.

Next we calculate A(t)Φ(t) where A(t) =

[
2 1
0 2

]
:

[
2 1
0 2

] [
te2t (t + 1)e2t

e2t e2t

]
=

[
(2t + 1)e2t (2t + 3)e2t

2e2t 2e2t

]
.

Since these two matrices of functions are the same, Φ(t) is a solution matrix.

Next check the second condition of (4) at t = 0:

detΦ(0) = det

[
0 1
1 1

]
= −1 6= 0.

Hence Φ(t) is a fundamental matrix for y′ =
[
2 1
0 2

]
y. J

Example 6.3.7. Show that

Φ(t) =

[
t2 t3

2t 3t2

]

is a fundamental matrix for the system y′ = A(t)y where

A(t) =

[
0 1

− 6

t2
4

t

]
.

I Solution. Note that

Φ′(t) =

[
2t 3t2

2 6t

]
=

[
0 1

− 6

t2
4

t

][
t2 t3

2t 3t2

]
,

while

detΦ(1) =

[
1 1
2 3

]
= 1 6= 0.

Hence Φ(t) is a fundamental matrix. Note that Φ(0) =

[
0 0
0 0

]
which has determinant

0. Why does this not prevent Φ(t) from being a fundamental matrix? J
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In Exercise 29, Page 333 you were asked to verify the product rule for differentiating
a product of matrix functions. The rule is

(B(t)C(t))′ = B′(t)C(t) + B(t)C ′(t).

Since matrix multiplication is not commutative, it is necessary to be careful of the order.
If one of the matrices is constant, then the product rule is simpler:

(B(t)C)′ = B′(t)C

since C ′ = 0 for a constant matrix. We apply this observation in the following way.
Suppose that Φ1(t) is a fundamental matrix of a homogeneous system y′ = A(t)y where
A(t) is an n×n matrix of continuous functions on an interval I. According to Theorem
6.3.4 this means that

Φ′
1(t) = A(t)Φ1(t) and detΦ1(t) 6= 0.

Now define a new n × n matrix of functions Φ2(t) := Φ1(t)C where C is an n × n
constant matrix. Then

Φ′
2(t) = (Φ1(t)C)′ = Φ′

1(t)C = A(t)Φ1(t)C = A(t)Φ2(t),

so that Φ2(t) is a solution matrix for the homogeneous system y′ = A(t)y. To determine
if Φ2(t) is also a fundamental matrix, it is only necessary to compute the determinant:

detΦ2(t) = det(Φ1(t)C) = detΦ1(t) det C.

Since detΦ1(t) 6= 0, it follows that detΦ2(t) 6= 0 if and only if det C 6= 0, i.e., if and
only if C is a nonsingular n× n matrix.

Example 6.3.8. In Example 6.3.5 it was shown that

Φ(t) =

[
e2t e−t

2e2t −e−t

]

is a fundamental matrix for the system y′ =

[
0 1
2 1

]
y. Let C = 1

3

[
1 1
2 −1

]
. Then

det C = −1/3 6= 0 so C is invertible, and hence

Ψ(t) = Φ(t)C =
1

3

[
e2t e−t

2e2t −e−t

] [
1 1
2 −1

]
=

1

3

[
e2t + 2e−t e2t − e−t

2e2t − 2e−t 2e2t + e−t

]

is also a fundamental matrix for y′ =
[
0 1
2 1

]
y. Note that Ψ(t) has the particularly nice

feature that its value at t = 0 is

Ψ(0) =

[
1 0
0 1

]
= I2

the 2× 2 identity matrix.
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Example 6.3.9. In Example 6.3.6 it was shown that

Φ(t) =

[
te2t (t + 1)e2t

e2t e2t

]

is a fundamental matrix for the system y′ =

[
2 1
0 2

]
y. Let C =

[−1 1
1 0

]
. Then

det C = −1 6= 0 so C is invertible, and hence

Ψ(t) = Φ(t)C =

[
te2t (t + 1)e2t

e2t e2t

] [−1 1
1 0

]
=

[
e2t te2t

0 e2t

]

is also a fundamental matrix for y′ =

[
2 1
0 2

]
y. As in the previous example Ψ(0) = I2

is the identity matrix.

If Φ(t) is a fundamental matrix for the linear system y′ = A(t)y on the interval I and
t0 ∈ I, then Φ(t0) is an invertible matrix by Theorem 6.3.4 so if we take C = (Φ(t0))

−1,
then

Ψ(t) = Φ(t)C = Φ(t)(Φ(t0))
−1

is a fundamental matrix which satisfies the extra condition

Ψ(t0) = Φ(t0)(Φ(t0))
−1 = In.

Hence, we can always arrange for our fundamental matrices to be the identity at the
initial point t0. Moreover, the uniqueness part of the existence and uniqueness theorem
insures that there is only one solution matrix satisfying this extra condition. We record
this observation in the following result.

Theorem 6.3.10. If A(t) is a continuous n × n matrix of functions on an interval I
and t0 ∈ I, then there is an n× n matrix of functions Ψ(t) such that

1. Ψ(t) is a fundamental matrix for the homogeneous linear equation y′ = A(t)y and

2. Ψ(t0) = In,

3. Moreover, Ψ(t) is uniquely determined by these two properties.

4. If y0 is a constant vector, then y(t) = Ψ(t)y0 is the unique solution of the homo-
geneous initial value problem y′ = A(t)y, y(t0) = y0.
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Proof. Only the last statement was not discussed in the preceding paragraphs. Suppose
that Ψ(t) satisfies conditions (1) and (2) and let y(t) = Ψ(t)y0. Then y(t0) = Ψ(t0)y0 =
Iny0 = y0. Moreover,

y′(t) = Ψ′(t)y0 = A(t)Ψ(t)y0 = A(t)y(t),

so y(t) is a solution of the initial value problem, as required.

Example 6.3.11. Solve the initial value problem y′ =
[
0 1
2 1

]
y, y(0) =

[
3
−6

]
.

I Solution. In Example 6.3.8 we found a fundamental matrix for y′ =
[
0 1
2 1

]
y satis-

fying (1) and (2) of the above theorem, namely

Ψ(t) =
1

3

[
e2t + 2e−t e2t − e−t

2e2t − 2e−t 2e2t + e−t

]
.

Hence the unique solution of the initial value problem is

y(t) = Ψ(t)

[
3
−6

]
=

1

3

[
e2t + 2e−t e2t − e−t

2e2t − 2e−t 2e2t + e−t

] [
3
−6

]
=

[ −e2t + 4e−t

−2e2t − 4e−t

]
.

J

Example 6.3.12. Solve the initial value problem y′ =
[
2 1
0 2

]
y, y(0) =

[−2
3

]
.

I Solution. In Example 6.3.9 we found a fundamental matrix for y′ =
[
2 1
0 2

]
y satis-

fying (1) and (2) of the above theorem, namely

Ψ(t) =

[
e2t te2t

0 e2t

]
.

Hence the solution of the initial value problem is

y(t) = Ψ(t)

[−2
3

]
=

[
e2t te2t

0 e2t

] [−2
3

]
=

[
(3t− 2)e2t

3e2t

]
.

J
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We conclude this section by observing that for a constant matrix function A(t) = A,
at least in principle, it is easy to describe the fundamental matrix Ψ(t) from Theorem
6.3.10. It is in fact the matrix function we have already encountered in the last section,
i.e., the matrix exponential eAt. Recall that eAt (for a constant matrix A) is defined by
substituting A for a in the Taylor series expansion of eat:

(∗) eAt = In + At +
1

2
A2t2 +

1

3!
A3t3 + · · ·+ 1

n!
Antn + · · ·

We have already observed (but not proved) that the series on the right hand side of (∗)
converges to a well defined matrix function for all matrices A. Let Ψ(t) = eAt. If we set
t = 0 in the series we obtain Ψ(0) = eA0 = In and if we differentiate the series terms by
term (which can be shown to be a valid operation), we get

Ψ′(t) =
d

dt
eAt

= 0 + A + A2t +
1

2
A3t2 + · · ·+ 1

(n− 1)!
Antn−1 + · · ·

= A

(
In + At +

1

2
A2t2 + · · ·+ 1

(n− 1)!
An−1tn−1 + · · ·

)

= AeAt

= AΨ(t).

Thus we have shown that Ψ(t) = eAt satisfies the first two properties of Theorem 6.3.10,
and hence we have arrived at the important result:

Theorem 6.3.13. Suppose A is an n× n constant matrix.

1. A fundamental matrix for the linear homogeneous problem y′ = Ay is Ψ(t) = eAt.

2. If y0 is a constant vector, then the unique solution of the initial value problem
y′ = Ay, y(0) = y0 is

y(t) = eAty0. (5)

3. If Φ(t) is any fundamental matrix for the problem y′ = Ay, then

eAt = Φ(t) (Φ(0))−1 . (6)
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Example 6.3.14. 1. From the calculations in Example 6.3.8 we conclude that if

A =

[
0 1
2 1

]
, then

eAt =
1

3

[
e2t + 2e−t e2t − e−t

2e2t − 2e−t 2e2t + e−t

]
.

2. From the calculations in Example 6.3.9 we conclude that if A =

[
2 1
0 2

]
then

eAt =

[
e2t te2t

0 e2t

]
.

What we have seen in this section is that if we can solve y′ = Ay (where A is a
constant matrix), then we can find eAt by Equation (6), and conversely, if we can find
eAt by some method, then we can find all solutions of y′ = Ay by means of Equation (5).
Over the next few sections we will learn a couple of different methods for calculating
eAt.

Exercises

1. For each of the following pairs of matrix functions Φ(t) and A(t), determine if Φ(t) is
a fundamental matrix for the system y′ = A(t)y. It may be useful to review Examples
4.3.5 – 4.3.7.



6.3. LINEAR HOMOGENEOUS EQUATIONS 347

Φ(t) A(t)

(a)
[

cos t sin t
− sin t cos t

] [
0 1
−1 0

]

(b)
[

cos t sin t
− sin(t + π/2) cos(t + π/2)

] [
0 1
−1 0

]

(c)
[
e−t e2t

e−t 4e2t

] [−2 1
−4 3

]

(d)
[

e−t − e2t e2t

e−t − 4e2t 4e2t

] [−2 1
−4 3

]

(e)
[

et e2t

e3t e4t

] [
1 2
3 4

]

(f)
[
e2t 3e3t

e2t 2e3t

] [
5 −3
2 0

]

(g)
[

3e2t e6t

−e2t e6t

] [
3 3
1 5

]

(h)
[−2e3t (1− 2t)e3t

e3t te3t

] [
1 −4
1 5

]

(i)
[
sin(t2/2) cos(t2/2)
cos(t2/2) − sin(t2/2)

] [
0 t
−t 0

]

(j)
[
1 + t2 3 + t2

1− t2 −1− t2

] [
t t
−t −t

]

(k)

[
et2/2 e−t2/2

et2/2 −e−t2/2

] [
0 t
t 0

]

2. For each of the matrices A in parts (a), (c), (f), (g), (h) of Exercise 1:

(a) Find a fundamental matrix Ψ(t) for the system y′ = Ay satisfying the condition
Ψ(0) = I2. (See Examples 4.3.8 and 4.3.9.)

(b) Solve the initial value problem y′ = Ay, y(0) =
[

3
−2

]
.

(c) Find eAt.

3. For each of the matrices A(t) in parts (i), (j) and (k) of Exercise 1:

(a) Find a fundamental matrix Ψ(t) for the system y′ = A(t)y satisfying the condition
Ψ(0) = I2.

(b) Solve the initial value problem y′ = A(t)y, y(0) =
[

3
−2

]
.

(c) Is eA(t)t = Ψ(t)? Explain.
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4. In each problem below determine whether the given functions are linearly independent.

(a) y1 =
[
1
2

]
y2 =

[
t
−t

]
.

(b) y1 =
[
1
1

]
y2 =

[
t
t

]
.

(c) y1 =
[
tet

et

]
y2 =

[
e−t

te−t

]
.

(d) y1 =




1
t
t2


 y2 =




0
1
t


 y3 =




0
0
1


 .

6.4 Constant Coefficient Homogeneous Systems

In previous sections we studied some of the basic properties of the homogeneous linear
system of differential equations

y′ = A(t)y. (1)

In the case of a constant coefficient system, i.e., A(t) = A = a constant matrix, this
analysis culminated in Theorem 6.3.13 which states that a fundamental matrix for y′ =
Ay is the matrix exponential function eAt and the unique solution of the initial value
problem y′ = Ay, y(0) = y0 is

y(t) = eAty0.

That is, the solution of the initial value problem is obtained by multiplying the funda-
mental matrix eAt by the initial value vector y0. The problem of how to compute eAt for
a particular constant matrix A was not addressed, except for a few special cases where
eAt could be computed directly from the series definition of eAt. In this section we will
show how to use the Laplace transform to solve the constant coefficient homogeneous
system y′ = Ay and in the process we will arrive at a Laplace transform formula for eAt.

As we have done previously, we will do our calculations in detail for the case of a

constant coefficient linear system where the coefficient matrix A =

[
a b
c d

]
is a 2 × 2

constant matrix so that Equation (1) becomes

y′1 = ay1 + by2

y′2 = cy1 + dy2.
(2)
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The calculations are easily extended to systems with more than 2 unknown functions.
According to the existence and uniqueness theorem (Theorem 6.2.2) there is a solution

y(t) =

[
y1(t)
y2(t)

]
for system (2), and we assume that the functions y1(t) and y2(t) have

Laplace transforms. From Chapter 2, we know that this is a relatively mild restriction
on these functions, since, in particular, all functions of exponential growth have Laplace
transforms. Our strategy will be to use the Laplace transform of the system (2) to
determine what the solution must be.

Let Y1(s) = L(y1) and Y2(s) = L(y2). Applying the Laplace transform to each
equation in system (2) and using the formulas from Table C.2 gives a system of algebraic
equations

sY1(s)− y1(0) = aY1(s) + bY2(s)

sY2(s)− y2(0) = cY1(s) + dY2(s).
(3)

Letting Y =

[
Y1

Y2

]
, the system (3) can be written compactly in matrix form as

sY (s)− y(0) = AY (s)

which is then easily rewritten as the matrix equation

(sI − A) Y (s) = y(0). (4)

If the matrix sI − A is invertible, then we may solve Equation (4) for Y (s), and then
apply the inverse Laplace transform to the entries of Y (s) to find the unknown functions
y(t). But

sI − A =

[
s− a −b
−c s− d

]
(5)

so p(s) = det(sI−A) = (s−a)(s−b)−bc = s2−(a+d)s+(ad−bc) = s2−Tr(A)s+det(A).
Hence p(s) is a nonzero polynomial function of degree 2, so that the matrix sI − A is
invertible as a matrix of rational functions, although one should note that for certain
(the ≤ 2 roots of p(s)) values of s the numerical matrix will not be invertible. For the
purposes of Laplace transforms, we are only interested in the inverse of sI − A as a
matrix of rational functions. Hence we may solve Equation (4) for Y (s) to get

Y (s) = (sI − A)−1 y(0). (6)

Now

(sI − A)−1 =
1

p(s)

[
s− d b

c s− a

]
(7)



350 CHAPTER 6. SYSTEMS OF DIFFERENTIAL EQUATIONS

so let Z1(s) =
1

p(s)

[
s− d

c

]
and Z2(s) =

1

p(s)

[
b

s− a

]
be the first and second columns

of (sI − A)−1 := Z(s), respectively. Since each entry of Z1(s) and Z2(s) is a rational
function of s with denominator the quadratic polynomial p(s), the analysis of inverse
Laplace transforms of rational functions of s with quadratic denominator from Section
3.3 applies to show that each entry of

z1(t) = L−1Z1(s) =




L−1

(
s− d

p(s)

)

L−1

(
c

p(s)

)




and z2(t) = L−1Z2(s) =




L−1

(
b

p(s)

)

L−1

(
s− a

p(s)

)




will be of the form

1. c1e
r1t + c2e

r2t if p(s) has distinct real roots r1 6= r2;

2. c1e
rt + c2te

rt if p(s) has a double root r; or

3. c1e
αt cos βt + c2e

αt sin βt if p(s) has complex roots α± iβ,

where c1 and c2 are appropriate constants. Equation (6) shows that

Y (s) = Z(s)y(0)

= y1(0)Z1(s) + y2(0)Z2(s), (8)

and by applying the inverse Laplace transform we conclude that the solution to Equation
(2) is

y(t) = y1(0)z1(t) + y2(0)z2(t). (9)

If we let

z(t) =
[
z1(t) z2(t)

]
= L−1

(
(sI − A)−1) , (10)

then Equation (9) for the solution y(t) of system (2) has a particularly nice and useful
matrix formulation:

y(t) = z(t)y(0). (11)

Before analyzing Equation (11) further to extract theoretical conclusions, we will
first see what the solutions look like in a few numerical examples.
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Example 6.4.1. Find all solutions of the constant coefficient homogeneous linear sys-
tem:

y′1 = y2

y′2 = 4y1.
(12)

I Solution. In this system the coefficient matrix is A =

[
0 1
4 0

]
. Thus sI − A =

[
s −1
−4 s

]
so that p(s) = det(sI − A) = s2 − 4 and

(sI − A)−1 =




s

s2 − 4

1

s2 − 4

4

s2 − 4

s

s2 − 4


 . (13)

Since
1

s2 − 4
=

1

4

(
1

s− 2
− 1

s + 2

)
and

s

s2 − 4
=

1

2

(
1

s− 2
+

1

s + 2

)
,

we conclude from our Laplace transform formulas (Table C.2) that the matrix z(t) of
Equation (10) is

z(t) =




1

2
(e2t + e−2t)

1

4
(e2t − e−2t)

e2t − e−2t 1

2
(e2t + e−2t)


 . (14)

Hence, the solution of the system (12) is

y(t) =




1

2
(e2t + e−2t)

1

4
(e2t − e−2t)

e2t − e−2t 1

2
(e2t + e−2t)




[
c1

c2

]

=




1

2
c1 +

1

4
c2

c1 +
1

2
c2


 e2t +




1

2
c1 − 1

4
c2

−c1 +
1

2
c2


 e−2t,

(15)

where y(0) =

[
y1(0)
y2(0)

]
=

[
c1

c2

]
.



352 CHAPTER 6. SYSTEMS OF DIFFERENTIAL EQUATIONS

Let’s check that we have, indeed, found a solution to the system of differential equa-
tions (2). From Equation (15) we see that

y1(t) =

(
1

2
c1 +

1

4
c2

)
e2t +

(
1

2
c1 − 1

4
c2

)
e−2t,

and

y2(t) =

(
c1 +

1

2
c2

)
e2t +

(
−c1 − 1

2
c2

)
e−2t.

Thus y′1(t) = y2(t) and y′2(t) = 4y1(t), which is what it means to be a solution of system
(12).

The solution to system (12) with initial conditions y1(0) = 1, y2(0) = 0 is

y1(t) =




1

2

1


 e2t +




1

2

−1


 e−2t

while the solution with initial conditions y1(0) = 0, y2(0) = 1 is

y2(t) =




1

4

1

2


 e2t +




−1

4

1

2


 e−2t.

The solution with initial conditions y1(0) = c1, y2(0) = c2 can then be written

y(t) = c1y1(t) + c2y2(t),

that is, every solution y of system (12) is a linear combination of the two particular

solution y1 and y2. Note, in particular, that y3(t) =

[
1
2

]
e2t is a solution (with c1 = 1,

c2 = 2), while y4 =

[
1
−2

]
e−2t is also a solution (with c1 = 1, c2 = −2). The solutions

y3(t) and y4(t) are notably simple solutions in that each of these solutions is of the form

y(t) = veat (16)

where v ∈ R2 is a constant vector and a is a scalar. Note that

A

[
1
2

]
=

[
2
4

]
= 2

[
1
2

]
and A

[
1
−2

]
=

[−2
4

]
= −2

[
1
−2

]
.
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That is, the vectors v and scalars a such that y(t) = veat is a solution to y′ = Ay are
related by the algebraic equation

Av = av. (17)

A vector-scalar pair (v, a) which satisfies Equation 17 is known as a eigenvector-
eigenvalue pair for the matrix A. Finally, compare these two solutions y3(t) and y4(t)
of the matrix differential equation y′ = Ay with the solution of the scalar differential
equation y′ = ay, which we recall (see Section 1.3) is y(t) = veat where v = y(0) ∈ R is a
scalar. In both cases one gets either a scalar or a vector multiplied by a pure exponential
function eat. J

Example 6.4.2. Find all solutions of the linear homogeneous system

y′1 = y1 + y2

y′2 = −4y1 − 3y2.
(18)

I Solution. For this system, the coefficient matrix is A =

[
1 1
−4 −3

]
. We will solve

this equation by using Equation (11). Form the matrix

sI − A =

[
s− 1 −1

4 s + 3

]
.

Then p(s) = det(sI − A) = (s− 1)(s + 3) + 4 = (s + 1)2, so that

(sI − A)−1 =
1

(s + 1)2

[
s + 3 1
−4 s− 1

]

=




1

s + 1
+

2

(s + 1)2

1

(s + 1)2

−4

(s + 1)2

1

s + 1
− 2

(s + 1)2


 .

(19)

Thus the matrix z(t) from Equation (10) is, using the inverse Laplace formulas from
Table C.2

z(t) = L−1
(
(sI − A)−1

)
=

[
e−t + 2te−t te−t

−4te−t e−t − 2te−t

]
.

The general solution to system (18) is therefore

y(t) = z(t)y(0) = c1

[
e−t + 2te−t

−4te−t

]
+ c2

[
te−1

e−t − 2te−t

]
. (20)
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Taking c1 = 1 and c2 = −2 in this equation gives a solution

y1(t) =

[
e−t

−2e−t

]
=

[
1
−2

]
e−t,

which is a solution of the form y(t) = veat where v =

[
1
−2

]
is a constant vector and

a = −1 is a scalar. Note that (v, −1) is an eigenvector-eigenvalue pair for the matrix A
(see Example 6.4.1). That is,

Av = A

[
1 1
−1 −3

] [
1
−2

]
=

[−1
2

]
= (−1) ·

[
1
−2

]
.

J
Example 6.4.3. Find the solution of the linear homogeneous initial value problem:

y′1 = y1 + 2y2

y′2 = −2y1 + y2

, y1(0) = c1, y2(0) = c2. (21)

I Solution. For this system, the coefficient matrix is A =

[
1 2
−2 1

]
. We will solve

this equation by using Equation (11), as was done for the previous examples. Form the
matrix

sI − A =

[
s− 1 −2

2 s− 1

]
.

Then p(s) = det(sI − A) = (s− 1)2) + 4, so that

(sI − A)−1 =
1

(s− 1)2 + 4

[
s− 1 2
−2 s− 1

]

=




s− 1

(s− 1)2 + 4

2

(s− 1)2 + 4

−2

(s− 1)2 + 4

s− 1

(s− 1)2 + 4


 .

Hence, using the inverse Laplace transform formulas from Table C.2, the matrix z(t) of
Equation (10) is

z(t) = L−1
(
(sI − A)−1

)
=

[
et cos 2t et sin 2t
−et sin 2t et cos 2t

]
,

and the solution of system (21) is

y(t) =

[
y1(t)
y2(t)

]
=

[
c1e

t cos 2t + c2e
t sin 2t

−c1e
t sin 2t + c2e

t cos 2t

]
.

J
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Now we return briefly to the theoretical significance of Equation (11). According to
the analysis leading to (11), the unique solution of the initial value problem

(∗) y′ = Ay, y(0) = y0,

where A is a 2× 2 constant matrix, is

y(t) = z(t)y(0) = z(t)y0,

where
z(t) = L−1

(
(sI − A)−1) .

But according to Theorem 6.3.13, the unique solution of the initial value problem (*) is

y(t) = eAty0.

These two descriptions of y(t) give an equality of matrix functions

(∗∗) L−1
(
(sI − A)−1) y0 = z(t)y0 = eAty0

which holds for all choices of the constant vector y0. But if C is a 2 × 2 matrix then

Ce1 = C

[
1
0

]
is the first column of C and Ce2 = C

[
0
1

]
is the second column of C (check

this!). Thus, if B and C are two 2× 2 matrices such that Bei = Cei for i = 1, 2, then
B = C (since column i of B = column i of C for i = 1, 2). Taking y0 = ei for i = 1, 2,
and applying this observation to the matrices of (∗∗), we arrive at the following result:

Theorem 6.4.4. If A is a 2× 2 constant matrix, then

eAt = L−1
(
(sI − A)−1) . (22)

Example 6.4.5. From the calculations of L−1
(
(sI − A)−1) done in Examples 6.4.1,

6.4.2 and 6.4.3 this theorem gives the following values of eAt:

A eAt

[
0 1
4 0

]



1

2
(e2t + e−2t)

1

4
(e2t − e−2t)

e2t − e−2t 1

2
(e2t + e−2t)




[
1 1
−4 −3

] [
e−t + 2te−t te−t

−4te−t e−t − 2te−t

]

[
1 2
−2 1

] [
et cos 2t et sin 2t
−et sin 2t et cos 2t

]
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While our derivation of the formula for eAt in Theorem 6.4.4 was done for 2× 2 ma-
trices, the formula remains valid for arbitrary constant n×n matrices A, and moreover,
once one can guess that there is a relationship between eAt and L−1

(
(sI − A)−1), it is

a simple matter to verify it by computing the Laplace transform of the matrix function
eAt. This computation is, in fact, almost the same as the computation of L(eat) in
Example 2.1.4.

Theorem 6.4.6. If A is an n × n constant matrix (whose entries can be either real
numbers or complex numbers), then

eAt = L−1
(
(sI − A)−1) . (23)

Proof. Note that if B is an n× n invertible matrix (of constants), then

d

dt

(
B−1eBt

)
= B−1 d

dt
eBt = B−1BeBt = eBt,

so that

(†)
∫ t

1

eBτ dτ = B−1(eBt − I).

Note that this is just the matrix analog of the integration formula

∫ t

0

ebτ dτ = b−1(ebt − 1).

Now just mimic the scalar calculation from Example 2.1.4, and note that formula (†)
will be applied with B = A−sI, where, as usual, I will denote the n×n identity matrix.

L (
eAt

)
(s) =

∫ ∞

0

eAte−st dt

=

∫ ∞

0

eAte−stI dt

=

∫ ∞

0

e(A−sI)t dt

= lim
N→∞

∫ N

0

e(A−sI)t dt

= lim
N→∞

(A− sI)−1 (
e(A−sI)N − I

)

= (sI − A)−1 .
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The last equality is justified since limN→∞ e(A−sI)N = 0 if s is large enough. This fact,
analogous to the fact that e(a−s)t converges to 0 as t → ∞ provided s > a, will not be
proved.

Example 6.4.7. Compute eAt for the matrix

A =




1 −3 3
−3 1 3
3 −3 1


 ,

and using the calculation of eAt, solve the initial value problem y′ = Ay, y(0) =




1
1
1


.

I Solution. According to Theorem 6.4.6, eAt = L−1
(
(sI − A)−1), so we need to begin

by computing (sI − A)−1, which is most conveniently done (by hand) by using the
adjoint formula for a matrix inverse (see Corollary 5.4.8). Recall that this formula says
that if B is an n× n matrix with det B 6= 0, then B−1 = (det B)−1[Cij] where the term
Cij is (−1)i+j times the determinant of the matrix obtained by deleting the jth row and
ith column from B. We apply this with B = sI − A. Start by calculating

p(s) = det(sI − A) = det




s− 1 3 −3
3 s− 1 −3
−3 3 s− 1


 = (s− 1)(s + 2)(s− 4).

In particular, sI − A is invertible whenever p(s) 6= 0, i.e., whenever s 6= 1, −2, or 4.
Then a tedious, but straightforward calculation, gives

(sI − A)−1 =
1

p(s)




(s− 1)2 + 9 −3(s + 2) 3(s− 4)
−3(s− 4) (s− 1)2 − 9 3(s− 4)
3(s + 2) −3(s + 2) (s− 1)2 − 9




=




(s− 1)2 + 9

p(s)

−3

(s− 1)(s + 4)

3

(s− 1)(s + 2)
−3

(s− 1)(s + 2)

1

s− 1

3

(s− 1)(s + 2)
3

(s− 1)(s− 4)

−3

(s− 1)(s− 4)

1

s− 1




=




− 1

s− 1
+

1

s + 2
+

1

s− 4

1

s− 1
− 1

s− 4

1

s + 1
− 1

s + 2−1

s− 1
+

1

s + 2

1

s− 1

1

s + 1
− 1

s + 2−1

s− 1
+

1

s− 4

1

s− 1
− 1

s− 4

1

s− 1




.
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By applying the inverse Laplace transform to each function in the last matrix gives

eAt = L−1
(
(sI − A)−1) =



−et + e−2t + e4t et − e4t et − e−2t

−et + e−2t et et − e−2t

−et + e4t et − e4t et


 .

Then the solution of the initial value problem is given by y(t) = eAt




1
1
1


 =




1
1
1


 et. J

Remark 6.4.8. Most of the examples of numerical systems which we have discussed in
this section are first order constant coefficient linear systems with two unknown func-
tions, i.e. n = 2 in Definition 6.1.3. Nevertheless, the same analysis works for first order
constant coefficient linear systems in any number of unknown functions, i.e. arbitrary
n. Specifically, Equations (6) and (11) apply to give the Laplace transform Y (s) and
the solution function y(t) for the constant coefficient homogeneous linear system

y′ = Ay

where A is an n×n constant matrix. The practical difficulty in carrying out this program
is in calculating (sI −A)−1. This can be done by programs like Mathematica, MatLab,
or Maple if n is not too large. But even if the calculations of specific entries in the
matrix (sI−A)−1 are difficult, one can extract useful theoretical information concerning
the nature of the solutions of y′ = Ay + q(t) from the formulas like Equation (11) and
from theoretical algebraic descriptions of the inverse matrix (sI − A)−1.

Exercises

For each of the following matrices A, (a) find the matrix z(t) = L−1
(
(sI −A)−1

)
from Equa-

tion (4.4.10) and (b) find the general solution of the homogeneous system y′ = Ay. It will be
useful to review the calculations in Examples 4.4.1 – 4.4.3.
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1.
[−1 0

0 3

]
2.

[
0 2
−2 0

]
3.

[
2 1
0 2

]

4.
[−1 2
−2 −1

]
5.

[
2 −1
3 −2

]
6.

[
3 −4
1 −1

]

7.
[
2 −5
1 −2

]
8.

[−1 −4
1 −1

]
9.

[
2 1
1 2

]

10.
[

5 2
−8 −3

]
11.



−1 0 3
0 2 0
0 0 1


 12.




0 4 0
−1 0 0
1 4 −1




13.



−2 2 1
0 −1 0
2 −2 −1


 14.




0 1 1
1 1 −1
−2 1 3


 15.




3 1 −1
0 3 −1
0 0 3




6.5 Computing eAt

In this section we will present a variant of a technique due to Fulmer2 for computing the
matrix exponential eAt. It is based on the knowledge of what type of functions are in-
cluded in the individual entries of eAt. This knowledge is derived from our understanding
of the Laplace transform table and the fundamental formula

eAt = L−1
(
(sI − A)−1)

which was proved in Theorem 6.4.6.

To get started, assume that A is an n × n constant matrix. The matrix sI − A is
known as the characteristic matrix of A and its determinant

p(s) := det(sI − A)

is known as the characteristic polynomial of A. The following are some basic prop-
erties of sI − A and p(s) which are easily derived from the properties of determinants
in Section 5.4.

1. The polynomial p(s) has degree n, when A is an n× n matrix.

2. The characteristic matrix sI − A is invertible except when p(s) = 0.

2Edward P. Fulmer, Computation of the Matrix Exponential, American Mathematical Monthly, 82
(1975) 156–159.
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3. Since p(s) is a polynomial of degree n, it has at most n roots (exactly n if mul-
tiplicity of roots and complex roots are considered). The roots of p(s) are called
the eigenvalues of A.

4. The inverse of sI − A is given by the adjoint formula (Corollary 5.4.8)

(∗) (sI − A)−1 =
1

p(s)
[Cij(s)] =

[
Cij(s)

p(s)

]

where Cij(s) is (−1)i+j times the determinant of the matrix obtained from sI −A
by deleting the ith column and jth row. For example, if n = 2 then we get the
formula [

s− a −b
−c s− d

]−1

=
1

p(s)

[
s− d b

c s− a

]

which we used in Section 6.4.

5. The functions Cij(s) appearing in (∗) are polynomials of degree at most n − 1.
Therefore, the entries

pij(s) =
Cij(s)

p(s)

of (sI − A)−1 are proper rational functions with denominator of degree n.

6. Since

eAt = L−1
(
(sI − A)−1) =

[
L−1

(
Cij(s)

p(s)

)]
,

the form of the functions

hij(t) = L−1

(
Cij(s)

p(s)

)
,

which are the individual entries of the matrix exponential eAt, are completely
determined by the roots of p(s) and their multiplicities via the analysis of inverse
Laplace transforms of rational functions as described in Section 2.3.

7. Suppose that r is an eigenvalue of A of multiplicity k. That is, r is a root of the
characteristic polynomial p(s) and (s − r)k divides p(s), but no higher power of
s− r divides p(s). We distinguish two cases:

Case 1: The eigenvalue r is real.

In this case r will contribute a linear combination of the functions

(∗real) ert, tert, · · · , tk−1ert

to each hij.
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Case 2: The eigenvalue r = α + iβ has nonzero imaginary part β 6= 0.

In this case r = α + iβ and its complex conjugate r = α− iβ will contribute
a linear combination of the functions

(∗Imag.)
eαt cos βt, teαt cos βt, · · · , tk−1eαt cos βt

eαt sin βt, teαt sin βt, · · · , tk−1eαt sin βt

to each hij.

8. The total number of functions listed in (∗real) and (∗Imag.) counting all eigenval-

ues is n = deg p(s). If we let φ1, . . ., φn be these n functions, then it follows from
our analysis above, that each entry hij(t) can be written as a linear combination

(∗) hij(t) = mij1φ1(t) + · · ·+ mijnφn(t)

of φ1, . . ., φn. We will define an n × n matrix Mk = [mijk] whose ijth entry is
the coefficient of φk(t) in the expansion of hij(t) in (∗). Then we have a matrix
equation expressing this linear combination relation:

(∗∗) eAt = [hij(t)] = M1φ1(t) + · · ·+ Mnφ(t).

Example 6.5.1. As a specific example of the decomposion given by (∗∗), consider the
matrix eAt from Example 6.4.7:

eAt =



−et + e−2t + e4t et − e4t et − e−2t

−et + e−2t et et − e−2t

−et + e4t et − e4t et


 .

In this case (refer to Example 6.4.7 for details), p(s) = (s − 1)(s + 2)(s − 4) so the
eigenvalues are 1, −2 and 4 and the basic functions φi(t) are φ1(t) = et, φ2(t) = e−2t

and φ3(t) = e4t. Then (∗∗) is the identity

eAt =



−1 1 1
−1 1 1
−1 1 1


 et +




1 0 −1
1 0 −1
0 0 1


 e−2t +




1 −1 0
0 0 0
1 −1 0


 e4t,

where

M1 =



−1 1 1
−1 1 1
−1 1 1


 , M2 =




1 0 −1
1 0 −1
0 0 1


 and M3 =




1 −1 0
0 0 0
1 −1 0


 .

With the notational preliminaries out of the way, we can give the variation on Ful-
mer’s algorithm for eAt.
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Algorithm 6.5.2 (Fulmer’s method). The following procedure will compute eAt

where A is a given n× n constant matrix.

1. Compute p(s) = det(sI − A).

2. Find all roots and multiplicities of the roots of p(s).

3. From the above observations we have

(‡) eAt = M1φ1(t) + · · ·+ Mnφn(t),

where Mi i = 1, . . . , n are n× n matrices. We need to find these matrices.

By taking derivatives we obtain a system of linear equations (with matrix coeffi-
cients)

eAt = M1φ1(t) + · · ·+ Mnφn(t)

AeAt = M1φ
′
1(t) + · · ·+ Mnφ

′
n(t)

...

An−1eAt = M1φ
(n−1)
1 (t) + · · ·+ Mnφ

(n−1)
n (t).

Now we evaluate this system at t = 0 to obtain

I = M1φ1(0) + · · · + Mnφn(0)
A = M1φ

′
1(0) + · · · + Mnφ

′
n(0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An−1 = M1φ
(n−1)
1 (0) + · · · + Mnφ

(n−1)
n (0).

(1)

Let

W =




φ1(0) . . . φn(0)
...

. . .
...

φ
(n−1)
1 (0) . . . φ

(n−1)
n (0)




Then W is a nonsingular n × n matrix; its determinant is just the Wronskian
evaluated at 0. So W has an inverse. The above system of equations can now be
written: 



I
A
...

An−1


 = W




M1

M2
...

Mn


 .
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Therefore,

W−1




I
A
...

An−1


 =




M1

M2
...

Mn


 .

Having solved for M1, . . . , Mn we obtain eAt from (‡).

Remark 6.5.3. Note that this last equation implies that each matrix Mi is a polynomial
in the matrix A since W−1 is a constant matrix. Specifically, Mi = pi(A) where

pi(s) = Rowi(W
−1)




1
s
...

sn−1


 .

Example 6.5.4. Solve y′ = Ay with initial condition y(0) =

[
1
2

]
, where A =

[
2 −1
1 0

]
.

I Solution. The characteristic polynomial is p(s) = (s − 1)2. Thus there is only one
eigenvalue r = 1 with multiplicity 2 so only case (∗real) occurs and all of the entries
hij(t) from eAt are linear combinations of et, tet. That is φ1(t) = et while φ2(t) = tet.
Therefore, Equation (∗∗) is

eAt = Met + Ntet.

Differentiating we obtain

AeAt = Met + N(et + tet)

= (M + N)et + Ntet.

Now, evaluate each equation at t = 0 to obtain:

I = M

A = M + N.

Solving for M and N we get

M = I

N = A− I.
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Thus,

eAt = Iet + (A− I)tet

=

[
1 0
0 1

]
et +

[
1 −1
1 −1

]
tet

=

[
et + tet −tet

tet et − tet

]

We now obtain

y(t) = eAty0 = eAt

[
1
2

]

=

[
et + tet −tet

tet et − tet

] [
1
2

]

=

[
et − tet

−tet + 2et

]
.

J

Example 6.5.5. Compute eAt where A =




1 −1
2

0
1 1 −1
0 1

2
1


 using Fulmer’s method.

I Solution. The characteristic polynomial is p(s) = (s−1)(s2−2s+2). The eigenvalues
of A are thus r = 1 and r = 1 ± i. From (∗real) and (∗Imag.) each entry of eAt is a

linear combination of

φ1(t) = et, φ2(t) = et sin t, and φ3(t) = et cos t.

Therefore
eAt = Met + Net sin t + Pet cos t.

Differentiating twice and simplifying we get the system:

eAt = Met + Net sin t + Pet cos t

AeAt = Met + (N − P )et sin t + (N + P )et cos t

A2eAt = Met − 2Pet sin t + 2Net cos t.

Now evaluating at t = 0 gives

I = M + P

A = M + N + P

A2 = M + 2N.
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Solving gives

N = A− I

M = A2 − 2A + 2I

P = −A2 + 2A− I.

Since A2 =




1
2
−1 1

2

2 0 −2
1
2

1 1
2


, it follows that

N =




0 −1
2

0
1 0 −1
0 1

2
0


 M =




1
2

0 1
2

0 0 0
1
2

0 1
2


 and P =




1
2

0 −1
2

0 1 0
−1
2

0 1
2


 .

Hence,

eAt =




1
2

0 1
2

0 0 0
1
2

0 1
2


 et +




0 −1
2

0
1 0 −1
0 1

2
0


 et sin t +




1
2

0 −1
2

0 1 0
−1
2

0 1
2


 et cos t

=
1

2




et + et cos t −et sin t et − et cos t
2et sin t 2et cos t −2et sin t

et − et cos t et sin t et + et cos t


 .

J

The technique of this section is convenient for giving an explicit formula for the
matrix exponential eAt when A is either a 2× 2 or 3× 3 matrix.

eA for 2× 2 matrices.

Suppose that A is a 2×2 real matrix with characteristic polynomial p(s) = det(sI−A) =
s2 + as + b. We distinguish three cases.

1. p(s) = (s− r1)(s− r2) with r1 6= r2.

Then the basic functions are φ1(t) = et1t and φ2(t) = er2t so that eAt = Mer1t +
Ner2t. Equation (1) is then

I = M + N

A = r1M + r2N
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which are easily solved to give

M =
(A− r2I)

r1 − r2

and N =
(A− r1I)

r2 − r1

.

Hence, if p(s) has distinct roots, then

eAt =
(A− r2I)

r1 − r2

er1t +
(A− r1I)

r2 − r1

er2t. (2)

2. p(s) = (s− r)2.

In this case the basic functions are ert and tert so that

(∗) eAt = Mert + Ntert.

This time it is more convenient to work directly from (∗) rather than Equation (1).
Multiplying (∗) by e−rt and observing that eAte−rt = eAte−rtI = e(A−rI)t (because
A commutes with rI), we get

M + Nt = e(A−rI)t

= I + (A− rI)t +
1

2
(A− rI)2t2 + · · · .

Comparing coefficients of t on both sides of the equation we conclude that

M = I, N = (A− rI) and (A− rI)n = 0 for all n ≥ 2.

Hence, if p(s) has a single root of multiplicity 2, then

eAt = (I + (A− rI)t) ert. (3)

3. p(s) = (s− α)2 + β2 where β 6= 0, i.e., p(s) has a pair of complex conjugate roots
α± β.

In this case the basic functions are eαt cos βt and eαt sin βt so that

eAt = Meαt cos βt + Meαt sin βt.

Equation (1) is easily checked to be

I = M

A = αM + βN.
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Solving for M and N then gives

eAt = Ieαt cos βt +
(A− αI)

β
eαt sin βt. (4)

eA for 3× 3 matrices.

Suppose that A is a 3×3 real matrix with characteristic polynomial p(s) = det(sI−A).
As for 2× 2 matrices, we distinguish three cases.

1. p(s) = (s− r1)(s− r2)(s− r3) with r1. r2, and r3 distinct roots of p(s).

This is similar to the first case done above. The basic functions are er1t, er2t, and
er3t so that

eAt = Mer1t + Ner2t + Per3t

and the system of equations (1) is

I = M + N + P
A = r1M+ r2N+ r3P

A2 = r2
1M+ r2

2N+ r2
3P.

(5)

We will use a very convenient trick for solving this system of equations. Suppose
that q(s) = s2 + as + b is any quadratic polynomial. Then in system (5), multiply
the first equation by b, the second equation by a, and then add the three resulting
equations together. You will get

A2 + aA + bI = q(A) = q(r1)M + q(r2)N + q(r3)P.

Suppose that we can choose q(s) so that q(r2) = 0 and q(r3) = 0. Since a quadratic
can only have 2 roots, we will have q(r1) 6= 0 and hence

M =
q(A)

q(r1)
.

But it is easy to find the required q(s), namely, use q(s) = (s − r2)(s − r3). This
polynomial certainly has roots r2 and r3. Thus, we find

M =
(A− r2I)(A− r3I)

(r1 − r2)(r1 − r3)
.
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Similarly, we can find N by using q(s) = (s − r1)(s − r3) and P by using q(s) =
(s− r1)(s− r2). Hence, we find the following expression for eAt:

eAt =
(A− r2I)(A− r3I)
(r1 − r2)(r1 − r3)

er1t +
(A− r1I)(A− r3I)
(r2 − r1)(r2 − r3)

er2t +
(A− r1I)(A− r2I)
(r3 − r1)(r3 − r2)

er3t.

(6)

2. p(s) = (s− r)3, i.e, there is a single eigenvalue of multiplicity 3.

In this case the basic functions are ert, tert, and t2ert so that

eAt = Mert + Ntert + Pt2ert.

As for the case of 2× 2 matrices, multiply by e−rt to get

M + Nt + Pt2 = eAte−rt = e(A−rI)t

= I + (A− rI)t +
1

2
(A− rI)2t2 +

1

3!
(A− rI)3t3 + · · · .

Comparing powers of t on both sides of the equation gives

M = I, N = (A− rI), P = (A−rI)2

2
and (A− rI)n = 0 if n ≥ 3.

Hence,

eAt =

(
I + (A− rI)t +

1

2
(A− rI)2t2

)
ert. (7)

3. p(s) = (s − r1)
2(s − r2) where r1 6= r2. That is, A has one eigenvalue with

multiplicity 2 and another with multiplicity 1.

The derivation is similar to that of the case p(s) = (s− r)3. We will simply record
the result:

eAt =
(

I − (A− r1I)2

(r2 − r1)2

)
er1t +

(
(A− r1I)− (A− r1I)2

r2 − r1

)
ter1t +

(A− r1I)2

(r2 − r1)2
er2t.

(8)
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6.6 Nonhomogeneous Linear Systems

This section will be concerned with the nonhomogeneous linear equation

(∗) y′ = A(t)y + q(t),

where A(t) and q(t) are matrix functions defined on an interval J in R. The strategy will
be analogous to that of Section 3.6 in that we will assume that we have a fundamental
matrix Φ(t) =

[
ϕ1(t) · · · ϕn(t)

]
of solutions of the associated homogeneous system

(∗h) y′ = A(t)y

and we will then use this fundamental matrix Φ(t) to find a solution yp(t) of (∗) by the
method of variation of parameters. Suppose that y1(t) and y2(t) are two solutions of
the nonhomogeneous system (∗). Then

(y1−y2)
′(t) = y′1(t)−y′2(t) = (A(t)y1(t)+q(t))−(A(t)y2(t)+q(t)) = A(t)(y1(t)−y2(t))

so that y1(t)−y2(t) is a solution of the associated homogeneous system (∗h). Since Φ(t)
is a fundamental matrix of (∗h), this means that

y1(t)− y2(t) = Φ(t)c = c1ϕ1(t) + · · ·+ cnϕn(t)

for some constant matrix

c =




c1
...
cn


 .

Thus it follows that if we can find one solution, which we will call yp(t), then all other
solutions are determined by the equation

y(t) = yp(t) + Φ(t)c = yp(t) + yh(t)

where yh(t) = Φ(t)c (c an arbitrary constant vector) is the solution of the associated
homogeneous equation (∗h). This is frequently expressed by the mnemonic:

ygen(t) = yp(t) + yh(t), (1)

or in words: The general solution of a nonhomogeneous equation is the sum of a particu-
lar solution and the general solution of the associated homogeneous equation. The strat-
egy for finding a particular solution of (∗), assuming that we already know yh(t) = Φ(t)c,
is to replace the constant vector c with an unknown vector function

v(t) =




v1(t)
...

vn(t)


 .



370 CHAPTER 6. SYSTEMS OF DIFFERENTIAL EQUATIONS

That is, we will try to choose v(t) so that the vector function

(†) y(t) = Φ(t)v(t) = v1(t)ϕ1(t) + · · ·+ vn(t)ϕn(t)

is a solution of (∗). Differentiating y(t) gives y′(t) = Φ′(t)v(t) + Φ(t)v′(t), and substi-
tuting this expression for y′(t) into (∗) gives

Φ′(t)v(t) + Φ(t)v′(t) = y′(t) = A(t)y(t) + q(t) = A(t)Φ(t)v(t) + q(t).

But Φ′(t) = A(t)Φ(t) (since Φ(t) is a fundamental matrix for (∗h)) so Φ′(t)v(t) =
A(t)Φ(t)v(t) cancels from both sides of the equation to give

Φ(t)v′(t) = q(t).

Since Φ(t) is a fundamental matrix Theorem 6.3.4 implies that Φ(t)−1 exists, and we
arrive at an equation

(‡) v′(t) = Φ(t)−1q(t)

for v′(t). Given an initial point t0 ∈ J , we can then integrate (‡) to get

v(t)− v(t0) =

∫ t

t0

Φ(u)−1q(u) du,

and multiplying by Φ(t) gives

y(t)−Φ(t)v(t0) = Φ(t)

∫ t

t0

Φ(u)−1q(u) du.

But if y(t0) = y0, then y0 = y(t0) = Φ(t0)v(t0), and hence v(t0) = Φ(t0)
−1y0. Substi-

tuting this expression in the above equation, we arrive at the following result, which we
formally record as a theorem.

Theorem 6.6.1. Suppose that A(t) and q(t) are continuous on an interval J and t0 ∈ J .
If Φ(t) is a fundamental matrix for the homogeneous system y′ = A(t)y then the unique
solution of the nonhomogeneous initial value problem

y′ = A(t)y + q(t), y(t0) = y0

is

y(t) = Φ(t) (Φ(t0))
−1 y0 + Φ(t)

∫ t

t0

Φ(u)−1q(u) du. (2)
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Remark 6.6.2. The procedure described above is known as variation of parameters
for nonhomogeneous systems. It is completely analogous to the technique of varia-
tion of parameters previously studied for a single second order linear nonhomogeneous
differential equation. See Section 3.6.

Remark 6.6.3. How does the solution of y′ = A(t)y + q(t) expressed by Equation
(2) correlate to the general mnemonic expressed in Equation (1)? If we let the initial
condition y0 vary over all possible vectors in Rn, then yh(t) is the first part of the
expression on the right of Equation (2). That is yh(t) = Φ(t) (Φ(t0))

−1 y0. The second
part of the expression on the right of Equation (2) is the particular solution of y′ =
A(t)y + q(t) corresponding to the specific initial condition y(t0) = 0. Thus, in the
language of (1)

yp = Φ(t)

∫ t

t0

Φ(u)−1q(u) du.

Finally, ygen(t) is just the function y(t), and the fact that it is the general solution is
just the observation that the initial vector y0 is allowed to be arbitrary.

Example 6.6.4. Solve the initial value problem

y′ =
[
0 1
2 1

]
y +

[
0
−et

]
, y(0) =

[
1
−1

]
. (3)

I Solution. From Example 6.3.5 we have that

Φ(t) =

[
e2t e−t

2e2t −e−t

]

is a fundamental matrix for the homogeneous system y′ =

[
0 1
2 1

]
y, which is the as-

sociated homogeneous system y′ = Ay for the nonhomogeneous system (3). Then
detΦ(t) = −3et and

Φ(t)−1 =
1

−3et

[−e−t −e−t

−2e2t e2t

]
=

1

3

[
e−2t e−2t

2et −et

]
.

Then

Φ(0)−1

[
1
−1

]
=

1

3

[
1 1
2 −1

] [
1
−1

]
=

[
0
1

]
,

and hence

Φ(t)Φ(0)−1

[
1
−1

]
=

[
e2t e−t

2e2t −e−t

] [
0
1

]
=

[
e−t

−e−t

]
.
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which is the first part of y(t) in Equation (2). Now compute the second half of Equation
(2):

Φ(t)

∫ t

t0

Φ(u)−1q(u) du =

[
e2t e−t

2e2t −e−t

] ∫ t

0

1

3

[
e−2u e−2u

2eu −eu

] [
0
−eu

]
du

=

[
e2t e−t

2e2t −e−t

] ∫ t

0

1

3

[−e−u

e2u

]
du

=

[
e2t e−t

2e2t −e−t

] 


1
3
(e−t − 1)

1
6
(e2t − 1)




=




1
3
(et − e2t) + 1

6
(et − e−t)

2
3
(et − e2t)− 1

6
(et − e−t)




=




1
2
et − 1

3
e2t − 1

6
e−t

1
2
et − 2

3
e2t + 1

6
e−t


 .

Putting together the two parts which make up y(t) in Equation (2) we get

y(t) =

[
e−t

−e−t

]
+




1
2
et − 1

3
e2t − 1

6
e−t

1
2
et − 2

3
e2t + 1

6
e−t


 .

We will leave it as an exercise to check our work by substituting the above expression
for y(t) back into the system (3) to see that we have in fact found the solution. J

If the linear system y′ = Ay + q(t) is constant coefficient, then a fundamental
matrix for the associated homogeneous system is Φ(t) = eAt. Since (eAt)−1 = e−At, it
follows that eAt(eAt0)−1 = eA(t−t0) and hence Theorem 6.6.1 has the following form in
this situation.

Theorem 6.6.5. Suppose that A is a constant matrix and q(t) is a continuous vector
function on an interval J and t0 ∈ J . Then the unique solution of the nonhomogeneous
initial value problem

y′ = Ay + q(t), y(t0) = y0

is

y(t) = eA(t−t0)y0 + eAt

∫ t

t0

e−Auq(u) du. (4)
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You should compare the statement of this theorem with the solution of the first order
linear initial value problem as expressed in Corollary 1.3.9.

Example 6.6.6. Solve the initial value problem

y′ =
[−1 1
−4 3

]
y +

[
et

2et

]
, y(0) =

[
1
0

]
.

I Solution. In this example, A =

[−1 1
−4 3

]
, q(t) =

[
et

2et

]
, t0 = 0, and y(0) =

[
1
0

]
.

Since the characteristic polynomial of A is p(s) = det(sI−A) = (s−1)2, the fundamental
matrix eAt can be computed from Equation (3):

eAt = (I + (A− I)t)et

=

[
1− 2t t
−4t 1 + 2t

]
et.

Since e−At = eA·(−t), we can compute e−At by simply replacing t by −t in the formula
for eAt:

e−At =

[
1 + 2t −t

4t 1− 2t

]
e−t.

Then applying Equation (4) give

y(t) = eAty0 + eAt

∫ t

0

e−Auq(u) du

=

[
1− 2t t
−4t 1 + 2t

]
et

[
1
0

]
+

[
1− 2t t
−4t 1 + 2t

]
et

∫ t

0

[
1 + 2u −u

4u 1− 2u

]
e−u

[
eu

2eu

]
du

=

[
(1− 2t)et

−4tet

]
+

[
1− 2t t
−4t 1 + 2t

]
et

∫ t

0

[
1
2

]
du

=

[
(1− 2t)et

−4tet

]
+

[
1− 2t t
−4t 1 + 2t

]
et

[
t
2t

]

=

[
(1− 2t)et

−4tet

]
+

[
tet

2tet

]
.

J

If we take the initial point t0 = 0 in Theorem 6.6.5, then we can get a further
refinement of Equation (4) by observing that

eAt

∫ t

0

e−Auq(u) du =

∫ t

0

eA(t−u)q(u) du = eAt ∗ q(t)
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where eAt∗q(t) means the matrix of functions obtained by a formal matrix multiplication
in which ordinary product of entries are replaced by the convolution product. For

example, if B(t) =

[
h11(t) h12(t)
h21(t) h22(t)

]
and q(t) =

[
q1(t)
q2(t)

]
, then by B(t) ∗ q(t) we mean the

matrix

B(t)∗q(t) =




(h11 ∗ q1)(t) + (h12 ∗ q2)(t)

(h21 ∗ q1)(t) + (h22 ∗ q2)(t)


 =




∫ t
0 h11(t− u)q1(u) du +

∫ t
0 h12(t− u)q2(u) du

∫ t
0 h21(t− u)q1(u) du +

∫ t
0 h22(t− u)q2(u) du


 .

With this observation we can give the following formulation of Theorem 6.6.5 in
terms of the convolution product.

Theorem 6.6.7. Suppose that A is a constant matrix and q(t) is a continuous vector
function on an interval J and 0 ∈ J . Then the unique solution of the nonhomogeneous
initial value problem

y′ = Ay + q(t), y(t0) = y0

is

y(t) = eAty0 + eAt ∗ q(t). (5)

Remark 6.6.8. For low dimensional examples, the utility of this result is greatly en-
hanced by the use of the explicit formulas (2) – (8) from the previous section and the
table of convolution products (Table C.3).

Example 6.6.9. Solve the following constant coefficient non-homogeneous linear sys-
tem:

y′1 = y2 + e3t

y′2 = 4y1 + et.
(6)

I Solution. In this system the coefficient matrix is A =

[
0 1
4 0

]
and q(t) =

[
e3t

et

]
. The

associated homogeneous equation y′ = Ay has already been studied in Example 6.4.1
where we found that a fundamental matrix is

z(t) =




1

2
(e2t + e−2t)

1

4
(e2t − e−2t)

e2t − e−2t 1

2
(e2t + e−2t)


 . (7)
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Since, z(0) =

[
1 0
0 1

]
it follows that z(t) = eAt. If we write eAt in terms of its columns,

so that eAt =
[
z1(t) z2(t)

]
then we conclude that a solution of the initial value problem

y′ = Ay + q(t), y(0) = 0

is given by

yp(t) = eAt ∗ q(t)

= z1(t) ∗ q1(t) + z2(t) ∗ q2(t)

= z1 ∗ e3t + z2 ∗ et

=

[
1
2
(e2t + e−2t)

e2t − e−2t

]
∗ e3t +

[
1
4
(e2t − e−2t)

1
2
(e2t + e−2t)

]
∗ et

=

[
1
2

(
e3t − e2t + 1

5
(e3t − e−2t)

)

e3t − e2t − 1
5
(e3t − e−2t)

]
+

[
1
4

(
e2t − et − 1

3
(et − e−2t)

)
1
2

(
e2t − et + 1

3
(e3t − e−2t)

)
]

=

[
3
5
e3t − 1

2
e2t − 1

10
e−2t

4
5
e3t − e2t + 1

5
e−2t

]
+

[
1
4
e2t + 1

12
e−2t − 1

3
et

1
2
e2t − 1

6
e−2t − 1

3
et

]

=

[
3
5
e3t − 1

3
et − 1

4
e2t − 1

60
e−2t

4
5
e3t − 1

3
et − 1

2
e2t + 1

30
e−2t

]
.

The general solution to (6) is then obtained by taking yp(t) and adding to it the

general solution yh(t) = eAt

[
c1

c2

]
of the associated homogeneous equation. Hence,

ygen =

[
1
2
c1 + 1

4
c2

c1 + 1
2
c2

]
e2t +

[
1
2
c1 − 1

4
c2

−c1 + 1
2
c2

]
e−2t +

[
3
5
e3t − 1

3
et − 1

4
e2t − 1

60
e−2t

4
5
e3t − 1

3
et − 1

2
e2t + 1

30
e−2t

]
.

J

Exercises

In part (a) of each exercise in Section 4.4, you were asked to find eAt for the given matrix A.
Using your answer to that exercise, solve the nonhomogeneous equation

y′ = Ay + q(t), y(0) = 0,
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where A is the matrix in the corresponding exercise in Section 4.4 and q(t) is the following
matrix function. (Hint: Theorem 4.6.5 and Example 4.6.7 should prove particularly useful to
study for these exercises.)

1. q(t) =
[
e−t

2et

]
2. q(t) =

[
0

cos t

]
3. q(t) =

[
t
1

]

5. q(t) =
[

et

e−t

]
7. q(t) =

[
0

sin t

]
11. q(t) =




et

e2t

e−t






Appendix A

COMPLEX NUMBERS

A.1 Complex Numbers

The history of numbers starts in the stone age, about 30,000 years ago. Long before hu-
mans could read or write, a caveman who counted the deer he killed by a series of notches
carved into a bone, introduced mankind to the natural counting numbers 1, 2, 3, 4, · · · .
To be able to describe quantities and their relations among each other, the first human
civilizations expanded the number system first to rational numbers (integers and frac-
tions) and then to real numbers (rational numbers and irrational numbers like

√
2 and

π). Finally in 1545, to be able to tackle more advanced computational problems in his
book about The Great Art (Ars Magna), Girolamo Cardano brought the complex num-
bers (real numbers and “imaginary” numbers like

√−1) into existence. Unfortunately,
450 years later and after changing the whole of mathematics forever, complex numbers
are still greeted by the general public with suspicion and confusion.

The problem is that most folks still think of numbers as entities that are used solely
to describe quantities. This works reasonably well if one restricts the number universe
to the real numbers, but fails miserably if one considers complex numbers: no one will
ever catch

√−1 pounds of crawfish, not even a mathematician.

In mathematics, numbers are used to do computations, and it is a matter of fact
that nowadays almost all serious computations in mathematics require somewhere along
the line the use of the largest possible number system given to mankind: the complex
numbers. Although complex numbers are useless to describe the weight of your catch of
the day, they are indispensable if, for example, you want to make a sound mathematical
prediction about the behavior of any biological, chemical, or physical system in time.

377
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Since the ancient Greeks, the algebraic concept of a real number is associated with
the geometric concept of a point on a line (the number line), and these two concepts are
still used as synonyms. Similarly, complex numbers can be given a simple, concrete, ge-
ometric interpretation as points in a plane; i.e., any complex number z corresponds to
a point in the plane (the number plane) and can be represented in Cartesian coordinates
as z = (x, y), where x and y are real numbers.

We know from Calculus II that every point z = (x, y) in the plane can be described
also in polar coordinates as z = [α, r], where r = |z| =

√
x2 + y2 denotes the radius

(length, modulus, norm, absolute value, distance to the origin) of the point
z, and where α = arg(z) is the angle (in radians) between the positive x-axis and the
line joining 0 and z. Note that α can be determined by the equation tan α = y/x, when
x 6= 0, and knowledge of which quadrant the number z is in. Be aware that α is not
unique; adding 2πk to α gives another angle (argument) for z.

We identify the real numbers with the x-axis in the plane; i.e., a real number x is
identified with the point (x, 0) of the plane, and vice versa. Thus, the real numbers are
a subset of the complex numbers. As pointed out above, in mathematics the defining
property of numbers is not that they describe quantities, but that we can do computa-
tions with them; i.e., we should be able to add and multiply them. The addition and
multiplication of points in the plane are defined in such a way that

(a) they coincide on the x-axis (real numbers) with the usual addition and multipli-
cation of real numbers, and

(b) all rules of algebra for real numbers (points on the x-axis) extend to complex
numbers (points in the plane).

Addition: we add complex numbers coordinate-wise in Cartesian coordinates. That
is, if z1 = (x1, y1) and z2 = (x2, y2), then

z1 + z2 = (x1, y1) + (x2, y2) := (x1 + x2, y1 + y2).

Multiplication: we multiply complex numbers in polar coordinates by adding their
angles α and multiplying their radii r (in polar coordinates). That is, if z1 = [α1, r1]
and z2 = [α2, r2], then

z1z2 := [α1 + α2, r1r2].

The definition of multiplication of points in the plane is an extension of the familiar
rule for multiplication of signed real numbers: plus times plus is plus, minus times minus
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is plus, plus times minus is minus. To see this, we identify the real numbers 2 and −3
with the complex numbers z1 = (2, 0) = [0, 2] and z2 = (−3, 0) = [π, 3]. Then

z1z2 = [0 + π, 2 · 3] = [π, 6] = (−6, 0) = −6

z2
2 = [π, 3][π, 3] = [π + π, 3 · 3] = [2π, 9] = (0, 9) = 9,

which is not at all surprising since we all know that 2 · −3 = −6, and (−3)2 = 9. What
this illustrates is part (a); namely, the arithmetic of real numbers is the same whether
considered in their own right, or considered as a subset of the complex numbers.

To demonstrate the multiplication of complex numbers (points in the plane) which are
not real (not on the x-axis), consider z1 = (1, 1) = [π

4
,
√

2] and z2 = (1,−1) = [−π
4
,
√

2].
Then

z1z2 = [
π

4
− π

4
,
√

2 ·
√

2] = [0, 2] = (2, 0) = 2.

If one defines multiplication of points in the plane as above, the point i := (0, 1) =
[π
2
, 1] has the property that

i2 = [
π

2
+

π

2
, 1 · 1] = [π, 1] = (−1, 0) = −1.

Thus, one defines √−1 := i = (0, 1).

Notice that
√−1 is not on the x-axis and is therefore not a real number. Employing i

and identifying the point (1, 0) with the real number 1, one can now write a complex
number z = (x, y) in the standard algebraic form z = x + iy; i.e.,

z = (x, y) = (x, 0) + (0, y) = x(1, 0) + (0, 1)y = x + iy.

If z = (x, y) = x + iy, then the real number x := Re z is called the real part and the
real number y := Im z is called the imaginary part of z (which is one of the worst
misnomers in the history of science since there is absolutely nothing imaginary about
y).

The basic rules of algebra carry over to complex numbers if we simply remember the
identity i2 = −1. In particular, if z1 = x1 + iy1 and z2 = x2 + iy2, then

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 + iy1x2 + x1iy2 + iy1iy2

= (x1x2 − y1y2) + i(x1y2 + x2y1) = (x1x2 − y1y2, x1y2 + x2y1).

This algebraic rule is often easier to use than the geometric definition of multiplication
given above. For example, if z1 = (1, 1) = 1 + i and z2 = (1,−1) = 1 − i, then the



380 APPENDIX A. COMPLEX NUMBERS

computation z1z2 = (1+ i)(1− i) = 1− i2 = 2 is more familiar than the one given above
using the polar coordinates of z1 and z2.

The formula for division of two complex numbers (points in the plane) is less obvious,
and is most conveniently expressed in terms of the complex conjugate z := (x,−y) =
x − iy of a complex number z = (x, y) = x + iy. Note that z + w = z + w, zw = z w,
and

|z|2 = x2 + y2 = zz, Re z =
z + z

2
and Im z =

z − z

2i
.

Using complex conjugates, we divide complex numbers using the formula

z

w
=

z

w
· w

w
=

zw

|w|2 .

As an example we divide the complex number z = (1, 1) = 1+i by w = (3,−1) = 3−i.
Then

z

w
=

1 + i

3− i
=

(1 + i)(3 + i)

(3− i)(3 + i)
=

2 + 4i

10
=

1

5
+

2

5
i = (

1

5
,
2

5
).

Let z = (x, y) be a complex number with polar coordinates z = [α, r]. Then |z| =
r =

√
x2 + y2, Re z = x = |z| cos α, Im z = y = |z| sin α, and tan α = y/x. Thus we

obtain the following exponential form of the complex number z; i.e.,

z = [α, r] = (x, y) = |z|(cos α, sin α) = |z|(cos α + i sin α) = |z|eiα,

where the last identity requires Euler’s formula relating the complex exponential and
trigonometric functions. The most natural means of understanding the validity of Euler’s
formula is via the power series expansions of ex, sin x, and cos x, which were studied in
calculus. Recall that the exponential function ex has a power series expansion

ex =
∞∑

n=0

xn

n!

which converges for all x ∈ R. This infinite series makes perfectly good sense if x is
replaced by any complex number z, and moreover, it can be shown that the resulting
series converges for all z ∈ C. Thus, we define the complex exponential function by
means of the convergent series

ez :=
∞∑

n=0

zn

n!
. (1)

It can be shown that this function ez satisfies the expected functional equation, that is

ez1+z2 = ez1ez2 .
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Since e0 = 1, it follows that
1

ez
= e−z. Euler’s formula will be obtained by taking z = it

in Definition 1; i.e.,

eit =
∞∑

n=0

(it)n

n!
= 1 + it− t2

2!
− i

t3

3!
+

t4

4!
+ i

t5

5!
− · · ·

= (1− t2

2!
+

t4

4!
− · · · ) + i(t− t3

3!
+

t5

5!
− · · · ) = cos t + i sin t = (cos t, sin t),

where one has to know that the two series following the last equality are the Taylor
series expansions for cos t and sin t, respectively. Thus we have proved Euler’s formula,
which we formally state as a theorem.

Theorem A.1.1 (Euler’s Formula). For all t ∈ R we have

eit = cos t + i sin t = (cos t, sin t) = [t, 1].

Example A.1.2. Write z = −1 + i in exponential form.

I Solution. Note that z = (−1, 1) so that x = −1, y = 1, r = |z| =
√

(−1)2 + 12 =√
2, and tan α = y/x = −1. Thus, α = 3π

4
or α = 7π

4
. But z is in the 2nd quadrant, so

α = 3π
4

. Thus the polar coordinates of z are [3π
4

,
√

2] and the exponential form of z is√
2ei 3π

4 . J

Example A.1.3. Write z = 2e
πi
6 in Cartesian form.

I Solution.

z = 2(cos
π

6
+ i sin

π

6
) = 2

(√
3

2
+ i

1

2

)
=
√

3 + i = (
√

3, 1).

J

Using the exponential form of a complex number gives yet another description of the
multiplication of two complex numbers. Suppose that z1 and z2 are given in exponential
form, that is, z1 = r1e

iα1 and z2 = r2e
iα2 . Then

z1z2 = (r1e
iα1)(r2e

iα2) = (r1r2)e
i(α1+α2).

Of course, this is nothing more than a reiteration of the definition of multiplication of
complex numbers; i.e., if z1 = [α1, r1] and z2 = [α2, r2], then z1z2 := [α1 + α2, r1r2].
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Example A.1.4. Find z =
√

i. That is, find all z such that z2 = i.

I Solution. Observe that i = (0, 1) = [π/2, 1] = e
π
2
i. Hence, if z = ei π

4 then z2 =
(ei π

4 )2 = ei π
2 = i so that

z = cos
π

4
+ i sin

π

4
=

√
2

2
+ i

√
2

2
=

√
2

2
(1 + i).

Also note that i = e(π
2
+2π)i so that w = e(π

4
+π)i = e

π
4 eπi = −e

π
4 = −z is another square

root of i. J

Example A.1.5. Find all complex solutions to the equation z3 = 1.

I Solution. Note that 1 = e2πki for any integer k. Thus the cube roots of 1 are obtained
by dividing the possible arguments of 1 by 3 since raising a complex number to the third
power multiplies the argument by 3 (and also cubes the modulus). Thus the possible

cube roots of 1 are 1, ω = e
2π
3

i = −1
2

+
√

3
2

i and ω2 = e
4π
3

i = −1
2
−

√
3

2
. J

We will conclude this section by summarizing some of the properties of the complex
exponential function. The proofs are straight forward calculations based on Euler’s
formula and are left to the reader.

Theorem A.1.6. Let z = x + iy. Then

1. ez = ex+iy = ex cos y + iex sin y. That is Re ez = ex cos y and Im ez = ex sin y.

2. |ez| = ex. That is, the modulus of ez is the exponential of the real part of z.

3. cos y =
eiy + e−iy

2

4. sin y =
eiy − e−iy

2i

Example A.1.7. Compute the real and imaginary parts of the complex function

z(t) = (2 + 3i)ei 5t
2 .

I Solution. Since z(t) = (2 + 3i)(cos 5t
2

+ i sin 5t
2
) = (2 cos 5t

2
− 3 sin 5t

2
) + (3 cos 5t

2
+

2 sin 5t
2
)i, it follows that Re z(t) = 2 cos 5t

2
− 3 sin 5t

2
and Im z(t) = 3 cos 5t

2
+ 2 sin 5t

2
. J
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Exercises

1. Let z = (1, 1) and w = (−1, 1). Find z · w, z
w , w

z , z2,
√

z and z11 using

(a) the polar coordinates,

(b) the standard forms x + iy,

(c) the exponential forms.

2. Find

(a) (1 + 2i)(3 + 4i) (b) (1 + 2i)2 (c)
1

2 + 3i
(d)

1
(2− 3i)(2 + 4i)

(e)
4− 2i

2 + i
.

3. Solve each of the following equations for z and check your result.

(a) (2 + 3i)z + 2 = i (b)
z − 1
z − i

=
2
3

(c)
2 + i

z
+ 1 = 2 + i (d) ez = −1.

4. Find the modulus of each of the following complex numbers.

(a) 4 + 3i (b) (2 + i)2 (c)
13

5 + 12i
(d)

1 + 2it− t2

1 + t2
where t ∈ R.

5. Find all complex numbers z such that |z − 1| = |z − 2|. What does this equation mean
geometrically?

6. Determine the region in the complex plane C described by the inequality

|z − 1|+ |z − 3| < 4.

Give a geometric description of the region.

7. Compute: (a)
√

2 + 2i (b)
√

3 + 4i

8. Write each of the following complex numbers in exponential form.

(a) 3 + 4i (b) 3− 4i (c) (3 + 4i)2 (d)
1

3 + 4i
(e) −5 (f) 3i

9. Find the real and imaginary parts of each of the following functions.

(a) (2 + 3i)e(−1+i)t (b) ie2it+π (c) e(2+3i)te(−3−i)t

10. (a) Find the value of the sum

1 + ez + e2z + · · ·+ e(n−1)z.

Hint: Compare the sum to a finite geometric series.



384 APPENDIX A. COMPLEX NUMBERS

(b) Compute sin(2π
n ) + sin(4π

n ) + · · ·+ sin( (n−1)π
n )

11. Find all of the cube roots of 8i. That is, find all solutions to the equation z3 = 8i.

12. By multiplying out eiθeiφ and comparing it to ei(θ+φ), rederive the addition formulas for
the cosine and sine functions.
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SELECTED ANSWERS

Chapter 1

Section 1.1

1. 1

2. 2

3. 1

4. 2

5. 2

6. y3(t)

7. y1(t), y4(t)

8. y1(t), y2(t), y3(t)

9. y2(t), y3(t).

16. y(t) = 1
2
e2t − t + c

17. y(t) = −e−t(t + 1) + c

18. y(t) = t + ln |t|+ c

19. y(t) = t3

3
+ t2

2
+ c1t + c2

385
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20. y(t) = −2
3
sin 3t + c1t + c2

22. y(t) = 3e−t + 3t− 3

23. y(t) = 1/(1 + et)

24. y(t) = −18(t + 1)−1

25. y(t) = 1
2
e2t − t + 7

2

26. y(t) = −e−t(t + 1)

27. y(t) = −2
3
sin 3t + t + 1

28. R′ = kR where k is a proportionality constant.

29. y′ = k(1− y), y(0) = 1 where k is a proportionality constant.

30. P ′ = kP where k is a proportionality constant.

31. P ′ = kP (M − P ) where k is a proportionality constant.

32. T ′ = k(32− T ), T (0) = 70 where k is a proportionality constant.

33. 900 ft at 5 sec; 15.8 seconds to hit the ground.

Section 1.2

1. separable

2. not separable

3. separable

4. not separable

5. separable

6. not separable

7. separable

8. not separable
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9. separable

12. y4 = 2t2 + c

13. 2y5 = 5(t + 2)2 + c

14. y(t2 + c) = −2, y = 0

15. y =
−3

t3 + c
, y = 0

16. y = 1− c cos t, y = 1

17. y1−n =
1− n

1 + m
tm+1 + c, y = 0

18. y =
4ce4t

1− ce4t
, y = 4

19. y2 + 1 = ce2t

20. y = tan(t + c)

21. t2 + y2 + 2 ln |t| = c

22. tan−1 t + y − 2 ln |y + 1| = c, y = −1

23. y2 = et + c

24. y ln |c(1− t)| = 1

25. cet = y(t + 2)2

26. y = 0

27. y = 0

28. y = x2ex

29. y = 4e−t2
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30. y = sec−1(
√

2t2)

31. y = 2
√

u2 + 1

32. 121.7◦

34. 52.6◦

36. 205◦

Section 1.3

3. y(t) = te2t + 4e2t

4. y(t) = −1

4
e−2t +

17

4
e2t

5. y(t) =
1

t
et − e

t

6. y(t) =
1

2t
[e2t − e2]

7. y(t) = t+sin t cos t
2 cos t

+ c sec t

8. y(t) = e−t2/2
∫ t

0
es2/2 ds + e−t2/2

9. y(t) =
t ln t

m + 1
− t

(m + 1)2
+ ct−m

10. y(t) = sin(t2)+C
t

11. y(t) = 1
t+1

(−2 + ct)

12. y(t) = b/a + ce−at

13. y(t) = 1

14. y(t) = t(t + 1)2 + c(t + 1)2



389

15. y(t) =

(
− 1

2t2
− 1

t

)
t2 − 3

2
t2

16. y(t) = te−at + ce−at

17. y(t) =
1

a + b
ebt + ce−at

18. y(t) =
tn+1

n + 1
e−at + ce−at

19. y(t) = t+c
cos t

20. y = 2 + ce−(ln t)2

21. y(t) = tnet + ctn

22. y(t) = (t− 1)e2t + (a + 1)et

23. y(t) =
t2

5
+

9

5
t−3

24. y(t) = 1
t

[
1 +

2(2a− 1)

t

]

25. y(t) = (10 − t) − 8(1 − t
10

)4. Note that y(10) = 0, so the tank is empty after 10
min.

26. (a) T = 45 min; (b) y(t) = 1
2
(10 + 2t) − 50(10 + 2t)−1 for 0 ≤ t ≤ 45 so y(45) =

50− 1
2

= 49.5 lb. (c) limt→∞ y(t) = 50. Once the tank is full, the inflow and outflow
rates will be equal and the brine in the tank will stabilize to the concentration of
the incoming brine, i.e., .5 lb/gal. Since the tank holds 100 gal, the total amount
present will approach .5× 100 = 50 lb.

27. If y(t) is the amount of salt present at time t (measured in pounds), then y(t) =
80e−.04t, and the concentration c(t) = .8e−.04t lb/gal.

28. (a) Differential equation: P ′(t)+(r/V )P (t) = rc. If P0 denotes the initial amount
of pollutant in the lake, then P (t) = V c + (P0 − V c)e−(r/V )t. The limiting
concentration is c.

(b) (i) t1/2 = (V/r) ln 2; (ii) t1/10 = (V/r) ln 10
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(c) Lake Erie: t1/2 = 1.82 years, t1/10 = 6.05 years, Lake Ontario: t1/2 = 5.43
years, t1/10 = 18.06 years

29. (a) 10 minutes

(b) 1600/3 grams

30. 1− e−1 grams/liter

Section 1.4

Section 1.5

2. y1(t) = 1− t +
t2

2

y2(t) = 1− t + t2 − t3

6

y3(t) = 1− t + t2 − t3

3
+

t4

4!

3. y1(t) =
t2

2

y2(t) =
t2

2
+

t5

20

y3(t) =
t2

2
+

t5

20
+

t8

160
+

t11

4400

4. Unique solution

5. Not guaranteed unique

6. Unique solution

7. Unique solution

8. Not guaranteed unique

9. (a) y(t) = t + ct2

(b) Every solution satisfies y(0) = 0. There is no contradiction to Theorem 1.5.2

since, in normal form, the equation is y′ =
2

t
y−1 = F (t, y) and F (t, y) is not

continuous for t = 0.
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10. (a) F (t, y) = y2 so both F (t, y) = y2 and Fy(t, y) = 2y are continuous for any
(t0, y0). Hence Theorem 1.5.2 applies.

(b) y(t) = 0 is defined for all t; y(t) =
1

1− t
is only defined on (−∞, 1).

11. No. Both y1(t) and y2(t) would be solutions to the initial value problem y′ =
F (t, y), y(0) = 0. If F (t, y) and Fy(t, y) are both continuous near (0, 0), then the
initial value problem would have a unique solution by Theorem 1.5.2.

12. There is no contraction to Theorem 1.5.2 since, in the normal form y′ =
3

t
y =

F (t, y) has a discontinuous F (t, y) near (0, 0).

Section 1.6

2. ty + y2 − 1

2
t2 = c

3. Not Exact

4. ty2 + t3 = c

5. Not Exact

6. t2y + y3 = 2

7. (y − t2)2 − 2t4 = c

8. y =
1

3
t2 − c

t

9. y4 = 4ty + c

10. b + c = 0

11. y = (1− t)−1

12. y2(tl2 + 1 + et2) = 1

13. y = (c
√

1− t2 − 5)−1

14. y2 = (1 + cet2)−1

15. y2 = (t + 1
2

+ ce2t)−1

16. y = −√2e2t − et
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17. y = 2t2 + ct−2

18. y = (1− ln t)−1

19. y(t) = e
1
2
(t2−1) + 1

20. t2y + y3 = c

21. y = (ln

∣∣∣∣
t

t + 1

∣∣∣∣ + c)2

22. y = c

∣∣∣∣
t− 1

t + 3

∣∣∣∣
1/4

23. t sin y + y sin t + t2 = c

24. y =
t

t− 1

(
1

2
t2 − 2t + ln |t|+ c

)

Chapter 2

Section 2.1

3.
5

s− 2

4.
3

s + 7
− 42

s4

5.
2

s3
− 5

s2
+

4

s

6.
6

s4
+

2

s3
+

1

s2
+

1

s

7.
8s + 25

(s + 3)(s + 4)

8.
s2 + 15s + 37

(s + 3)(s + 4)2

9.
s + 2

s2 + 4

10.
4

(s− 1)((s− 1)2 + 4)
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11.
9s + 3

9s2 + 6s + 55

12.
2

s3
+

2

(s− 2)2
+

1

s− 4

13.

√
2

s + (1.1)
+

0.123

(s + (1.1))2

14.
5s− 6

s2 + 4
+

4

s

15.
8(s− 5) + 22

(s− 5)2 + 4

16.
12s2 − 16

(s2 + 4)3

17.
b− a

(s + a)(s + b)

18.
s2 + 2b2

s(s2 + 4b2)

19.
2b2

s(s2 + 4b2)

20.
b

s2 + 4b2

21.
s

s2 − b2

22.
b

s2 − b2

24. (a), (c), (e), (g), (i) are functions in class E .

Section 2.2

1. (a) (R); (b) (PR); (c) (R); (d) (PR); (e) (PR); (f) (NR); (g) (NR); (h) (PR);
(i) (NR)

2. −5

3. 3t− 2t2
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4. 2e−3t/2

5. 3 cos
√

2t

6. 2
3
cos

√
2
3
t

7. 2√
3
sin
√

3t

8. cos
√

2
3
t +

√
2
3
sin

√
2
3
t

9. te−3t

10. e−3t(2− 11t)

11. e−3t(2t− 11
2
t2)

12. e2t(2t + 3
2
t2 − 1

6
t3)

13. e−2t cos 3t

14. et cos 3t

15. e−3t(2 cos 3t− 1
3
sin 3t)

16. e−2t(3 cos
√

2t− 4
√

2 sin
√

2t)

17. e−t/2(5
2
cos(t/2) + 1

2
sin(t/2))

18. 3e3t − 2e2t

19. 5
6
(e2t − e−4t)

20. 4e5t − 2et

Section 2.3

1. 1
7
(e−2t − e5t)

2. 1
2
(7et + 3e−3t)

3. 1
8
(13e5t − 5e−3t)

4. e2t − et

5. 1
12

(37e−7t + 23e5t)
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6. et + 2e−t

7. 1
8
(25e7t − 9e−t)

8. 1
2
(9et − 30e2t + 25e3t)

9. 1
6
((3 +

√
3)e

√
3t + (3−√3)e−

√
3t)

10. 1
2
(2e2t − et + e−5t)

11. 7
6
t3e−4t

12. te3t + 3
2
t2e3t

13. e−3t − 5te3t + 3
2
t2e−3t

14. 18e−t − 13e−2t − 36te−2t

15. 1
54

(5e5t + 3te5t − 5e−t + 21te−t)

16. 1
2
e−t sin 4t

17. 2e−t cos 4t− 1
2
e−t sin 4t

18. 5
2
e−3t/2

19. − 3
16

e−3t/2 + 7
16

et/2

20. 3e2t cos
√

3t + 8√
3
e2t sin

√
3t

21. 3e−3t cos 2t− 7
2
e−3t sin 2t

22. 2e−2t cos 5t− 1
5
e−2t sin 5t

23. 2et − 2 cos t + sin t

24. 2e−t + cos 2t− sin 2t

25. 2et − 2e−t sin 2t

26. cos 2t + 15
16

sin 2t− 5
4
t sin 2t + 9

8
t cos 2t
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Section 2.4

1. y(t) = 8
9
e−6t + 1

9
e3t

2. y(t) = 2e4t

3. y(t) = −3
4

+ 11
4
e4t

4. y(t) = 1
16

(−1 + 33e4t − 4t)

5. y(t) = −20
9

e−9t + 1
9
(2− 18t + 81t2))

6. y(t) = 1
10

(3e3t − 3 cos t + sin t)

7. y(t) = 1
2
t2e−2t

8. y(t) = 6e3t − 5 cos t− 15 sin t

9. y(t) = 2 + 1
2
sin 2t

10. y(t) = 2− 3et + 3e2t

11. y(t) = −7et + 4e2t − tet

12. y(t) = 1
10

et − 1
26

e−3t − 4
65

cos 2t− 7
65

sin 2t

13. y(t) = −3 cos t + 4 sin t + (3 + 7t)e−3t

14. y(t) = cos 5t− 1
5
sin 5t

15. y(t) =
(

1
2

+ 4t
)
e−4t

16. y(t) = (2t2 − 2t− 1)e2t

17. y(t) = 2√
3
e−t/2 sin

√
3

2
t

18. y(t) = et − 1− t2

2
− t3

6

19. y(t) =
1

2
(et − 2(1 + t) + cos t + sin t)

20. y(t) = (et + e−t + 2 cos t)/4

21. y(t) = et + t3

22. y(t) = 0
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23. y(t) = e−3t − 3e−t + 2

24. y(t) = 1
20

(et + e−t − 2 cos 3t)

25. y(t) = t sin t− t2 cos t

Section 2.5

1.
t3

6

2.
t5

20

3. 3− 3 cos t

4.
7e4t − 12t− 7

16

5.
2e2t − 2 cos 2t− 3 sin 2t

13

6.
1

2
(1− cos 2t + sin 2t)

7.
1

108
(1− 6t + 18t2 − e−6t)

8.
1

3
(− sin t + 2 sin 2t)

9.
1

6
(e2t − e−4t)

10.
tn+2

(n + 1)(n + 2)

11.
1

a2 + b2
(beat − b cos bt− a sin bt)

12.
1

a2 + b2
(aeat − a cos bt + b sin bt)

13.





b sin at− a sin bt

b2 − a2
if b 6= a

sin at− at cos at

2a
if b = a
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14.





a cos at− a cos bt

b2 − a2
if b 6= a

1

2
t sin at if b = a

15.





a sin at− b sin bt

a2 − b2
if b 6= a

1

2a
(at cos at + sin at) if b = a

17. F (s) =
4

s3(s2 + 4)

18. F (s) =
6

s4(s + 3)

19. F (s) =
6

s4(s + 3)

20. F (s) =
s

(s2 + 25)(s− 4)

21. F (s) =
2s

(s2 + 4)(s2 + 1)

22. F (s) =
4

(s2 + 4)2

23.
1

6
(e2t − e−4t)

24.
1

4
(−et + e5t)

25.
1

2
(sin t− t cos t)

26.
1

2
t sin t

27.
1

216
(−e−6t + 1− 6t + 18t2)

28.
1

13
(2e3t − 2 cos 2t− 3 sin 2t)

29.
1

17
(4e4t − 4 cos t + sin t)
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30.
eat − ebt

a− b

31.
at− sin at

a3

32.

∫ t

0

g(τ)e−2(t−τ) dτ

33.

∫ t

0

g(τ) cos
√

2(t− τ) dτ

34.
1√
3

∫ t

0

sin
√

3(t− τ) f(τ) dτ

35.

∫ t

0

(t− τ)e−2(t−τ)f(τ) dτ

36.

∫ t

0

e−(t−τ) sin 2(t− τ) f(τ) dτ

37.

∫ t

0

(
e−2(t−τ) − e−3(t−τ)

)
f(τ) dτ

Chapter 3

Section 3.1

linear constant coefficient homogeneous/nonhomogeneous

(1) no
(2) yes yes homogeneous
(3) yes yes nonhomogeneous
(4) no
(5) yes yes nonhomogeneous
(6) yes yes nonhomogeneous
(7) no
(8) yes yes nonhomogeneous
(9) yes no homogeneous
(10) no
(11) yes no homogeneous
(12) yes no homogeneous
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L(1) L(t) L(e−t) L(cos 2t)

(13) 1 t 2e−t cos 2t
(14) 1 1 (t + 1)e−t (−4t + 1) cos 2t
(15) −3 1− 3t −2e−t −11 cos 2t− 2 sin 2t
(16) 5 5t + 6 0 cos 2t− 12 sin 2t
(17) −4 −4t −3e−t −8 cos 2t
(18) −1 0 (t2 − t− 1)e−t (−4t2 − 1) cos 2t− 2t sin 2t

19. L(ert) = a(ert)′′ + b(ert)′ + cert = ar2ert + brert + cert = (ar2 + br + c)ert.

20. C = −3
4

21. C1 = −3
4

and C2 = 1
2

22. no

23. yes, C = 1.

25.(c) i. y =
1

2
et + 2e2t − 3

2
e3t

(c) ii. y =
1

2
et − 2e2t +

3

2
e3t

(c) iii. y =
1

2
et − 7e2t +

11

2
e3t

(c) iv. y =
1

2
et + (−1 + 3a− b)e2t +

(
1

2
− 2a + b

)
e3t

26.(c) i. y =
1

6
t5 +

10

3
t2 − 5

2
t3

(c) ii. y =
1

6
t5 − 2

3
t2 +

1

2
t3

(c) iii. y =
1

6
t5 − 17

3
t2 +

9

2
t3

(c) iv. y =
1

6
t5 +

(
1

3
+ 3a− b

)
t2 +

(
−1

2
− 2a + b

)
t3

28. Maximal intervals are (−∞,−1), (−1, 1), (1, ∞)

29. (kπ, (k + 1)π) where k ∈ Z
30. (−∞, ∞)

31. (3, ∞)

32. (−∞, −2), (−2, 0), (0 2), (2, ∞)
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33. Theorem 5.2.1 doesn’t apply since if the initial value problem is put in standard

form, then a(t) = −4

t
and b(t) =

6

t2
are not continuous at t = 0, so the theorem

says nothing about initial value problems which start at t0 = 0.

34. ϕ(t0) = ϕ′(t0) = 0 so that ϕ and 0 are both solutions of the initial value problem

y′′ + a(t)y′ + b(t)y = 0, y(t0) = 0, y′(t0) = 0.

Hence ϕ = 0 by Theorem 5.2.1.

Section 3.2

1. dependent

2. independent

3. independent

4. dependent

5. independent

6. dependent

7. dependent

8. dependent

9. (a) Note that
ϕ1(t)

ϕ2(t)
=

{
1 if t > 0

−1 if t < 0
. Therefore ϕ1 is not a multiple of ϕ2.

(b) Check separately the cases t > 0, t < 0, and t = 0.

(c) Theorem 3.2.6 only applies to pairs of functions which are solutions of a
standard second order linear differential equation on an interval I, in this
case, I = R. The conclusion is that ϕ1 and ϕ2 are not solutions of such a
differential equation.

(d) Simply substitute into the equation.

(e) When the given equation is put in standard form, the coefficient of y′ is −2

t
,

which is not continuous on R, so that Theorem 5.3.10 does not apply.
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Section 3.3

1. {et, e−2t}
2. {e−4t, e4t}
3. {e−3t, 1}

4.



e

−t

2 , e3t





5.
{

e
√

2t, e−
√

2t
}

6.
{

e(1+
√

2)t, e(1−√2)t
}

7. {e3t, te3t}
8. {e−2t, te−2t}
9. {1, t}

10.



e

3t

2 , te

3t

2





11. {sin t, cos t}

12.

{
sin

t√
5
, cos

t√
5

}

13. {e2t sin 3t, e2t cos 3t}
14. {e−t sin t, e−t cos t}
15. {e4t sin t, e4t cos t}

16.



e

−
t

2 cos

(√
3

2
t

)
, e

−
t

2 sin

(√
3

2
t

)



17. Solution: The characteristic polynomial is s2− s− 6 = (s− 3)(s+2) and thus has
distinct real roots 3 and −2. The general solution is y = ae3t+be−2t. Differentiating
gives y′ = 3ae3t − 2be−2t. The initial conditions imply

a + b = 2

3a− 2b = 1.



403

The solution is a = 1 and b = 1. Thus the solution to the initial value problem is

y = e3t + e−2t.

18. y = tet

19. y = 5e−t − 2e−3t

20. y = 2 cos 2t− sin 2t

21. y =
√

7e
√

7t −√7e−
√

7t

22. y = e−t cos t + e−t sin t

23. Solution: This function is a linear combination of the two functions et and e−3t,
which form a fundamental set for the constant coefficient equation with character-
istic polynomial

p(s) = (s− 1)(s + 3) = s2 + 2s− 3.

The homogeneous equation with this characteristic polynomial is

y′′ + 2y′ − 3y = 0.

There is no lower order equation which will work, since such an equation would
have the form y′ + ay = 0 for some a ∈ R, and all of the solutions of this equation
are of the form y = Ceat where C is a constant. The given function et + 2e−3t

is not a pure exponential function so it is not possible to choose C and a so that
et + 2e−3t = Ceat.

24. y′′ + 9y′ + 14 = 0

25. y′′ + 4y′ + 4 = 0

26. y′′ + 25y = 0

27. y′′ − 4y′ + 13y = 0

28. y′′ + 2y′ + y = 0

29. Not a solution of a constant coefficient second order homogeneous equation since
it is not a linear combination of any of the functions listed in Theorem 3.3.1.

30. Solution: Since the characteristic polynomial of this equation is p(s) = s2+5s+6 =
(s + 3)(s + 2), it follows that the general solution of this equation is

y(t) = c1e
−2t + c2e

−3t

and since both exponentials have negative exponents, it follows that limt→∞ y(t) =
0, no matter what c1 and c2 are.
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Section 3.4

1. c1t + c2t
−2

2. c1t
1/2 + c2t

3

3. c1t
√

2 + c2t
−√2

4. c1t
1/2 + c2t

1/2 ln t

5. c1t
−3 + c2t

−3 ln t

6. c1t
2 + c2t

−2

7. c1 cos(2 ln t) + c2 sin(2 ln t)

8. c1t
2 cos(3 ln t) + c2t

2 sin(3 ln t)

9. y =
1

3
(t− t−2)

10. y = 2t1/2 − t1/2 ln t

11. y = −3 cos(2 ln t) + 2 sin(2 ln t)

12. No solution is possible.

Section 3.5

1. y = c1e
−2t + c2e

−t + 2

2. y = c1e
−2t + c2e

−t + 2et

3. y = c1e
−2t + c2e

−t + 1
10

(sin t− 3 cos t)

4. y = c1e
−2t + c2e

−t + 1
10

(3 sin t + cos t)

5. y = c1e
−2t + c2e

−t + 4 + et + 1
5
(sin t− 3 cos t)

6. y = c1e
4t + c2e

−t − et

7. y = c1e
4t + c2e

−t + te4t

8. y = c1e
t + c2e

3t + 2 cos t− 4 sin t

9. y = c1e
t + c2e

3t + cos t
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10. y = c1e
2t + c2e

−2t + 2t32t + 3

11. y = c1e
t + c2e

2t + t3

12. y = c1e
t + c2e

2t + t2 + 3t + 4

13. y = c1 sin 2t + c2 cos 2t + et − t

14. y = c1 sin 2t + c2 cos 2t + et − t2 + 1
2

15. y = e−t/2
(
c1 cos

√
3

2
t + c2 sin

√
3

2
t
)

+ t2 − 2t

16. y = c1e
4t + c2e

−2t − tet − 2e−t

17. y = c1 + c2e
3t − 1

5
e2t(cos t + 3 sin t)

18. y = c1 + c2e
−t + t3

3

19. y = c1 + c2e
−t + t2

2
− t− 1

10
(2 sin 2t + cos 2t)

20. y = c1 cos t + c2 sin t + 1
2
t sin t

21. y = c1 cos t + c2 sin t− t(t cos t− sin t)

22. y = c1e
4t + c2e

−t + 3− 4t + 4 cos 2t + 3 sin 2t

23. y = c1e
−t + c2e

−4t + e2t + 1
2
te−t

24. y = c1e
2t + c2e

−t + 3
2
− 3t− 2te−t

25. y = c1 cos t + c2 cos t + 1
2

+ 1
6
cos 2t

26. y = c1e
2t + c2te

2t + 1
2
t2e2t

27. y = 10
21

e6t + 45
28

e−t − 1
12

e3t

28. y = e−t(2 + 4 sin 2t− 2 cos 2t)

29. y = 2e2t − 2 cos t− 4 sin t

30. y = e2t − 1
2
e−2t + 2t− 1

2

31. y = 1
3
e2t + 1

6
e−t − 3

2
sin t + 1

2
cos t.

32. y = cos t + 2
3
cos 3t + sin 3t

33. y = e2t + tet

34. y = −5
3
e2t + 5

2
et + 1

6
e−t



406 APPENDIX B. SELECTED ANSWERS

Section 3.6

1. y = a sin t + b cos t− cos t ln(|sec t + tan t|)
2. y = −t cos t

2
+ sin t

4
+ a sin t + b cos t

3. y = ae2t + be−2t + ( t
4
− 1

16
)e2t

4. y = aet + btet + (−1 + ln t)tet

5. y = 1
2
e3t + aet + be2t

6. y = 1
4
et + aet cos 2t + bet sin 2t

7. y = − cos t ln sec t + t sin t + a sin t + b cos t

8. 1
9
(−3te−3t − e−3t) + a + be−3t

9. t4

6
+ at + bt2

10. y = t3 + t + a + bt

Section 3.7

1. y(t) =
√

8 cos

(
5t− 3π

4

)

2. y(t) = 5 cos(2t + .9273)

3. y(t) =

√
5

2
cos(4t− .4634)

4. y(t) = 2 cos

(
t− 4π

3

)

5. underdamped

6. critically damped

7. overdamped

8. overdamped

9. underdamped

10. critically damped
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11.
√

2e−t cos
(
2t +

π

4

)

12. 2e−2t cos
(
t− π

6

)

13. 5e−0.2t cos(5t + .6435)

14. t = π/8 for problem 11, t = 2π/3 for problem 12, t = .1855 for problem 13

15.

16.

17. −2 sin t sin 8t

18. 2 sin
1

2
t sin

19

2
t

Section 3.8

1. y = 1
2
sin 4t, Maximum displacement is 1

2
feet.

2. y =
√

12
6

cos(
√

12t)e−2t. (Underdamped) Maximum displacement is .273 feet.

3. y = 1
2
te−4t. (Critically damped) Maximum displacement is .184 feet.

4. y = 1
3
e−2t − 1

3
e−8t. (Overdamped) Maximum displacement is .0104 feet.

Chapter 4

Section 4.1

1. (c)

2. (g)

3. (e)

4. (a)

5. (f)

6. (d)
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7. (h)

8. (b)

9. −22
3

10. 9
4

11. 4

12. 1 + ln 2

13. 11
2

14. 0

15. 5

16. 44
3

17. (a) A,B

(b) A,B,C

(c) A

(d) none

18. (a) A,B

(b) A,C

(c) A,B,C,D

(d) A,B,C

19. y(t) =

{
t
3
− 1

9
+ e−3t

9
if 0 ≤ t < 1

1
3
− e−3(t−1)

9
+ e−3t

9
if 1 ≤ t < ∞

20. y(t) =





0 if 0 ≤ t < 1

−t + et−1 if 1 ≤ t < 2

t− 2− 2et−2 + et−1 if 2 ≤ t < 3

et−3 − 2et−2 + et−1 if 3 ≤ t < ∞

21. y =

{
sin
2
− cos t

2
− 3e−(t−π)

2
if 0 ≤ t < π

−e−(t−π) if π ≤ t < ∞
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22. y(t) =

{
−t + et − e−t if 0 ≤ t < 1

et − et−1 − e−t if 1 ≤ t < ∞

23. y(t) =

{
e2t − 2te2t if 0 ≤ t < 2

1 + e2t − 5e2(t−2) − 2te2t + 2te2(t−2) if 2 ≤ t < ∞

Section 4.2

9. (a) (t− 2)χ[2,∞); (b) (t− 2)h(t− 2); (c) e−2s/s2.

10. (a) tχ[2,∞); (b) th(t− 2); (c) e−2s
(

1
s2 + 2

s

)
.

11. (a) (t + 2)χ[2,∞); (b) (t + 2)h(t− 2); (c) e−2s
(

1
s2 + 4

s

)
.

12. (a) (t− 4)2χ[4,∞); (b) (t− 4)2h(t− 4); (c) e−4s 2
s3 .

13. (a) t2χ[4,∞); (b) t2h(t− 4); (c) e−4s
(

2
s3 + 8

s2 + 16
s

)
.

14. (a) (t2 − 4)χ[4,∞); (b) (t2 − 4)h(t− 4); (c) e−4s
(

2
s3 + 8

s2 + 12
s

)
.

15. (a) (t− 4)2χ[2,∞); (b) (t− 4)2h(t− 2); (c) e−2s
(

2
s3 − 4

s2 + 4
s

)
.

16. (a) et−4χ[4,∞); (b) et−4h(t− 4); (c) e−4s 1
s−1 .

17. (a) etχ[4,∞); (b) eth(t− 4); (c) e−4(s−1) 1
s−1 .

18. (a) et−4χ[6,∞); (b) et−4h(t− 6); (c) e−6s+2 1
s−1 .

19. (a) tetχ[4,∞); (b) teth(t− 4); (c) e−4(s−1)
(

1
(s−1)2

+ 4
s−1

)
.

20. (a) χ[0,4)(t)− χ[4,5)(t); (b) 1− 2h4 + h5; (c) 1
s − 2e−4s

s + e−5s

s .

21. (a) tχ[0,1)(t) + (2− t)χ[1,2)(t) + χ[2,∞)(t); (b) t− (2− 2t)h1 + (t− 1)h2; (c) 1
s2 + 2e−s

s2 +
e−2s

(
1
s2 + 1

s

)
.

22. (a) tχ[0,1)(t) + (2− t)χ[1,∞)(t); (b) t + (2− 2t)h1; (c) 1
s2 + 2e−s

s2 .

23. (a)
∑∞

n=0(t− n)χ[n,n+1)(t); (b) t−∑∞
n=1 hn; (c) 1

s2 − e−s

s(1−e−s)
.

24. (a)
∑∞

n=0 χ[2n,2n+1)(t); (b)
∑∞

n=0(−1)nhn; (c) 1
s(1+e−s)

.

25. (a) t2χ[0,4)(t) + 4χ[2,3)(t) + (7− t)χ[3,4)(t); (b) t2 + (4− t2)h2 + (3− t)h3 + (7− t)h4; (c)
2
s3 − e−2s

(
2
s3 − 4

s2

)− e−3s

s2 − e−4s
(

1
s2 − 4

s

)
.

26. (a)
∑∞

n=0(2n + 1− t)χ[2n,2n+2)(t); (b) −(t + 1) + 2
∑∞

n=0 h2n; (c) − 1
s2 − 1

s + 2
s(1−e−2s)

.
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27. (a) χ[0,2)(t)+(3− t)χ[2,3)(t)+2(t−3)χ[3,4)(t)+2χ[4,∞)(t); (b) 1+(2− t)h2 +(3t−9)h3−
(2t− 8)h4; (c) 1

s − e−2s

s2 + 3e−3s

s2 − 2e−4s

s2 .

Section 4.3

1. et−3h(t− 3) =

{
0 if 0 ≤ t < 3,

et−3 if t ≥ 3.

2. (t− 3)h(t− 3) =

{
0 if 0 ≤ t < 3,

t− 3 if t ≥ 3.

3. 1
2(t− 3)2et−3h(t− 3) =

{
0 if 0 ≤ t < 3,
1
2(t− 3)2et−3 if t ≥ 3.

4. h(t− π) sin(t− π) =

{
0 if 0 ≤ t < π,

sin(t− π) if t ≥ π
=

{
0 if 0 ≤ t < π,

− cos t if t ≥ π.

5. h(t− 3π) cos(t− 3π) =

{
0 if 0 ≤ t < 3π,

cos(t− 3π) if t ≥ 3π
=

{
0 if 0 ≤ t < 3π,

− cos t if t ≥ 3π.

6. 1
2e−(t−π) sin 2(t− π)h(t− π) =

{
0 if 0 ≤ t < π,
1
2e−(t−π) sin 2t if t ≥ π.

7. (t− 1)h(t− 1) + 1
2(t− 2)2et−2h(t− 2)

8. 1
2h(t− 2) sin 2(t− 2) =

{
0 if 0 ≤ t < 2,
1
2 sin 2(t− 2) if t ≥ 2.

9. 1
4h(t− 2)

(
e2(t−2) − e−2(t−2)

)
=

{
0 if 0 ≤ t < 2,
1
4

(
e2(t−2) − e−2(t−2)

)
if t ≥ 2.

10. h(t− 5)
(
2e−2(t−5) − e−(t−5)

)
=

{
0 if 0 ≤ t < 5,

2e−2(t−5) − e−(t−5) if t ≥ 5.

11. h(t− 2)
(
e2(t−2) − et−2

)
+ h(t− 3)

(
e2(t−3) − et−3

)

12. t− (t− 5)h(t− 5) =

{
t if 0 ≤ t < 5,

5 if t ≥ 5.

13. 1
6 t3 + 1

6(t− 3)3h(t− 3) =

{
1
6 t3 if 0 ≤ t < 3,
1
6 t3 + 1

6(t− 3)3 if t ≥ 3.
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14. h(t−π)e−3(t−π)
(
2 cos 2(t− π)− 5

2 sin 2(t− π)
)

=

{
0 if 0 ≤ t < π,

e−3(t−π)
(
2 cos 2t− 5

2 sin 2t
)

if t ≥ π.

15. e−3t
(
2 cos 2t− 5

2 sin 2t
)− h(t− π)e−3(t−π)

(
2 cos 2(t− π)− 5

2 sin 2(t− π)
)

Section 4.4

1. y = −3
2h(t− 1)

(
1− e−2(t−1)

)

2. y = e−2t − 1 + 2h(t− 1)
(
1− e−2(t−1)

)

3. y = h(t− 1)
(
1− e−2(t−1)

)− h(t− 3)
(
1− e−2(t−3)

)

4. y = 1
4e−2t − 1

4 + 1
2 t + h(t− 1)

(
1
4e−2(t−1) − 1

4 + 1
2(t− 1)

)− 1
2h(t− 1)

(
1− e−2(t−1)

)

5. −1
9h(t− 3) (−1 + cos 3(t− 3))

6. y = −2
3et + 5

12e4t + 1
4 + 1

12h(t− 5)
(−3 + 4et−5 − e4(t−5)

)

7. y = 1
3h(t− 1)

(
1− 3e−2(t−1) + 2e−3(t−1)

)
+ 1

3h(t− 3)
(−1 + 3e−3(t−3) − 2e−3(t−3)

)

8. y = cos 3t + 1
24h(t− 2π) (3 sin t− sin 3t)

9. y = te−t + h(t− 3)
(
1− (t− 2)e−(t−3)

)

10. y = te−t − 1
4h(t− 3)

(−et − 5e−t+6 + 2te−t+6
)

11. y = 1
20e−5t−1

4e−t+1
5+ 1

20h(t−2)
(
4 + e−5(t−2) − 5e−(t−2)

)
+ 1

20h(t−4)
(
4 + e−5(t−4) − 5e−(t−4)

)
+

1
20h(t− 6)

(
4 + e−5(t−6) − 5e−(t−6)

)

Sections 4.5 and 4.6

1. y = h(t− 1)e−2(t−1)

2. y = (1 + h(t− 1))e−2(t−1)

3. y = h(t− 1)e−2(t−1) − h(t− 3)e−2(t−3)

4. y = 1
2 (1 + h(t− π)) sin 2t =

{
1
2 sin 2t if 0 ≤ t < π,

sin 2t if t ≥ π.

5. y = 1
2χ[π, 2π) sin 2t =

{
1
2 sin 2t if π ≤ t < 2π,

0 otherwise.

6. y = cos 2t + 1
2χ[π, 2π) sin 2t



412 APPENDIX B. SELECTED ANSWERS

7. y = (t− 1)e−2(t−1)h(t− 1)

8. y = (t− 1)
(
e−2t + e−2(t−1)h(t− 1)

)

9. y = 3h(t− 1)e−2(t−1) sin(t− 1)

10. y = e−2t(sin t− cos t) + 3h(t− 1)e−2(t−1) sin(t− 1)

11. y = e−2t
(
cos 4t + 1

2 sin 4t
)

+ 1
4 sin 4t

(
h(t− π)e−2(t−π) − h(t− 2π)e−2(t−2π)

)

12. y = 1
18

(
e5t − e−t − 6te−t

)
+ 1

6h(t− 3)
(
e5(t−3) − e−(t−3)

)

Chapter 5

Section 5.1

2. AB =

[−3 1
−3 5

]
, AC =

[
6 3
4 6

]
, BA =




1 −1 −1
5 −2 18
0 1 5


, CA =




2 0 8
−2 3 7
3 −1 7




3. A(B + C) = AB + AC =

[
3 4
1 11

]
, (B + C)A =




3 −1 7
3 1 25
3 2 12




4. C =



−2 5
−13 −8
7 0




5. AB =




6 4 −1 −8
0 2 −8 2
2 −1 9 −5




6. BC =

[
2 3 −8
−2 0 24

]

7. CA =




8 0
4 −5
8 14
10 11




8. BtAt =




6 0 2
4 2 −1
−1 −8 9
−8 2 −5
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9. ABC =




8 9 −48
4 0 −48
−2 3 40


 .

10. AB = −4 and BA =




1 4 3 1
0 0 0 0
−1 −4 −3 −1
−2 −8 −6 −2




14.

[
1 0
1 −1

]

15.




0 0 −1
3 −5 −1
0 0 5




16. AB − BA =

[
ab 0
0 −ab

]
. It is not possible to have ab = 1 and −ab = 1 since

1 6= −1.

17. (a) Choose, for example, A =

[
0 1
0 0

]
and B =

[
0 0
1 0

]
.

(b) (A + B)2 = A2 + 2AB + B2 precisely when AB = BA.

18. A2 =

[
1 1
1 2

]
, A3 =

[
1 2
2 3

]

19. Bn =

[
1 n
0 1

]

20. An =

[
an 0
0 bn

]

21. (a)

[
0 1
1 0

]
A =

[
v2

v1

]
; the two rows of A are switched. (b)

[
1 c
0 1

]
A =

[
v1 + cv2

v2

]
; to

the first row is added c times the second row while the second row is unchanged, (c)
to the second row is added c times the first row while the first row is unchanged.
(d) the first row is multiplied by a while the second row is unchanged, (e) the
second row is multiplied by a while the first row is unchanged.
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Section 5.2

1. (a) A =




1 4 3
1 1 −1
2 0 1
0 1 −1


, x =




x
y
z


, b =




2
4
1
6


, and [A|b] =




1 4 3 2
1 1 −1 4
2 0 1 1
0 1 −1 6


.

(b) A =

[
2 −3 4 1
3 8 −3 −6

]
, x =




x1

x2

x3

x4


, b =

[
0
1

]
, and [A|b] =

[
2 −3 4 1 0
3 8 −3 −6 1

]
.

2.

x1 − x3 + 4x4 + 3x5 = 2
5x1 + 3x2 − 3x3 − x4 − 3x5 = 1
3x1 − 2x2 + 8x3 + 4x4 − 3x5 = 3
−8x1 + 2x2 + 2x4 + x5 = −4

3. p2,3(A) =




1 0 1
0 1 4
0 0 0




4. RREF

5. t2,1(−2)(A) =

[
1 0 −5 −2 −1
0 1 3 1 1

]

6. m2(1/2)(A) =




0 1 0 3
0 0 1 3
0 0 0 0




7. RREF

8. t1,3(−3)(A) =




1 0 1 0 3
0 1 3 4 1
0 0 0 0 0




9.




1 0 0 2
0 1 0 1
0 0 1 −1




10.




1 0 0 −11 −8
0 1 0 −4 −2
0 0 1 9 6






415

11.




0 1 0 7
2

1
4

0 0 1 3 1
2

0 0 0 0 0
0 0 0 0 0




12.




1 2 0 0 3
0 0 1 0 2
0 0 0 1 0
0 0 0 0 0




13.




1 0 0 1 1 1
0 1 0 −1 3 1
0 0 1 2 1 1




14.




1 0 2
0 1 1
0 0 0
0 0 0
0 0 0




15.




1 0 1 0
0 1 3 0
0 0 0 1
0 0 0 0




16.




1 4 0 0 3
0 0 1 0 1
0 0 0 1 3




17.




1 0 0 0 0
0 ‘1 −1 0 0
0 0 0 1 −1
0 0 0 0 0




18.




x
y
z


 =



−1
1
0


 + α



−3
1
5




19.




x1

x2

x3

x4


 =




4
−1
0
0


 + α




−1
−3
1
0


 + β




−2
−1
0
1
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20.

[
x
y

]
= α

[−2
1

]

21.




x1

x2

x3

x4


 =




3
0
−2
5


 + α




−4
1
0
0




22.




x
y
z


 =




14/3
1/3
−2/3




23. no solution

24.




0
3
4


 + α




1
0
0




25. The equation




5
−1
4


 = a




1
1
2


 + b




1
−1
0


 has solution a = 2 and b = 3. By

Proposition 5.2.6




5
−1
4


 is a solution.

26. k = 2

27. (a) If xi is the solution set for Ax = bi then x1 =



−7/2
7/2
−3/2


, x2 =



−3/2
3/2
−1/2


, and

x3 =




7
−6
3


.

(b) The augmented matrix [A|b1|b2|b3] reduces to




1 0 0 −7/2 −3/2 7
0 1 0 7/2 3/2 −6
0 0 1 −3/2 −1/2 3


 .

The last three columns correspond in order to the solutions.
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Section 5.3

1.

[
4 −1
−3 1

]

2.

[
3 −2
−4 3

]

3. not invertible

4.

[ −2 1
−3/2 1/2

]

5. not invertible

6.




1 −1 1
0 1 −2
0 0 1




7.



−6 5 13
5 −4 −11
−1 1 3




8.



−1/5 2/5 2/5
−1/5 −1/10 2/5
−3/5 1/5 1/5




9.




−29 39/2 −22 13
7 −9/2 5 −3
−22 29/2 −17 10
9 −6 7 −4




10. 1
2




−1 0 0 −1
0 −1 0 −1
0 0 −1 −1
−1 −1 −1 −1




11.




0 0 −1 1
1 0 0 0
0 1 1 −1
−1 −1 0 1




12. not invertible

13. b =

[
5
−3

]
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14. b =



−2
6
−3




15. b = 1
10




16
11
18




16. b =




1
1
1




17. b =




19
−4
15
−6




18. b =




3
1
−4
1


 .

19. (At)−1 = (A−1)t

20. (E(θ))−1 = E(−θ)

21. F (θ)−1 = F (−θ)

22.

Section 5.4

1. 1

2. 0

3. 10

4. 8

5. −21

6. 6
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7. 2

8. 15

9. 0

10. 1
s2−3s

[−2 + s 2
1 −1 + s

]
s = 0, 3

11. 1
s2−6s+8

[
s− 3 1

1 s− 3

]
s = 2, 4

12. 1
s2−2s+s

[
s− 1 1
−1 s− 1

]
s = 1± i

13. 1
(s−1)3




(s− 1)2 3 s− 1
0 (s− 1)2 0
0 3(s− 1) (s− 1)2


 s = 1

14. 1
s3−3s2−6s+8




s2 − 2s + 10 −3s− 6 3s− 12
−3s + 12 s2 − 2s− 8 3s− 12
3s + 6 −3s− 6 s2 − 2s− 8


 s = −2, 1, 4

15. 1
s3+s2+4s+4




s2 + s 4s + 4 0
−s− 1 s2 + s 0
s− 4 4s + 4 s2 + 4


 s = −1,±2i

16.

[
9 −4
−2 1

]

17. no inverse

18. 1
10

[
6 −4
−2 3

]

19. 1
8




4 −4 4
−1 3 −1
−5 −1 3




20. 1
21




27 −12 3
−13 5 4
−29 16 −4




21. 1
6




2 −98 9502
0 3 −297
0 0 6
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22. 1
2




−13 76 −80 35
−14 76 −80 36
6 −34 36 −16
7 −36 38 −17




23. 1
15




55 −95 44 −171
50 −85 40 −150
70 −125 59 −216
65 −115 52 −198




24. no inverse

Chapter 6

Section 6.1

1. nonlinear, autonomous

2. linear, constant coefficient, not autonomous, not homogeneous

3. linear, homogeneous, but not constant coefficient or autonomous

4. nonlinear and not autonomous

5. linear, constant coefficient, homogeneous, and autonomous

6. linear, constant coefficient, not homogeneous, but autonomous

In all of the following solutions, y =

[
y1

y2

]
=

[
y
y′

]
.

12. y′ =
[

0 1
−k2 0

]
y, y(0) =

[−1
0

]

13. y′ =
[

0 1
k2 0

]
y, y(0) =

[−1
0

]

14. y′ =
[

0 1
−k2 0

]
y +

[
0

A cos ωt

]
, y(0) =

[
0
0

]
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15. y′ =

[
0 1

− c

a
− b

a

]
y, y(0) =

[
α
β

]

16. y′ =

[
0 1

− c

a
− b

a

]
y +

[
0

A sin ωt

]
, y(0) =

[
α
β

]

17. y′ =

[
0 1

− 1

t2
−2

t

]
y, y(1) =

[−2
3

]

Section 6.2

1. A′(t) =

[−2 sin 2t 2 cos 2t
−2 cos 2t −2 sin 2t

]

2. A′(t) =

[−3e−3t 1
2t 2e2t

]

3. A′(t) =



−e−t (1− t)e−t (2t− t2)e−t

0 −e−t (1− t)e−t

0 0 −e−t




4. y′(t) =




1
2t
t−1




5. A′(t) =

[
0 0
0 0

]

6. v′(t) =
[−2e−2t 2t

t2+1
−3 sin 3t

]

7.

[
0 1
−1 0

]

8. 1
4

[
e2 − e−2 e2 + e−2 − 1

1− e2 − e−2 e2 − e−2

]

9.




3/2
7/3

ln 4− 1
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10.

[
4 8
12 16

]

11. Continuous on I1, I4, and I5.

12.

[
1
s

1
s2

2
s3

1
s−2

]

13.

[
2

s2+1
1

s2+1

−1
s2+1

s
s2+1

]

14.

[
3!
s4

2s
(s2+1)2

1
(s+1)2

2−s
s3

s−3
s2−6s+13

3
s

]

15.




1
s2

2
s3

6
s4




16. 2
s2−1

[
1 −1
−1 1

]

17.




1
s

1
s2+1

1
s(s2+1)

0 s
s2+1

1
s2+1

0 −1
s+1

s
s2+1




18.
[
1 2t 3t2

]

19.

[
1 t

et+e−t

2
cos t

]

20.




et tet

−4
3

+ e−3t

3
+ et sin t

3 cos 3t e3t




21.

[
et + e−t et − e−t

et − e−t et + e−t

]
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22. (sI − A)−1 =

[
1

s−1
0

0 1
s−2

]
and L−1(sI − A)−1 =

[
et 0
0 e2t

]

23. (sI − A)−1 =

[
s−2

s(s−3)
−1

s(s−3)

−2
s(s−3)

s−1
s(s−3)

]
and L−1(sI − A)−1 =

[
2
3

+ 1
3
e3t 1

3
− 1

3
e3t

2
3
− 2

3
e3t 1

3
+ 2

3
e3t

]

24. (sI − A)−1 =




1
s

1
s2

s+1
s3

0 1
s

1
s2

0 0 1
s


 and L−1(sI − A)−1 =




1 t t + t2

2

0 1 t
0 0 1




25. (sI − A)−1 =

[
s

s2+1
1

s2+1

−1
s2+1

s
s2+1

]
and L−1(sI − A)−1 =

[
cos t sin t
− sin t cos t

]

26. (a) y0 =

[
1
1

]
, y1 =

[
1 + ( t2

2
)

1 + ( t2

2
)

]
, y2 =

[
1 + ( t2

2
) + 1

2
( t2

2
)2

1 + ( t2

2
) + 1

2
( t2

2
)2

]
,

y3 =

[
1 + ( t2

2
) + 1

2
( t2

2
)2 + 1

3!
( t2

2
)3

1 + ( t2

2
) + 1

2
( t2

2
)2 + 1

3!
( t2

2
)3

]
.

(b) The nth term is

y =

[
1 + ( t2

2
) + · · ·+ 1

n!
( t2

2
)n

1 + ( t2

2
) + · · ·+ 1

n!
( t2

2
)n

]

(c) By the Existence and Uniqueness theorem there are no other solutions.

27. (a) y0 =

[
1
0

]
, y1 =

[
1

−( t2

2
)

]
, y2 =

[
1− 1

2
( t2

2
)2

−( t2

2
)

]
,

y3 =

[
1− 1

2
( t2

2
)2

−( t2

2
) + 1

3!
( t2

2
)3

]
.

(b) By the Uniqueness and Existence Theorem there are no other solutions.

28. (a) y0 =

[
1
1

]
, y1 =

[
1 + t2

1− t2

]
,

y2 =

[
1 + t2

1− t2

]
, y3 =

[
1 + t2

1− t2

]
.

(b) y =

[
1 + t2

1− t2

]
.
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30. (−∞,∞)

31. (−2, 3)

32. (−∞, 2)

33. (−∞,∞)

34. (b) eNt =




1 t t2

2

0 1 t
0 0 1


. (c) y(t) =




1 + 2t + 3t2

2

2 + 3t
3


.

(d) and (e): Both matrices are




1
s

1
s2

1
s3

0 1
s

1
s2

0 0 1
s




35. (c) (iv) y(t) =

[
(c1 + c2t)e

t

c2e
t

]
.

(d) and (e): Both matrices are

[
1

s−1
1

(s−1)2

0 1
s−1

]

Section 6.3

1. All except (b) and (e) are fundamental matrices.

2. A Ψ(t) = eAt y(t)

(a)

[
cos t sin t
− sin t cos t

] [
3 cos t− 2 sin t
−3 sin t + 2 cos t

]

(c) 1
3

[
4e−t − e2t −e−t + e2t

4e−t − 4e2t −e−t + 4e2t

]
1
3

[
14e−t − 5e2t

14e−t − 20e2t

]

(f)

[−2e2t + 3e3t 3e2t − 3e3t

−2e2t + 2e3t 3e2t − 2e3t

] [−12e2t + 15e3t

−12e2t + 10e3t

]

(g) 1
4

[
3e2t + e6t −3e2t + 3e6t

−e2t + e6t e2t + 3e6t

]
1
4

[
15e2t − 3e6t

−5e2t − 3e6t

]

(h)

[
(1− 2t)e3t −4te3t

te3t (1 + 2t)e3t

] [
(3 + 2t)e3t

−(2 + t)e3t

]
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3. A(t) Ψ(t) y(t)

(i)

[
cos(t2/2) − sin(t2/2)
sin(t2/2) cos(t2/2)

] [
3 cos(t2/2)− 2 sin(t2/2)
−3 sin(t2/2)− 2 cos(t2/2)

]

(j) 1
4

[
4 + 2t2 2t2

−2t2 4− 2t2

]
1
4

[
12 + 2t2

−8− 2t2

]

(k)

[
1
2
(et2/2 + e−t2/2) 1

2
(et2/2 − e−t2/2)

1
2
(et2/2 − e−t2/2) 1

2
(et2/2 + e−t2/2)

] [
1
2
et2/2 + 5

2
e−t2/2

1
2
et2/2 − 5

2
e−t2/2

]

4. (a), (c), and (d) are linearly independent.

Section 6.4

In the following, c1, c2, and c3 denote arbitrary real constants.

1. (a)

[
e−t 0
0 e3t

]
; (b) y(t) =

[
c1e

−t

c2e
3t

]

2. (a)

[
cos 2t sin 2t
− sin 2t cos 2t

]
; (b)

[
c1 cos 2t + c2 sin 2t
−c1 sin 2t + c2 cos 2t

]

3. (a)

[
e2t te2t

0 e2t

]
; (b)

[
c1e

2t + c2e
2t

c2e
2t

]

4. (a)

[
e−t cos 2t e−t sin 2t
−e−t sin 2t e−t cos 2t

]
; (b)

[
c1e

−t cos 2t + c2e
−t sin 2t

−c1e
−t sin 2t + c2e

−t cos 2t

]

5. (a)1
2

[
3et − e−t −et + e−t

3et − 3e−t −et + 3e−t

]
; (b) 1

2

[
(3c1 − c2)e

t + (−c2 + c2)e
−t

(3c1 − c2)e
t + 3(−c1 + c2)e

−t

]

6. (a)

[
et + 2tet −4tet

tet et − 2tet

]
; (b)

[
c1e

t + (2c1 − 4c2)te
t

c2e
t + (c1 − 2c2)te

t

]

7. (a)

[
cos t + 2 sin t −5 sin t

sin t cos t− 2 sin t

]
; (b)

[
c2 cos t + (2c1 − 5c2) sin t
c2 cos t + (c1 − 2c2) sin t

]

8. (a)

[
e−t cos 2t −2e−t sin 2t
1
2
e−t sin 2t e−t cos 2t

]
; (b)

[
e−t(c1 cos 2t− 2c2 sin 2t)
1
2
e−t(c1 sin 2t + 2 cos 2t)

]

9. (a) 1
2

[
et + e3t e3t − et

e3t − et et + e3t

]
; (b) 1

2

[
(c1 − c2)e

t + (c1 + c2)e
3t

(c1 + c2)e
3t + (c2 − c1)e

t

]
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10. (a)

[
et + 4tet 2tet

−8tet et − 4tet

]
; (b)

[
c1e

t + (4c1 + 2c2)te
t

c2e
t − (8c1 + 4c2)te

t

]

11. (a)




e−t 0 3
2
(et − e−t)

0 e2t 0
0 0 et


; (b)




(c1 − 3
2
c3)e

−t + 3
2
c3e

t

c2e
2t

c3e
t




12. (a)




cos 2t 2 sin 2t 0
−1

2
sin 2t cos 2t 0

−e−t + cos 2t 2 sin 2t e−t


; (b)




c1 cos 2t + 2c2 sin 2t
−1

2
c1 sin 2t + c2 cos 2t

(c3 − c1)e
−t + c1 cos 2t + 2c2 sin 2t




13. (a) 1
3




2e−3t + 1 3e−t − 3e−3t 1− e−3t

0 3e−t 0
2− 2e−3t −3e−t + 3e−3t e−3t + 2


;

(b) 1
3




(2c1 − 3c2 − c3)e
−3t + 3c2e

−t + (c1 + c3)
c2e

−t

(−2c1 + 3c2 + c3)e
−3t − 3c2e

−t + (2c1 + 2c3)




14. (a)




−tet + et tet tet

e2t − et et −e2t + et

−tet − e2t + et tet e2t + tet


; (b)




c1e
t + (c2 + c3 − c1)te

t

(−c1 + c2 + c3)e
t + (c1 − c3)e

2t

c1e
t + (−c1 + c2 + c3)te

t + (c3 − c1)e
2t




15. (a)




e3t te3t −1
2
t2e3t − te3t

0 e3t −te3t

0 0 e3t


; (b)




c1e
3t + (c1 − c3)e

3t − 1
2
c3t

2e3t

c2e
3t − c3te

3t

c3e
3t




Section 6.6

1.

[
te−t

e3t − et

]
2. 1

3

[
2 cos t− 2 cos 2t
2 sin 2t− sin t

]
3. 1

2

[
t(e2t − 1)
e2t − 1

]

5. 1
2

[
3tet + te−t + e−t − et

3tet + 3te−t + 2e−t − 2et

]
7. 1

2

[
5t cos t− 5 sin t

t sin t + 2t cos t− 2 sin t

]
11. 1

4




5et − 5e−t − 6te−t

4te2t

2et − 2e−t
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Appendix A

Section A.1

1. z = (1, 1) = 1 + i = [π
4
,
√

2] =
√

2ei π
4 , w = (−1, 1) = −1 + i = [3π

4
,
√

2] =
√

2ei 3π
4 ,

z · w = −2, z
w

= −i, w
z

= i, z2 = 2i,
√

z = ±(
√√

2 cos(π
8
) + i

√√
2 sin(π

8
)) =

±(1
2

√
2
√

2 + 2+ i1
2

√
2
√

2− 2) since cos(π
8
) = 1

2

√
2 +

√
2 and sin(π

8
) = 1

2

√
2−√2

, z11 = −32 + 32i.

2. (a) −5 + 10i (b) −3 + 4i (c) 2
13
− 3

13
i (d) 8

130
− 1

130
i (e) 6

5
− 8

5
i.

3. (a) - (c) check your result (d) z = (3π/2 + 2kπ)i for all integers k.

4. Always either 5 or 1.

5. The vertical line x =
3

2
. The distance between two points z, w in the plane is given

by |z − w|. Hence, the equation describes the set of points z in the plane which
are equidistant from 1 and 2.

6. This is the set of points inside the ellipse with foci (1, 0) and (3, 0) and major axis
of length 4.

7. (a) ±
(√√

2 + 1 + i
√√

2− 1
)

(b) ±(2 + i)

8. (a) 5ei tan−1(4/3) ≈ 5e0.927i (b) 5e−i tan−1(4/3) (c) 25e2i tan−1(4/3) (d) 1
5
e−i tan−1(4/3)

(e) 5eiπ (f) 3e
iπ
2

9. (a) Real: 2e−t cos t−3e−t sin t; Imaginary: 3e−t cos t+2e−t sin t (b) Real: −eπ sin 2t;
Imaginary: eπ cos 2t (c) Real: e−t cos 2t; Imaginary: e−t sin 2t

10. (a) If z = 2πki for k an integer, the sum is n. Otherwise the sum is
1− enz

1− ez
. (b)

0

11. −2i,
√

3 + i, −√3 + 2i
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Appendix C

Tables
Table C.1: Laplace Transform Rules

f(t) F (s)

1. a1f1(t) + a2f2(t) a1F1(s) + a2F2(s)

2. f(at)
1

a
F

(s

a

)

3. eatf(t) F (s− a)

4. f(t− c)h(t− c) e−scF (s)

5. f ′(t) sF (s)− f(0)

6. f ′′(t) s2F (s)− sf(0)− f ′(0)

7. f (n)(t) snF (s)−sn−1f(0)−sn−2f ′(0)−
· · · − sf (n−2)(0)− f (n−1)(0)

8. tf(t) −F ′(s)

9. t2f(t) F ′′(s)

10. tnf(t) (−1)nF (n)(s)

11.
1

t
f(t)

∫∞
s

F (u)du

12.
∫ t

0
f(v)dv

F (s)

s

13. (f ∗ g)(t) =
∫ t

0
f(τ)g(t− τ) dτ F (s)G(s)

429
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Table C.2: Table of Laplace Transforms

F (s) f(t)

1.
1

s
1

2.
1

s2
t

3.
1

sn
(n = 1, 2, 3, . . .)

tn−1

(n− 1)!

4.
1

s− a
eat

5.
1

(s− a)2
teat

6.
1

(s− a)n
(n = 1, 2, 3, . . .)

tn−1eat

(n− 1)!

7.
b

s2 + b2
sin bt

8.
s

s2 + b2
cos bt

9.
b

(s− a)2 + b2
eat sin bt

10.
s− a

(s− a)2 + b2
eat cos bt

11. Re

(
n!

(s− (a + bi))n+1

)
(n = 0, 1, 2, . . .) tneat cos bt

12. Im

(
n!

(s− (a + bi))n+1

)
(n = 0, 1, 2, . . .) tneat sin bt

13.
1

(s− a)(s− b)
(a 6= b)

eat − ebt

a− b

14.
s

(s− a)(s− b)
(a 6= b)

aeat − bebt

a− b
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Table C.2: Table of Laplace Transforms

F (s) f(t)

15.
1

(s− a)(s− b)(s− c)
a, b, c distinct

eat

(a− b)(a− c)
+

ebt

(b− a)(b− c)
+

ect

(c− a)(c− b)

16.
s

(s− a)(s− b)(s− c)
a, b, c distinct

aeat

(a− b)(a− c)
+

bebt

(b− a)(b− c)
+

cect

(c− a)(c− b)

17.
s2

(s− a)(s− b)(s− c)
a, b, c distinct

a2eat

(a− b)(a− c)
+

b2ebt

(b− a)(b− c)
+

c2ect

(c− a)(c− b)

18.
s

(s− a)2
(1 + at)eat

19.
s

(s− a)3

(
t +

at2

2

)
eat

20.
s2

(s− a)3

(
1 + 2at +

a2t2

2

)
eat

21.
1

(s2 + b2)2

sin bt− bt cos bt

2b3

22.
s

(s2 + b2)2

t sin bt

2b

23. 1 δ(t)

24. e−cs δc(t)

25.
e−cs

s
h(t− c)

26.
1

sα
(α > 0)

tα−1

Γ(α)
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Table C.2: Table of Laplace Transforms

F (s) f(t)

Laplace Transforms of periodic functions

27.
1

1− e−sp

∫ p

0

e−stf(t) dt f(t) where f(t + p) = f(t) for all t

28.
1

s(1 + e−sc)
swc(t)

29.
1

1− e−sp

∫ p

0

e−stt dt 〈t〉p

Table C.3: Table of Convolutions

f(t) g(t) (f ∗ g)(t)

1. 1 g(t)

∫ t

0

g(τ) dτ

2. tm tn
m!n!

(m + n + 1)!
tm+n+1

3. t sin at
at− sin at

a2

4. t2 sin at
2

a3
(cos at− (1− a2t2

2
))

5. t cos at
1− cos at

a2

6. t2 cos at
2

a3
(at− sin at)

7. t eat eat − (1 + at)

a2
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Table C.3: Table of Convolutions

f(t) g(t) (f ∗ g)(t)

8. t2 eat 2

a3
(eat − (a + at + a2t2

2
))

9. eat ebt 1

b− a
(ebt − eat) a 6= b

10. eat eat teat

11. eat sin bt
1

a2 + b2
(beat − b cos bt− a sin bt)

12. eat cos bt
1

a2 + b2
(aeat − a cos bt + b sin bt)

13. sin at sin bt
1

b2 − a2
(b sin at− a sin bt) a 6= b

14. sin at sin at
1

2a
(sin at− at cos at)

15. sin at cos bt
1

b2 − a2
(a cos at− a cos bt) a 6= b

16. sin at cos at
1

2
t sin at

17. cos at cos bt
1

a2 − b2
(a sin at− b sin bt) a 6= b

18. cos at cos at
1

2a
(at cos at + sin at)

19. f(t) δc(t) f(t− c)h(t− c)
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adjoint, 299
adjoint inversion formula, 300
augmented matrix, 270
coefficient matrix, 270
coefficients, 269
cofactor, 299
column expansion, 295
Cramer’s Rule, 301
dependent variables, 280
determinant

definition: 2× 2 case, 295
definition: general case, 295
elementary row operations, 297
properties, 296

echelon form, 279
elementary equation operations, 273
elementary row operations, 275

notation, 275
equivalent, 273
free variables, 280
Gauss-Jordon elimination, 284
Gaussian elimination, 283
homogeneous, 270
inconsistent, 270
inverse, 289
inversion computations, 290
invertible, 289
Laplace expansion formula, 295
leading one, 279
leading variables, 280
linear, 271
linear equation, 269
matrix

addition, 262
augmented, 270
coefficient, 270
column matrix, 263
column vector, 263
inverse, 289
product, 264
row matrix, 263
row vector, 263
scalar multiplication, 262
variable, 270
vector product, 263

matrix
adjoint, 299

minor, 295
nonhomogeneous, 270
nonsingular, 289
output matrix, 270
reduced matrice, 278
row echelon form, 278
row expansion, 295
row reduced echelon form, 279
sign matrix, 296
singular, 289
solution set, 270
system of linear equations, 269
variable matrix, 270

acceleration, 8, 178
adjoint formula, 360
algorithm

first order linear equations, 34
Fulmer’s method for eAt, 361
Picard Approximation, 57

434
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Picard approximation, 323
separable equation, 20

amplitude, 170
antiderivative, 17
approximate solution, 323
associated homogeneous equation, 36
associated homogeneous system, 369

balance equation, 316
basis, 336
beats, 174
Bernoulli equation, 70
Bernoulli, Jakoub, 70
Bessel function, 50

first kind, 50
modified second kind, 50

Cardano’s formula, 49
Cardano, Girolamo, 49, 377
Cauchy-Euler equation, 149

fundamental set, 152
characteristic matrix, 359
characteristic polynomial, 114, 145, 359

complex conjugate roots, 146
discriminant, 171
distinct real roots, 145
repeated root, 145

Clairaut’s theorem, 68
Clairaut, Alexis, 68
coefficient function, 30
complex conjugate, 380
complex exponential function, 80, 380
complex number

exponential form, 380
imaginary part, 379
real part, 379

complex numbers, 377
addition, 378
division, 380
multiplication, 378
standard algebraic form, 379

concentration, 316

consistent, 270
constant function, 77
constant of integration, 24
continuous function, 19, 30, 56
convolution, 118
convolution product, 374
convolution theorem, 118, 173
Cosine function, 81
Cramer’s rule, 164
critically damped, 171

damped forced motion, 175
damped free motion, 170
damping constant, 179
damping force, 129
damping term, 170
derivative, 5
derivative operator, 131
differential equation

exact, 65
first order

solution curve, 45
linear

constant coefficient, 30, 38, 130
first order, 12, 30
homogeneous, 30, 31, 130
inhomogeneous, 30
nonhomogeneous, 130
second order, 130

llinear
second order, 127

order, 2
ordinary, 1
partial, 1
second order, 9, 130
separable, 16, 31, 48
solution, 3, 130
standard form, 2
system

order, 308
differential operator
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linear
second order, 131

vector, 335
differentiation formulas, 6
dimension, 336
direction field, 45
displacement, 128
division in transform space, 118

eigenvalue, 360
eigenvector-eigenvalue pair, 353
electric circuit, 168
English system, 177
equality of mixed partial derivatives, 68
Euler’s formula, 80, 380, 381
exactness criterion, 68
Existence and Uniqueness Theorem

Picard, 58
existence and uniqueness theorem, 134,

150, 321
Existence Theorem

Peano, 58
eAt, 325

calculation by Laplace transform, 355,
359

fundamental matrix for y′ = Ay, 345
eAt for 2× 2 matrices, 365
eAt for 3× 3 matrices, 367
exponential function, 79, 380

complex, 81
Exponential matrix, 325
exponential type, 201

falling bodies, 8
force, 9
forcing function, 30, 130, 168
frictionless system, 179
Fulmer’s method, 361
functional equation, 1
functional identity, 3
fundamental matrix, 339, 369

criterion for, 340

fundamental set, 142, 146, 163
Fundamental Theorem of Calculus, 17

Galileo Galilei, 7
Gamma function, 50
general solution, 36
general solution set, 36
gravitational force, 178
growth rate, 10

half-life, 23
Heaviside expansion formula, 98
homogeneous solution set, 133

indicial polynomial, 150
conjugate complex roots, 151
distinct real roots, 151
double root, 151

initial conditions, 133
initial value problem, 3, 37, 108, 148,

309, 321
input function, 76, 115
integral equation, 56
integrating factor, 33, 34

Kepler, Johannes, 7

Laplace transform, 75, 76, 144, 147
differentiation formula

first order, 108
second order, 111

linearity, 77
Leibnz, Gottfried, 8
length, 378
level curve, 66
linear combination of solutions, 336
linear differential operator

second order
constant coefficient, 144, 146

linear equation, 36
linear homogeneous system

fundamental matrix, 339
linear homogeneous systems
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dimension of solution space, 336
linear operator, 131
linear systems

linear
existence and uniqueness theorem,

335
linearity, 133
linearly dependent, 139
linearly independent, 139, 336

Malthus, Robert, 10
Malthusian model, 10
Maple, 45
mass, 178
mass spring system, 168
Mathematica, 45
MATLAB, 45
matrix, 259

cofactor, 299
complex, 260
diagonal, 260
identity, 261
inverse, 360
lower triangular, 261
main diagonal, 260
real, 260
size, 260
transpose, 261
upper triangular, 261
zero, 261

matrix
size, 260

matrix function
continuous, 320
differentiable, 320
integrable, 320
Laplace transform, 320
product rule for differentiation, 333,

342
metric system, 177
mixing problem, 11, 12, 39, 43, 315

modulus, 378

Newton, 178
Newton’s second law of motion, 9
Newton, Isaac, 8
nullcline, 50

output function, 76
overdamped, 171

partial fraction decomposition, 95
form, 96

particular solution, 36, 133
Peano, Guiseppe, 58
phase angle, 170
Picard approximation algorithm, 323
Picard, Émile, 56
polar coordinates, 378
polynomial, 87
population growth, 10
position, 8
power function, 78
predator-prey system, 314
predictive, 9
proper rational function, 360
proportional

directly, 6
inversely, 6

radioactive decay, 22
radius, 378
rate in − rate out, 13
Rate in - Rate out, 316
rate of change, 6, 8, 13, 23
rational function, 87, 95

proper, 87
real numbers, 378
resonance, 175
restoring force, 128
Ricatti equation, 52
Riccati equation, 59

simple rational function, 95
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simple rational functions, 88
Sine function, 81
slope field, 45
slope of tangent line, 6
slug, 178
solution, 270

constant, 25
spring constant, 179
spring-body-dashpot, 127
spring-body-dashpot system, 177
steady state solution, 175
successive approximations, 56
system of constant coefficient linear dif-

ferential equations
solution by Laplace transform, 349

system of differential equations
first order

autonomous, 311
constant coefficient linear, 311
linear, 311, 319
linear and homogeneous, 312
solution, 309
standard form, 309

linear constant coefficient
exponential solution, 325

linear homogeneous, 335
linear nonhomogeneous, 369

associated homogeneous system, 369
system of ordinary differential equations,

308

Taylor series expansion, 324
transient solution, 175

undamped forced motion, 173
undamped free motion, 169
underdamped, 171
uniqueness

geometric meaning, 61
units of measurement, 177

variation of parameters, 163, 371

vector space, 36, 336
basis, 336
dimension, 336

Verhulst population equation, 24
Verhulst, Pierre, 11

Wronskian, 141
Wronskian matrix, 141, 164

zero-input solution, 115
zero-state solution, 115


